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Abstract—The global scale and distribution of companies
have changed the economy and dynamics of businesses.
Web-based collaborations and cross-organizational processes
typically require dynamic and context-based interactions
between people and services. However, finding the right
partner to work on joint tasks or to solve emerging problems
in such scenarios is challenging due to scale (number of
involved people and services) and the temporary nature of
collaborations. Furthermore, actor skills and competencies
evolve over time requiring dynamic approaches for the
management of actor properties. Web services and SOA
are the ideal technical framework to automate interactions
spanning people and services. In this paper, we present
a novel discovery mechanism based on social trust to
support formation and dynamic interactions in service-
oriented collaboration networks. We argue that trust between
members is essential for successful collaborations. Here we
discuss profile similarity-based link establishment to connect
disparate network segments.

Keywords-interaction monitoring, trust inference, group
formation, privacy issues, service-centric collaborations

I. INTRODUCTION

Small and medium-sized organizations create alliances

to compete with global players, to cope with the dynam-

ics of economy and business, and to harvest business

opportunities that a single partner cannot take. In such

networks where companies, communities, and individuals

form virtual organizations, collaboration support is a major

research track. In this paper, we focus on using SOA to

support the creation and operation of professional virtual

communities (PVCs). This kind of communities – also

referred to as a special case of a virtual organization –

is created by individuals to facilitate the collaboration

of professionals. For instance, the members of PVCs

may work on new technology standards, discuss current

research problems, or offer support to the economy.

Individuals and companies that are interested in col-

laborations register at dedicated portals, where they can

flexibly discover partners to form temporal alliances [1].

The collaborations in such networks usually span nu-

merous individuals distributed over various organizations

and locations. Due to the scale of these networks it

is impossible for the individuals to keep track of the

dynamics in such networks. However, the recent adoption

of service-oriented concepts permits the (semi-)automatic

management of member profiles and network structures.

In particular, SOA provides the functional means to allow

loose coupling of entities through predefined interfaces

and well-formed interaction messages. Upon SOA, moni-

toring of interactions enables the inference of social rela-

tions and expertise/interest profiles through mining logs.

Hence, we use SOA to support and guide human inter-

actions in collaborations by utilizing social relations. The

automatic inference and adaptation of relations between

network members [2], [3] has several advantages. Negative

influences, such as using outdated information for partner

discovery, do not exist compared to manually declared

relations. Moreover, monitoring of interaction behavior

allows timely adaptations in ongoing collaborations, for

instance, updates of member profiles based on successes

in recent collaborations and collected experiences, without

major user intervention. This paper deals with the follow-

ing contributions:

• Social Composition Model. We introduce concepts to

enable the seamless integration of human capabilities

in SOA, and the concept of social trust to support

the discovery of human-provided services and their

interactions.

• Trust-based Link Establishment in Collaborative

SOA. We study the application of introduced concepts

to support group formations in state-of-the-art SOA

with the human user in the loop.

• Prototype and Evaluation. We discuss the Social SOA

formation tool – a prototype implementation on top

of well adopted standards, including WSDL, SOAP

and FOAF (Friend-Of-A-Friend) [4], and evaluate its

applicability with a SOA testbed.

The remainder of this paper is organized as follows.

Sect. II motivates the need for socially enhanced SOA. We

deal with an example scenario in Sect. III and introduce

an interaction model for SOA communities in Sect. IV.

Sect. V highlights trust mechanisms to support discovery

and formation. We discuss the effectiveness of our link

establishment approach in Sect. VI, and introduce a pro-

totype implementation from the end-user’s perspective in

Sect. VII. Related work is outlined in Sect. VIII and the

paper concluded in Sect. IX.

II. SOCIALLY ENHANCED SOA SYSTEMS

While the traditional SOA concepts deem to be suffi-

cient from a pure technological point of view, the situation

changes with the human user in the loop. Considering

service-oriented collaboration scenarios on the Web, here

we discuss various views on socially-enhanced SOA. In

Fig. 1, three main building blocks are identified that are



based on traditional SOA concepts (services, discovery,

and interactions). We argue that the role of humans in SOA

should be extended so that people are able to shape the

availability of services. Furthermore, not only software-

based services are part of such systems, but also services

provided by human actors.
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Figure 1. Social Compositions in SOA.

