
Trust-based Adaptation in Complex Service-oriented Systems

Florian Skopik, Daniel Schall, Schahram Dustdar

Distributed Systems Group

Vienna University of Technology

Argentinierstraße 8/184-1, A-1040 Vienna, Austria

{skopik|schall|dustdar}@infosys.tuwien.ac.at

Abstract—Complex networks consisting of humans and soft-
ware services, such as Web-based social and collaborative en-
vironments, typically require flexible and context-based inter-
action models. Due to the dynamics in such systems, networks
are in a state of constant flux and change. Several fundamental
concepts, including discovery, interactions, task delegations and
executions are no longer based on static policies, but need
periodic readjustments. Sophisticated adaptation techniques
for improving collaborations are within the key research areas
in service-oriented systems. In this paper, we introduce an
adaptation approach that accounts for emerging trust relations
based on varying interaction behavior of network members.
We describe a science collaboration scenario that applies
adaptive information sharing techniques. In our model, trust
evolves from cooperative behavior of collaboration partners.
This behavioral trust provides an intuitive grounding for
adaptations and optimizations of member compositions and
sharing policies. As people prove their reliable and depend-
able behavior in jointly performed activities, they become
increasingly considered as invaluable partners. We describe the
foundational concepts, including support for ad-hoc and self-
managed collaboration scenarios, and dynamic trust determi-
nation supported by SOA concepts. Furthermore, we present a
reference architecture, and evaluate its applicability for large-
scale collaboration networks.

Keywords-trust-based adaptation, complex mixed systems,
trust emergence, trust-based information views;

I. INTRODUCTION

The way people interact in collaborative and social en-

vironments on the Web has evolved in a rapid pace over

the last few years. Services have become a key-enabling

technology to support collaboration and interactions. Per-

vasiveness, context-awareness, and adaptiveness are some

of the concepts that emerged recently in service-oriented

systems. A system is not designed, deployed, and executed;

but rather evolves and adapts over time. This paradigm

shift from closed systems to open, loosely coupled Web

services-based systems requires new approaches to support

interactions.

A mixed service-oriented system is a complex network

comprising human- and software services that can be flexibly

composed to perform various kinds of activities. Therefore,

interactions in such systems do not only span humans, but

also software services. Recently, trust has been identified

as a beneficial concept to deal with the dynamics in large-

scale networks [1], [2], for example, trust-based selection of

services. In contrast to the traditional security perspective on

trust, in this context, trust is related to how much humans or

other systems can rely on services to accomplish their tasks

[3]. Therefore, trust emerging in specific scopes, relies on

previous interactions, and evolves over time. Accounting for

dynamically changing trust relations when selecting people

for communication or collaboration, services to be utilized,

and resources to be applied, leads to more efficient coop-

eration and compositions of human- and software services

[4]. Some typical aspects that require run-time adaptation in

mixed service-oriented systems include:

• Discovery of Network Members and Resources. In

many networks, for example social networks, the dis-

covery and selection process relies on matching of user

profiles and resource features that are mainly static. In

contrast, utilizing periodically updated trust relations

better accounts for varying user preferences and avoids

lookup based on stale information.

• Access to and Sharing of Information. Traditional ap-

proaches to access rights management are based on

manually assigned static user roles. However, the user

is often not able to keep track of configurations in

complex networks such as dynamically changing roles.

• Coordination and Compositions. Especially in flexible

environments, compositions of humans and services

cannot only rely on static structures, but have to be

flexibly adapted based on their run-time behavior.

• Interaction Policies and Patterns. In common enterprise

networks, policies and interaction patterns describe

and restrict communication paths between network

members. Therefore, periodic adaptation upon ongoing

collaborations enable optimizations according to the

outcome of interactions.