Human-Provided Services (HPS). HPS act as inter-

action interfaces toward humans [5], letting users define

various HPSs for different collaborative activities indicat-

ing their ability (and willingness) to participate in ad-

hoc as well as process-centric collaborations. Users can

manage interactions, which might span various platforms

and services. The very idea of HPS is to support humans

in offering their skills and capabilities as services (e.g., a

‘document review service’ provided by one or more human

actors). For example, human activities can be defined by

the end-user and are mapped onto Web service interfaces.

Social Trust. In this paper, we focus on supporting

formations and interactions in service-oriented collabora-

tion environments by accounting for the individuals’ social

relations, especially social trust. In contrast to a common

security perspective on trust, the notion of social trust

refers to the interpretation of previous collaboration be-

havior [2], [3] and the similarity of dynamically adapting

interests [6], [3]. Especially in collaborative environments,

where users are exposed to higher risks than in common

social network scenarios, and where business is at stake,

considering social trust is essential to effectively guide

human interactions.

Trust-based Network Profiles. We argue that in a so-

cially enhanced SOA, network profiles replace traditional

service registries. Queries for services of collaboration

partners are not only based on sole service capabilities and

QoS, but increasingly personal relations are of paramount

importance. Especially in social environments, provided

services of personally known partners are highly favored

compared to unknown third party services. Thus, we

adopt common standards of the social network domain

to reflect personal relations and partner properties; in

particular FOAF [4]. However, we employ a system that

dynamically creates and adapts FOAF structures upon

inferred trust relations; thus keeping track of the dynamics

in collaboration networks automatically. Network Profiles

support the (i) discovery of potential collaboration partners

(direct relations and recommendations of yet unknown

actors through well known actors); (ii) routing of requests

and messages in the network; (iii) creation of human-

service compositions and (interest) group formation within

larger communities.

III. EMERGING RELATIONS IN PVCS

We depict a professional virtual community (PVC)

environment to familiarize with our concepts, and to

demonstrate the dynamic emergence of social relations.

A PVC is a virtual community that consists of experts

belonging to different physical organizations, and who

interact and collaborate by the means of information

and communication technologies to perform their work.

Nowadays, service-oriented technologies are increasingly

used to realize PVCs. The support of loose coupling,

convenient discovery, dynamic binding and composition

mechanisms makes SOA the ideal grounding for Web-

enabled PVCs.

Fig. 2(a) depicts various member groups that collaborate

in context of five different activities. The color of the

activity context determines the expertise area an activity

is related to. Such activities are, for instance, the specifi-

cation of new technology standards or scientific dissemi-

nation. Activities are a concept to structure information in

ad-hoc collaboration environments, including the goal of

the ongoing tasks, involved actors, and utilized resources.

They are either assigned from outside the community,

e.g. belonging to a higher-level process, or emerge by

identifying collaboration opportunities. In order to achieve

their goals, the members of the PVC interact in context

of the currently performed activities. In this paper we

focus on a special type of interaction: requests for support

(RFSs). PVC members interact using SOA technology.

In our scenario we make use of the HPS framework to

allow human participation in a service oriented manner,

i.e., humans can provide their capabilities as services,

and enable human interactions through SOAP. All SOAP

messages are logged for later analysis.

Social relations, e.g., reflected in FOAF profiles [4],

emerge from interactions (Fig. 2(b)), and are bound to

particular scopes (here: expertise areas). As shown later

in this work, we model the interaction context with tags

and keywords in order to create communities with actors in

similar activities. Through analyzing interaction contexts

(i.e., tags from exchanged messages that are collected

in activities), we determine a community’s predominant

activity focus and single members’ centers of interests.

Frequently used keywords are stored in the actors’ profiles

(see symbol P) and later used to determine interest and

expertise similarities. In the given scenario, this similarity

measurement is used to support the emergence of trust

between PVC members regarding help and support in
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Figure 2. Collaboration model for service-oriented PVCs: (a) interac-
tions in context of activities; (b) emergence of relations and profiles.



different expertise areas. We manage trust relations in

a directed graph model G = (N,E), where nodes N

represent the network members and directed edges E

reflect trust relations annotated by their scope. While some

kind of social relations already exist in a community, e.g.,

expressed through FOAF profiles, supporting the emer-

gence of new relations becomes a paramount undertaking

to form larger expert group and support the continuous

growth of communities.

Trust-based Link Establishment. Consider a sce-

nario in the given PVC in Fig. 2(b) where collabora-

tion between one community (u1, u2, u3) and another

one (u4, u5, u6, u7) should be facilitated. In that case,

actors from both communities should be ‘connected’, i.e.,

introduced to each other. However, not just random actors

should be picked, but actors having similar interests and

therefore, a common basis for future interactions (see

dashed lines). We argue that establishing personal contacts

in socially oriented environments is of high importance

compared to the traditional SOA domain, where services

are mostly composed based on their sole properties (e.g.,

features and QoS) only.

Let us assume we are able to infer meaningful social re-

lations between interacting network members (as detailed

in [3] and partly shown later in this paper). These relations

have major impact on future collaborations in different

manners:

• Supporting the Formation of Expert Groups. Success-

ful previous compositions of actors should not be

dissolved but actively facilitated for future collab-

orations. Thus, tight trust relations are dynamically

converted to FOAF relations.

• Controlling Interactions and Delegations. Interac-

tions and delegations of tasks between members can

be guided upon FOAF relations. We argue that people

tend to favor well-known members over any third

parties.

• Establishing new Social Relations. The emergence

of new personal relations is actively facilitated by

establishing links. Connecting actors with similar

interests (see dashed edges in Fig. 2(b)) supports the

emergence of future trustworthy compositions.

IV. HUMAN INTERACTIONS IN SOA

Community members interact to reach a predefined

goal. For instance, they request support, exchange infor-

mation, delegate tasks, and coordinate actions to perform

certain activities. Therefore, interactions always take place

within certain contexts. Traditional service-oriented archi-

tectures focus on modeling and implementing interactions

between distributed software-based services using Web

services technology. A central part of SOA are standards

such as descriptive service interfaces (WSDL) and the ex-

change of XML-based messages following a standardized

format (SOAP). These mechanisms enable the dynamic

discovery and invocation of services.

Also human interactions may rely on these SOA prin-

ciples as discussed in the following. This fact enables

the adoption of various available monitoring and logging

tools in service-oriented collaboration systems. The XML-

based structure of SOAP messages is well-suited for

message header extensions, such as addressing and routing

information, and annotation with contextual elements (e.g.,

activity identifier).

A. Human-Provided Services

As an example, an excerpt of a generic request for

support (RFS) schema definition is shown in Listing 1.

A user may send such a message (instance of the schema)

to a HPS in case s/he needs assistance in ongoing collab-

orations. For that purpose the user defines the Request,

including a subject and the detailed problem (requ),

links to important resources, and keywords to cate-

gorize the message (such as the expertise area).

<xsd:schema tns="http://myhps.org/rfs">
<xsd:complexType name="GenericResource">
<xsd:sequence>
<xsd:element name="Location" type="xsd:anyURI"/>
<xsd:element name="Expires" type="xsd:dateTime"/>

<xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Request">
<xsd:sequence>
<xsd:element name="subject" type="xsd:string"/>
<xsd:element name="requ" type="xsd:string"/>
<xsd:element name="resource" type="GenericResource"/>
<xsd:element name="keywords" type="xsd:string"/>

</xsd:sequence>
</xsd:complexType>
<xsd:element name="SupportRequest" type="Request"/>
<xsd:element name="AckSupportRequ" type="xsd:string"/>
<xsd:element name="GetSupportReply" type="xsd:string"/>
<!-- reply details omitted -->
<xsd:element name="SupportReply" type="Reply"/>

</xsd:schema>

Listing 1. RFS schema definition.