We introduce a general approach to deal with these

concerns, enabling trust-based adaptation of complex net-

work structures (Figure 1). This concept follows an adopted

version of the ‘MAPE’ cycle applied in the autonomic

computing domain [5]. MAPE, incorporating fundamental

concepts from control engineering, describes a cycle con-

sisting of four phases, which are Monitor, Analyze, Plan

and Execute. Periodically running through these four phases

establishes a kind of environmental feedback control, and,

observe interaction

behavior and context

infer relations and

determine network structure

I. Monitor

II. Analyze

III. Plan

plan collaboration activities

upon analyzed relations

instantiate and run

(adapted) collaboration

IV. Execute

Act
i-

vi
ty Act

i-

vi
ty

WSDL

Figure 1. Adaptation approach for mixed service-oriented systems.

therefore, allows to adapt to varying circumstances. This

aspect enables us to address aforementioned challenges.

In the Monitoring Phase our system observes interactions,

in particular communication, coordination, and execution

events among network members in their respective situa-

tions. In the Analyzing Phase logged interactions are used to

infer relations and to determine network structures. For this

purpose, domain-dependent interaction metrics and quality

criteria are calculated and interpreted. The following Plan-

ning Phase covers the preparation of new collaborations,

for instance, discovery, ranking and selection of network

members, services, and resources. In the Execution Phase

either new collaborations are instantiated, or existing scenar-

ios adapted according to feedback from prior observations.

In that phase network members interact to perform planned

activities. This closes the cycle.

Previously, we introduced methods and algorithms that

are applied in the monitoring and analyzing phases of

the MAPE approach for inferring trust by interpreting and

weighting interactions [4]. In this paper, we describe the

realization and major design decisions of frameworks that

support adaptations in complex service-oriented networks.

We present the following contributions:

• Trust-based Adaptation in Complex Systems. We focus

on complex networks of human and service actors. In

that environment, we describe the emergence of trust

upon interactions, and discuss a self-adaptive approach

as well as typical concerns.

• Realization and Implementation Aspects. We discuss

the support and realization of one representative mixed

complex network example. In that use case, informa-

tion sharing among network members is adapted by

accounting for dynamically emerging trust relations.

• Evaluation and Discussion. We evaluate our Web

services-based implementation with performance stud-

ies under realistic conditions.

The rest of the paper is organized as follows. In Section

II we describe a detailed science collaboration scenario,

where information sharing is adapted based on varying trust

relations. Section III deals with the applied trust model.

The following Section IV focuses on the realization of

our approach, including architectural and implementation

details. We evaluate and discuss our work in Section V.

Related work is listed in Section VI, and Section VII

concludes the paper.

II. THE SCIENCE COLLABORATION SCENARIO

A typical environment for applying trusted information

sharing is a science collaboration network. It comprises

scientists, members from national and international research

labs, and experts from the industry. Collaboration is sup-

ported by modern service-oriented architectures that real-

ize centralized people registries and profile management,

communication services, and data sharing facilities. Network

members collaborate to address challenging research ques-

tions and to reach higher impact of scientific disseminations.

They conduct joint project proposals, perform distributed

software prototyping, and data analysis and visualization.

Furthermore, certain participants can provide their sup-

port in a service-oriented manner. For instance, they offer

document review services, or data analysis services, and

interact through precisely predefined interfaces. We utilize

the previously introduced Human-Provided Services (HPS)

framework [6] to embed humans acting as services us-

ing SOA concepts. This includes WSDL descriptions of

interfaces, central registries, SOAP-based interactions, and

sophisticated logging facilities.