The GenericResource defines common attributes

and metadata associated with resources such as docu-

ments or policies. A GenericResource can encap-

sulate remote resources that are hosted by a collabo-

ration infrastructure (e.g., document management). An

interaction policy is a special type of resource and plays

an important role for controlling interaction flows, e.g.,

time constraints, delegation behavior including decisions

whether to respond to a requester directly or to a ‘social

broker’, and so on. Request defines the structure of an

RFS (here we show a simplified example). A Reply is

the corresponding RFS response (we omitted the actual

XML defintion).

Listing 2 shows the binding of the HPS WSDL to

the (HPS) infrastructure. The protocol (at the technical

HPS middleware level) is asynchronous allowing RFSs to

be stored, retrieved, and processed. For that purpose we

implemented a middleware service (HPS Access Layer -

HAL) which dispatches and routes RFSs.

<wsdl:portType name="HPSSupportPortType">
<wsdl:operation name="GetSupport">
<wsdl:input xmlns="http://.../addressing/wsdl"
message="GetSupport" wsaw:Action="urn:GetSupport">

</wsdl:input>
<wsdl:output message="AckSupportRequ"/>

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name="..." type="HPSSupportPortType">
<soap:binding style="document"
transport="http://xmlsoap.org/soap/http"/>

</wsdl:binding>

Listing 2. HPS WSDL binding excerpt.



GetSupport depicts a message corresponding to the

RFS SupportRequest. Upon receiving such a request,

HAL generates a session identifier contained in the output

message AckSupportRequ. A notification is sent to

the requester (assuming a callback destination or notifi-

cation endpoint has been provided) to deliver RFS status

updates for example; processed RFSs can be retrieved

via GetSupportReply. More information about this

notification mechanism can be found in [5].

B. Activity-based Interaction Context Model

Fig. 3 depicts the applied context model (simplified for

brevity), where actors, described by their profiles,

perform activities.
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Figure 3. Context model: Linked Actors perform activities in scopes.

Activities reside in more abstract scopes, e.g., all

activities of a specific type (activity scope), or all activities

belonging to a certain project (project scope). For instance,

supporting the creation of white box test cases resides in

a software development scope. Furthermore, actors are

linked to collaboration partners in the network. These

relations are reflected by FOAF profiles, are bound

to scopes, and are characterized by various metrics that

rely on previous interactions.

V. SOCIAL TRUST IN COLLABORATIVE SOA

Collaborative networks as outlined in the previous sec-

tions are subject to our trust studies. Unlike a security

view, we focus on the notion of dynamic trust from a social

perspective [7]. We argue that trust between community

members is inevitable for successful collaborations. The

notion of social trust considers the similarity of dynami-

cally adapting skills and interests [6], [8]. In this paper,

we particularly focus on the establishment of trust through

measuring interest similarities [3], [6], [7]:

• Trust Mirroring implies that actors with similar pro-

files (interests, skills, community membership) tend

to trust each other more than completely unknown

actors.

• Trust Teleportation rests on the similarity of human

or service capabilities, and describes that trust in a

member of a certain community can be teleported to

other members. For instance, if an actor, belonging

to a certain expert group, is trusted because of his

distinguished knowledge, other members of the same

group may benefit from this trust relation as well.

A. Profile Similarity Measurement

In contrast to common top-down approaches that apply

taxonomies and ontologies to define certain skill profiles

and expertise areas, we follow a mining approach that

addresses inherent dynamics of flexible collaboration en-

vironments. In particular, skills, expertise and interests

change over time, but are rarely updated if they are

managed manually in registries. Hence, we determine and

update them automatically through interaction mining. As

discussed before, interactions, such as task delegations

and support requests are tagged with keywords. These

keywords contribute to the description of activities, i.e.,

describe their focus. As actors process or discard received

messages, our system is able to learn their expertise

and centers of interests. We use task keywords to create

dynamically adapting interest profiles based on tags and

manage them in a vector space model [9].