A. Emerging Trust Networks

Recently, we demonstrated the (semi-)automatic flexible

determination of trust [4] in the above-mentioned service-

oriented collaboration environment. Briefly, our approach

relies on the observation of fundamental interactions, such

as SOAP-based communication, coordination or execution

scope

dependent

trust relations

n4

n5

n2

Symbols:

network member

activity

activity context

interaction

trust relation

trust scope

A

context-aware

interactions

A
2

management

scope

dissemination

scope

n3

A
3

A
1

n1

Figure 2. On the emergence of trust.

messages. People interact and use services when conducting

activities. Figure 2 depicts this fundamental concept. Net-

work members collaboratively perform activities of different

types. These activities structure relevant contextual informa-

tion, including involved actors, goals, temporal constraints,

and assigned resources. So, we conclude that an activity

holistically captures the context of interactions between

participants [4]. Several activity contexts are aggregated

to uniform scopes, e.g., all activities of a specific type

(activity scope), or all activities belonging to a certain

project (project scope). Trust emerges from interactions

and manual ratings of collaboration partners within those

scopes. For instance, trust can rely on the responsiveness

and reliability of collaboration partners, as well as on their

collected experiences and skills. As shown in Figure 2,

trust is represented by a directed relation from one network

member ni (the trustor) to another one nj (the trustee), and

relies on prior cooperative behavior in a given scope. These

trust relations are determined by periodically analyzing and

interpreting observed interactions and ratings of partners.

For example, the collaboration of network members n1, n2,

n3, and n4 in different scientific dissemination activities A1
and A2, leads to the establishment of trust in one uniform

‘dissemination scope’. Finally, a scale-free complex network

emerges from cooperations in typical research collaborations

as investigated by [7].

B. On Trusted Information Sharing

In a science collaboration network scenario, understand-

ably no member will share novel, yet unpublished, ideas

carelessly. However, information sharing is essential to dis-

cover new collaboration opportunities. The challenge is to

enable sensitive information sharing, that adapts and restricts

the view on information with respect to changing trust

relations. Therefore, we introduce the concept of trusted

information sharing. This concept provides the means to

share information, e.g., paper drafts, recently submitted

papers, or project documentation, only with trusted network

members who have demonstrated their reliable and depend-

able behavior before. In this case, trust reflects a probability

measure of future collaboration successes, and therefore,

potential benefits from collaborations.

As depicted in Figure 3, trusted information sharing is

bound to trust scopes. For instance, if member n1 established

trust in n5 in the management scope (because they jointly

performed several project management activities success-

fully), n5 is allowed to access n1’s data about referees’

contact details, planned future projects, and personal organi-

zational details. However, no information dedicated to other

scopes, such as scientific dissemination, is shared. Hence,

information sharing is restricted to mandatory information

in particular scopes.

As trust relations emerge dynamically based on interaction

behavior of people, the amount of shared information is

n4

n5

n2

Symbols:

network member

information

trust relation

trust scope

sharing

management

scope

dissemination

scope

n3

reputation

based sharing

trust based

sharing

recommendation

based sharing

n1

Figure 3. Trust concepts utilized for trusted information sharing.

periodically adapted by the system and, in the optimal

case, needs no further manual intervention of users. How-

ever, this approach works best in environments with flat

(or practically no) hierarchies, where people may decide

completely on their own about conditions for information

sharing. In enterprise collaborations, with pre-determined

communication paths and static role models, mechanisms

that override trust-based sharing are required. But here, we

focus on the depicted science collaboration network that

consists of people with equal roles, rights and aims. We

identified three fundamental trust concepts to enable trusted

information sharing in the described environment:

Sharing based on Personal Trust Relations. Activity rel-

evant artifacts are shared in a scope to different extent

(views), according to the degree of trust between network

members. For instance, in Figure 3 n1 grants access to n5

to information in the management scope.

Sharing based on Recommendations. In case of sparse

trust networks, or low connectivity of certain members,

sharing based on personal relations only is limited. Second-

hand opinions, called recommendations, are utilized to over-

come this problem. For instance, n1 trusts n2, and n2

trusts n4 because of successful previous collaborations in

the dissemination scope. If these successes rely on the

compatibility of each member’s working style, there is a

high probability that n1 might establish trust to n4 upon

future interactions (for transitive trust propagation see [8]).

Hence, to facilitate the establishment of trust relations, n1 is

encouraged to share pieces of information with the unknown

member n4. Sharing of data, such as parts from the personal

profile, introduces n1 to n4 and supports the bootstrapping

of future collaborations [9].

Sharing based on Reputation. If network members are

trusted by several partners in the same scope, (i.e., they have

more than one trustor), reputation can be determined. For

instance, n2 is trusted by n1 and n4. Therefore, network

member n3, who has not established trust in others yet, can

rely on this reputation (inferred from single trust relations).

So, n3 can either allow n2 to access parts of his person-

ally managed information (passive sharing), or by pushing

information towards n2 (active sharing).

III. THE TRUST MODEL IN A NUTSHELL

In virtual communities, where people dynamically inter-

act to perform activities, reliable and dependable behavior

promotes the emergence of trust. As collaborations are

increasingly performed online, supported by service-oriented

technologies, such as communication-, coordination-, and

resource management services, interactions have become

observable. By monitoring and analyzing interactions, trust

can be automatically inferred. In contrast to manual rating

approaches, automatic inference is well-suited for complex

networks, where potentially thousands of network members

dynamically interact. We demonstrated the automatic infer-

ence of trust earlier [4], [10], therefore, we highlight the

fundamental concept only.

A. Context Model and Shared Information

A model as depicted in Figure 4 is needed to capture

the context of interactions, and to distinguish and categorize

interaction behavior with respect to different situations. It

reflects the relationships between managed information in

social and collaborative networks, including the introduced

science collaboration network scenario. Briefly, this model

comprises the aggregated information from various support-

ing services, such as community member profiles, calculated

interaction and trust metrics, personal information, and in-

volved activities.

Activity

-Name

-Type

-Description

-Priority

-Tag [1...*]

Network Member

-id

InvolvementRole

-Type

-Responsibility [1...*]

parent

child

GenericResource

-URI

-Type

ActivityTemplate

-Type

*

Profile

-Name

-FOAF

-Capability [1...*]

-ResearchFields [1...*]

-Employment

*

applies

in

A
c
ti
v
it
y

in
v
o
lv

e
d

as

1

1 has

Relation

Metric

-Name

-Description

-Type

-Value

-Timestamp

Scope

-Name

-Description

-Constraint [1...*]

PersonalInformation

-Name

-Type

-Uri

0..1

0..*

2

0..*

*

1

1

0..*

linked to

1 valid in

describes
1

*

owns
1

1 0..*

Figure 4. Interaction context model and shared information.

We enable the sharing of all of this information. Hence, in

contrast to traditional approaches, such as P2P file sharing

that focuses on sharing of document-based information

only, we also allow sharing of social information. Besides

personal data, this includes profiles, member relationships,

activity involvements, regular co-workers, or collaboration

performance determined by previous interactions.

B. Fundamental Trust Model

Not only service interactions, but also human interactions

may rely on SOAP (e.g., see Human-Provided Services

[6] and BPEL4People [11]), which is the state-of-the-art

technology in service-oriented environments, and well sup-

ported by various software frameworks. This fact enables the

adoption of various available monitoring and logging tools

for mixed service-oriented systems. The XML-based struc-

ture of SOAP messages is well-suited for message header

extensions, such as addressing and routing information, and

annotation with contextual elements (e.g., activity identi-

fier). These mechanisms allow for context-aware interaction

metric calculation, for instance, reliability, responsiveness,

collected experience, and costs with respect to specific

situations. We apply an arithmetic calculation of trust based

on these metrics. This calculation is context dependent, so

in different domains and use cases the impact of metrics

varies. As interaction behavior changes over time, trust will

alter too. Therefore, trust deems to be an intuitive grounding

for flexible adaptation techniques in mixed service-oriented

systems.