We assume that users pick keywords from a globally

available taxonomy (such as the ACM taxonomy1) instead

of adding arbitrary tags. The advantage is that we avoid

(i) the use of synonyms, thus leading to inaccurate inter-

est profiles (notebook v.s. laptop both meaning the

same), (ii) equally meant but differently written tags (and

their singular/plural forms), e.g., social network v.s.

social-networks). An approach to similarity mea-

surement that compensates such influences has been dis-

cussed in [10].

The profile vector pui
of actor ui in Eq. (1) describes

the frequencies f the tags T = {t1, t2, t3 . . . } are used in

requests and delegated tasks accepted by actor ui.

pui
= 〈f(t1), f(t2), f(t3) . . . 〉 (1)

The tag frequency matrix T (2) in Eq. 2, built from

profile vectors, describes the frequencies of used tags T =
{t1, t2, t3 . . . } by all actors N = {u1, u2, u3 . . . }.

T = 〈pu1
,pu2

,pu3
. . . 〉|T |×|N | (2)

The popular tf∗idf model [9] introduces tag weighting

based on the relative distinctiveness of tags; see Eq. (3).

Each entry in T is weighted by the log of the total

number of actors |N |, divided by the amount nt = |{ui ∈
N | tf(t, ui) > 0}| of actors who used tag t.

tf∗idf(t, ui) = tf(t, ui) · log
|N |

nt

(3)

Finally, the cosine similarity, a popular measure to

determine the similarity of two vectors in a vector space

model, is applied to determine the similarity of two actor

profiles pui
and puj

; see Eq. (4). The result is a real value

simp ∈ [0, 1], whereas 0 denotes no overlap between used

tags and 1 reflects identically used keywords.

simp(pui
,puj

) = cos(pui
,puj

) =
pui

· puj

||pui
|| ||puj

||
(4)

1http://www.acm.org/about/class/1998/



B. The Interplay of Interest Similarity and Trust

In our model, trust τ(ui, uj) ∈ [0, 1] mainly relies on

the interest and expertise similarities of actors (see [6]

for details on that assumption). We two major concepts to

facilitate the emergence of trust among network members.

Trust Mirroring. Trust τmir is typically applied in

environments where actors have the same roles (e.g.,

online social platforms). Depending on the environment,

interest and competency similarities of people can be

interpreted directly as an indicator for future trust (Eq.

5). There is strong evidence that actors ‘similar minded’

tend to trust each other more than any random actors [7],

[8]; e.g., movie recommendations of people with same

interests are usually more trustworthy than the opinions

of unknown persons.

τmir(ui, uj) = simp(pui
,puj

) (5)

Trust Teleportation. Trust τtele is applied in sparse

trust networks. We assume that ui has established a trust

relationship to uj in the past, for example, relying on trust

mirroring (applied in the following experiments) or based

on uj’s capabilities to assist ui in work activities (see

for instance [3]). Therefore, others having interests and

capabilities similar to uj may become similarly trusted by

ui in the future. In contrast to mirroring, trust teleportation

may also be applied in environments comprising actors

with different roles. For example, a manager might trust

a software developer belonging to a certain group. Other

members in the same group may benefit from the existing

trust relationship by being recommended as trustworthy as

well. We attempt to predict the amount of future trust from

ui to a third party uk by attenuating τ(ui, uj) considering

the profile similarity of the trustee uj and the still unknown

actor uk. Since there may be multiple recommendations, in

Eq. 6 the degree of teleported trust is additionally weighted

by the profile similarities (simp) of ui and each actor in

the set of recommenders M ′.

τtele(ui, uk) =

∑
uj∈M ′ τ(ui, uj) · (simp(puj

,puk
))2

∑
uj∈M ′ simp(puj

,puk
)

(6)

Eq. 6 deals with a generalized case where several trust

relations from ui to members of a group M ′ are teleported

to a still untrusted actor uk. Teleported relations are

weighted and attenuated by the similarity measurement

results of actor profiles.