The interaction behavior of a network member ni toward

nj is described by various metrics M(ni, nj), such as aver-

age response time, availability, and rate of joint successful

activities. These metrics are normalized to the interval [0, 1]
either according to predefined upper and lower bounds, or

dynamically adapted according to the highest and lowest

values in the whole community. The sum of selected metrics

build the confidence cs(ni, nj) ∈ [0, 1] of ni in nj in scope

s. This confidence represents recent evidence that an actor

behaves dependably, securely and reliably. In Equation 1

confidence is calculated from metrics mk ∈ M(ni, nj) that

are weighted by wk (
∑

k wk = 1).

cs(ni, nj) =
∑

∀mk

(mk(ni, nj) · wk) (1)

The reliability of confidence ρ(cs(ni, nj)) ∈ [0, 1], rang-

ing from totally uncertain to fully confirmed, depends mainly

on the amount of data used to calculate confidence (more

data provide higher evidence), and the variance of metric

values collected over time (e.g., stable interaction behavior is

more trustworthy). The function Ψs
ρ (Equation 2) determines

the reliability ρ of the confidence value cs(ni, nj) relying

on utilized metrics M(ni, nj). The specific implementation

is out of scope of this paper.

ρ(cs(ni, nj)) = Ψs
ρ(ni,M(ni, nj), s) (2)

We infer personal trust τs(ni, nj) ∈ [0, 1] by combining

confidence with its reliability (see operator ⊗ in Equation 3).

This can be performed either rule-based by attenuating con-

fidence respecting reliability, or arithmetically, for instance

by multiplying confidence with reliability (as both are scaled

to the interval [0, 1]). Trust is managed in a directed graph

G = (N,E).

τs(ni, nj) = 〈cs(ni, nj), ρ(c
s(ni, nj)),⊗〉 (3)

Recommendation τsrec(ni, nj) is built by aggregating

ni’s trustees’ trust relations to nj . Hence, recommendation

represents second-hand experiences. Potential recommender

of ni for nj are all Recij ⊆ {n ∈ N |τs(ni, n) 6=
⊥∧τs(n, nj) 6= ⊥} (The symbol ⊥ denotes that no relation

exists). As common in other models [12] we weight the

recommendation of each n ∈ Recij with the trustworthiness

of ni in n (Equation 4).

τsrec(ni, nj) =

∑
n∈Recij

τs(n, nj) · τ
s(ni, n)∑

n∈Recij
τs(ni, n)

(4)

Reputation τrep is similar to recommendation, however,

the actor ni inferring the reputation of nj does not require

a personal trust relation to nj’s trustors (’reputing’ entities

Repj ⊆ {n ∈ N |τs(n, nj) 6= ⊥}). Reputation represents a

kind of global (community) trust, calculated on top of each

trustor’s personal trust relations. As in other models, single

trust relations can be weighted before aggregation (Equation

5). More advanced models, such as TrustRank [13], may

account for the reputation of the trustors too.

τsrep(nj) =

∑
n∈Repj

τs(n, nj)

|Repj|
(5)

C. Temporal Evaluation

Personal trust τs(ni, nj) is updated periodically in succes-

sive time intervals ti (e.g., days in our motivating scenario),

numbered with consecutive integers starting with zero. We

denote the personal trust value evaluated at time step i as τsi .

As trust is evolving over time, we do not simply replace old

values with newer ones, but merge them accordingly. For

this purpose we apply the concept of exponential moving

average (EMA)1, to smoothen the sequence of calculated

trust values as shown in Equation 6. With this method, we

are able to adjust the importance of trust τs that is based

on the most recent interaction behavior, compared to history

trust values τsi−1 (smoothing factor α ∈ [0, 1]). In case there

are no interactions between two entities, but an existing trust

relation, the reliability of confidence is lowered by a small

amount each evaluation interval. Therefore, trust between

entities is reduced stepwise, if they do not interact frequently.

τsi = α · τs + (1− α) · τsi−1 (6)

IV. DESIGN AND ARCHITECTURE

The most fundamental use case of trusted information

sharing is as follows: A network member ni (the trustor)

has established trust in his collaboration partner nj (the

trustee) due to previous cooperative behavior in a specific

scope. Therefore, the owner (trustor ni) of some information,

identified by a uri, is willed to share this information with

his trustee nj .

1http://www.itl.nist.gov/div898/handbook/

We distinguish between two modes of sharing: (i)

Activity-centric sharing accounts for the currently jointly

processed activity of ni and nj . Therefore, information is

shared to foster ongoing collaborations. (ii) Scope-centric

sharing is about information sharing due to trust in a scope,

but without accounting for a concrete activity. This kind of

sharing is useful to facilitate future collaborations, i.e., the

creation of new joint activities.

Besides the modes we distinguish two different sharing

styles: (i) Active Sharing pushes information to actual or

potential collaboration partners (depending on the sharing

mode), e.g., a call for paper via announcement services. (ii)

Passive Sharing grants access to personal information when

requested by other network members, e.g., when the collab-

oration network is searched for dissemination opportunities.

We focus on the latter kind of sharing style that can be

understood as a dynamic access control system.

A. Sharing Framework

Structural View. The major components of our frame-

work and their connections are briefly shown in Figure 5(a).

The backend services comprise one or more Information

Repositories that hold various kinds of information, encoded

in XML and defined by XML schemes (XSDs). An Informa-

tion Catalog enables users to link information from reposi-

tories to sharing scopes. Activities, as introduced in our mo-

tivating scenario, are managed by an Activity Management

Service and act as the glue for multi-dimensional collabora-

tion data (see the context model in Figure 4). Especially trust

relations that emerge from interactions between users during

the execution of activities, are provided by the Trust Network

Provider. A Sharing Rule Management Service provides

trust requirements for information sharing, e.g., a minimum

degree of personal trust or reputation, and the Sharing View

Management stores transformation scripts (XSLTs) to cus-

tomize the view on XML-encoded information. The Sharing

Proxy utilizes all the aforementioned SOAP-based services

and restricts information based on sharing views picked

by evaluating sharing rules. Technically, this is realized by

transforming XML data through applying XSLTs depending

on trust relations between information owner and requester.

Higher trust allows more details to be shared. In the end-

user collaboration portal an Information Sharing Tool is

provided, that communicates with the Sharing Proxy via

a REST-style interface, and allows to create, read, update

and delete (CRUD) shared information. This includes adding

new information to repositories (e.g., document stores) and

registering this information in the Information Catalog. An

Administrator Interface enables the configuration of sharing

rules and views (XSLTs), as well as the registration of new

information types (XSDs).

Fundamental Mode of Operation. We describe the

interplay of the components to cover the fundamental use

case of trustworthy sharing of a particular information (i.e.,

Sharing
Views

Info
Catalog

Info
Repository

Sharing
Rules

Activity
Mgmt.

Trust
Network

Collaboration Portal

Admin-Interface

(Rules, Views…)

End-User

Info Sharing Tool

WSDL

Backend Services

WSDL

WSDL

WSDL WSDL

WSDL

Sharing Proxy

SOAP Stack HTTP

REST Handler

SOAP Client

Rule Engine

XSLT Transformer

Web Service Cache

REST

S
O

A
P

 S
ta

c
k

Trusted Information Sharing Framework

L
if
e

ra
y
 P

o
rt

le
ts

A
x
is

2
 S

e
rv

ic
e
s

(X)HTML, AJAXuri

S
O

A
P

S
O

A
P

T
o
m

c
a
t
S

e
rv

le
t

(a) Sharing framework overview.