C. Establishment of Social Relations

Based on a pre-configured profile similarity threshold

ϑT ∈ [0, 1] the system can recommend new links. These

links reflect potentially beneficial relations due to actors’

interest similarities. Setting ϑT = 0 means that all actors

will be connected, thus resulting in a fully meshed net-

work; setting ϑT = 1 means that virtually no new relations

will be introduced (except entire identical tagging pro-

files). Appropriate top and bottom limits are determined

in the evaluation in Sect. VI. Practically, there should

be enough links introduced to connect yet unconnected

subcommunities, however, still considering their differing

interests.

VI. EVALUATION AND DISCUSSION

We use a Web service testbed to simulate the interaction

behavior in a SOA-based PVC. The purpose of the Gene-

sis2 framework [11] (in short, G2) is to support software

engineers in setting up testbeds for runtime evaluation

of SOA-based concepts and implementations. It allows

to establish environments consisting of services, clients,

registries, and other SOA components, to program the

structure and behavior of the whole testbed, and to steer

the execution of test cases on-the-fly. G2’s most distinct

feature is its ability to generate real testbed instances

(instead of just performing simulations) which allows

engineers to integrate these testbeds into existing SOA en-

vironments and, based on these infrastructures, to perform

realistic tests at runtime.

Experiment Setup. The created environment consists

of 200 services that interact in small groups of 2 to 5 mem-

bers; thus 58 groups are built. Typically, groups of that size

perform certain activities. During collaboration services

interact by delegating tasks and requesting support; thus,

in our simulation we let random services interact in fixed

time intervals. Each interaction is tagged with a maximum

of 3 keywords. We run different tests and vary the number

of globally known tags, as well as the amount of occurring

interactions. The results of these experiments help to de-

termine appropriate similarity thresholds to introduce new

(trust) edges in the collaboration graph for recommending

and facilitating future collaborations.

Results. Fig. 4 demonstrates the effects on the graph

structure when new links are introduced (red dashed lines).

The size of the nodes denote their involvement in activi-

ties, i.e., the number of received interactions. Additionally

the single groups are colored for better visibility. In the

beginning (Fig. 4(a)) various small components exist but

are not interconnected. These components represent small

groups of actors that interact in context of their activities.

Links reflect interaction paths that may lead to trust over

time (see [3]). After finishing the simulation, we gradually

introduce new links using our concepts of trust mirroring

and trust teleportation. The threshold ϑT denotes the

lower boundary of tag usage similarity, i.e., all pairs of

actors that have higher profile similarity than ϑT are

connected. Thus, higher ϑT leads to less connections. The

optimal number of introduced edges in the graph depends

on several properties. On the one side, independent com-

ponents should be connected, so that previously unknown

actors get introduced to each other. On the other side,

simply connecting all actors with each other is obviously

not beneficial. An optimal connection is hard to determine,

but various graph metrics [12] are appropriate indicators,

such as number of connected components nc, average

number of neighbors nn, or network density nd.

In the following experiments, we determine the number

of added edges depending on the configured threshold



(a) No added edges (initial) (metrics: nc=55,
nn=1.8, nd=0.010).

(b) Added edges (ϑT = 0.8) (metrics: nc=8,
nn=2.62, nd=0.014).

(c) Added edges (ϑT = 0.6) (metrics: nc=1,
nn=5.56, nd=0.03).

Figure 4. Gradually interconnecting trust network based on evolving interest similarities.
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Figure 5. Impact of ϑT on number of added edges for varying number
of interactions (20 tags).
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Figure 6. Impact of ϑT on number of added edges for varying tag sets
(2000 interactions).

ϑT . The first set of experiments investigates the impact

of varying numbers of interactions in our scenario (see

results in Fig. 5). Actors pick up to three tags from a

globally available tag set of size 20 to annotate their

interactions. Obviously more interactions lead to bigger

profiles as more tags are collected. Therefore, after longer

collaboration (e.g., 5000 interactions in the whole sce-

nario) more similar actors can be determined than after a

lower amount of interactions (e.g., 2000). For only 1000

interactions a threshold of 0.6 is not exceeded. Note,

numbers on the x-axis are in the reverse order. Normally,

one would start with introducing links between actors with

identical profiles (ϑT = 1) and than gradually degrade

that value until a satisfying degree of connection has been

reached. Also note that the y-axis uses a logarithmic scale.

In the second set of experiments, 2000 interactions are

performed, however, the number of globally available tags

is changed. This means that actors can choose from 10,

20 or 50 different keywords to annotate their interactions.

As expected, for smaller tag sets higher profile similarity

is achieved (see results in Fig. 6).

VII. PROTOTYPE AND IMPLEMENTATION

A. Interaction Logging

The previously presented results are based on G2’s

testbed generation capabilities and a framework for moni-

toring and logging interactions between services. Interac-

tions are captured through (SOAP) message interceptors

deployed within the service runtime environment. Logged

messages are persistently saved in a database for analysis.

An example interaction log is shown by Listing 3, which

includes various SOAP header extensions for message

correlation and context-aware interaction analysis.

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:vietypes="http://viete.infosys.tuwien.ac.at/Type"
xmlns:hps="http://www.infosys.tuwien.ac.at/hps/"
xmlns:rfs="http://.../socialsoa/rfs">
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:wsa="http://schemas.xmlsoap.org/ws/.../addressing"
<soap:Header>
<vietypes:timestamp value="2010-05-25T17:24:18"/>
<vietypes:msgflags priority="urgent"/>
<vietypes:activity url="http://.../Activity#42"/>
<wsa:MessageID>uuid</wsa:MessageID>
<wsa:ReplyTo>http://.../Actor#Harald</wsa:ReplyTo>
<wsa:From>http://.../Actor#Florian</wsa:From>
<wsa:To>http://.../Actor#Daniel</wsa:To>
<wsa:Action>http://.../Type/RFS</wsa:Action>

</soap:Header>
<soap:Body>
<hps:Request>
<rfs:subject>ACM taxonomy for my paper?</rfs:subject>
<rfs:requ>What ACM categories fit best

to my paper?</rfs:requ>
<rfs:resource>
<vietypes:resource type="doc" uri="http://..."/>
</rfs:resource>
<rfs:keywords>document, categorization</rfs:keywords>

</hps:Request>
</soap:Body>

</soap:Envelope>

Listing 3. Simplified RFS via SOAP example.



(a) User controls.

(b) Example of FOAF profile.
(c) Network visualization view.

Figure 7. Web-based formation tool and network visualization.

The most important extensions are (see [3] for details

on the implementation):

• Timestamp captures the actual creation of the mes-

sage and is used to calculate temporal interaction

metrics, such as average response times.

• Message flags, including priority of messages.

• Activity uri describes the context of interac-

tions (see Fig. 3 for the model).

• MessageID enables message correlation, i.e., to

properly match requests and responses.

• WS-Addressing extensions, besides MessageID,

are used to route requests through the network.

The SOAP body transports the actually exchanged mes-

sage. In this example a request for support (RFS) [3]

shows how one actor requests some help from another one

in the motivating collaboration scenario. Note, interactions

are only captured to collect keywords and support the

creation of user profiles. Logged data can be purged

immediately after keyword extraction. Thus, our approach

of interaction observation is less intrusive compared to

others (e.g., semantic analysis of captured messages). We

understand today’s privacy concerns as a big issue of most

systems that log user data for adaptation purposes (such

as establishing network links).

B. User Tools

The implemented prototype includes a Web-based for-

mation tool assisting users in analyzing various thresholds

for trust-based link establishment between independent

networks. Fig. 7 shows screenshots of the tool and an

example FOAF profile that can be retrieved from the Web

application. All user interfaces have been implemented

using state-of-the-art Web technologies such as ASP.NET

MVC hosted by a .NET 3.5 runtime. Our implementation

comprises a network visualization view built on top of

a JavaScript library2. The network view is obtained by

mapping raw SOAP-interactions into a graph representa-

tion composed of nodes (services) and edges (interaction

links). Each link holds additional data such as the number

of exchanged messages between services. Nodes are asso-

ciated with profiles and also groups indicated by a prefix in

the view in Fig. 7(c) representing the initial disconnected

components of the interaction network.

As a first step, the user accesses information captured

from the service-oriented collaboration environment (Fig.

7(a)). In our implementation, this is performed by selecting

a particular set of logs which are associated with an

Experiment ID. After issuing the corresponding query,

a graph is visualized typically consisting of several dis-

connected components. The tool queries a Similarity

Service to obtain a set of similar actors for each node

in the network (see list on the right side in Fig. 7(a)). The

presented list shows actor name and degree of similarity.

By default, the collaboration network is visualized in a

graph view as depicted in Fig. 7(b). The user is able to

select a similarity threshold by moving a slider bar. A

reduced (demanded) similarity threshold results in trust

edges being added to the visualization (color online:

depicted as red colored edges between nodes). Alter-

natively, interactions can be retrieved as FOAF profiles

(see Fig. 7(c)) that include foaf:interest tags. This

mechanism can be used to retrieve and aggregate captured

profiles from distributed environments (e.g., from multiple

instances of the logging service).

VIII. RELATED WORK

The concept of virtual organizations and professional

communities that are supported by ICT is widely studied,

e.g., see [1]. While others discuss such environments

from a business or workflow perspective [13], we apply

2Graph visualizations for the Web: http://thejit.org.



concepts from SOA and the social network domain. For

example, major software vendors have been working on

standardizing human interactions in business-centric ap-

plications (e.g., see WS-HumanTask [14]). Instead, here

we focus on dynamic interaction scenarios based on so-

cial concepts and dynamic trust in collaborative service-

oriented systems. In particular, we adopt the concept of

Human Provided Services [5], [15] to support flexible

service-oriented collaboration across multiple organiza-

tions and domains. A similar view is shared by [16]

who defines emergent collectives which are networks of

interlinked valued nodes (services). Furthermore, we adopt

the well-known FOAF standard for managing collabora-

tion links. Work by [17], [18] discusses link prediction

based on similarity, focusing on structural graph properties

such as number of neighbors and number of in/out links.

However, in our model, these links reflect social trust

relations. Until now, a wide range of computational trust

models have been proposed [2], [3], [19], [20]. In partic-

ular, we focus on social trust [3], [6], [7], [8] that relies

on the similarity of user profiles that express capabilities

and interests. Especially [6] proofed with data from real

systems that trust between users emerges based on interest

similarities. We adopt this finding to justify our approach

of link establishment. In contrast to many common top-

down approaches that model user profiles at least partly by

the means of ontologies [21], [22], we create interest pro-

files fully dynamically through mining tagged interactions.

Tagging and its meaning has been studied by [23]. While

others create tagging profiles with hierarchical clustering

models, we apply a more lightweight approach using

various analytical models from the domain of information

retrieval, including term-frequency and inverse document

frequency metrics [9].

IX. CONCLUSION AND FUTURE WORK

In this paper, we discussed concepts and mechanisms

to enable service-oriented virtual communities. These

communities rely on SOA technology and enable hu-

mans to collaborate in a service-oriented manner. Existing

approaches in service-oriented systems typically aim at

devising a predefined interaction model between people

and services. The presented work attempts to align SOA

concepts and service-oriented collaborations driven by

dynamics such as evolving skills and preferences. We

believe that the automated management of social aspects

including trust are key issues. Since personal relations are

of paramount importance in these social environments, we

introduced the concept of social trust to establish links

between community members. Besides interest similari-

ties, our future work considers more diverse collaboration

metrics to capture and predict interaction behavior and

attitude.
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