Information

Sharing Tool

Sharing

Proxy

Activity

Management

Sharing Rule

Management

Trust Network

Provider

Sharing View

Management

Information

Repository

rules

relations

getInformation(uri)

info

getViewScript(rule.xsduri)

view

info'
applyTransformation(info,view,metadata)

Information

Catalog

getMetaData(uri)

metadata

getInfo(uri)

selectLeastRestrictiveTransformation(uri,rules,relations)

getJointScopes(metadata)

scopes

getSharingRules(scopes)

getTrustRelations(metadata.infoowner,requester,scopes)

(b) Fundamental interactions of components when retrieving information.

Figure 5. Architecture and component interactions in trusted information sharing.

that is already referenced by an uri), of the owner ni with

the requester nj . Let us assume, ni explicitly publishes the

uri of an XML file in a public area of the collaboration

platform. User nj wants to retrieve this information through

the REST interface of the Sharing Proxy, and view in his

Browser. That is the point, where trustworthiness comes into

play. The sequential interactions of the single components

are depicted in Figure 5(b). The process starts with retrieving

registered meta-data for the given information, including the

owner and valid scopes of sharing. After that, joint scopes

are requested from the Activity Management Service, i.e.,

the scopes of all joint activities. Then, the sharing rules of

the information owner are retrieved, as well as existing trust

relations in the potential sharing scopes. The Sharing Proxy

picks the sharing rule that results in the least restrictive infor-

mation. This means sharing relies on the tightest available

trust relation between owner and requester. According to

the picked rule, the corresponding XSLT script from the

Sharing View Management Service is requested, as well

as the initially requested information from the Information

Repository. Finally, the requested information is transformed

to its trustworthy view and delivered to the requester.

B. Implementation Details

The information sharing framework, depicted in Figure

5(a), is designed as distributed service-oriented system,

where the single components are implemented as Web

services with SOAP and REST interfaces. In this section

we highlight implementation decisions, that are further dis-

cussed in the evaluation part of this paper.

Sharing Proxy Interface. In contrast to the other com-

ponents, the Sharing Proxy is not implemented as a SOAP-

based Web service, but as a Servlet with a REST-style

interface [14]. On the one side, this fact simplifies the

integration with the collaboration portal (JSR-168 portlets),

on the other side, processing pure HTTP requests deem to be

more scalable than SOAP messages. Resource repositories

are typical applications for RESTful interfaces, where each

resource is explicitly identified by a corresponding uri.

The requester is identified by HTTP authorization in each

request, therefore no further parameters than the uri of the

information of interest is required to enable trusted infor-

mation sharing. Table I summarizes the available RESTful

operations of the Sharing Proxy. The uri for each resource

is composed of the uri of the proxy servlet with additional

scopeId, activityId, memberId, and optional infoURI. If

the requester omits the infoURI, a collection of all in-

formation (with optional type selection) identified by the

given uri is returned (/listInfos&type=XSD). Restrictions

on scopes, activities, and members are not mandatory, and

can be replaced with anyScope/anyActivity/anyMember. For

instance, links to all shared paper drafts of any commu-

nity member in the scope of ‘scientific dissemination’,

can be found in servletURI/disseminationScopeId/anyActiv-

ity/anyMember/listInfos&type=paperdraft.xsd.

Trust Network Provider Interface. Network mem-

bers retrieve data about connected neighbors in a system-

managed trust graph, and can search for users by name

and profile data (similar to a lightweight service registry).

Furthermore, the service offers information about someone’s

trust relations, second-hand recommendations, and third-

party reputation.

Information Definitions and Repository. Shared infor-

mation has one of the following origins: (i) information that

is manually managed by users, such as documents, notes,

and source code in external repositories; and (ii) information

Table I
SHARING PROXY REST-STYLE INTERFACE.

Operation servletURI/scopeId/activityId/memberId/listInfos&type=xsd servletURI/scopeId/activityId/memberId/infoURI

GET get all information uris (collection overview) get specific info identified by uri

PUT – replace/update existing information (only with same XSD))

POST create new information (following existing XSD) –

DELETE – delete specific info (if the requester is the registered owner)

that is generated and managed by the system according to

the context model. All information structures are pre-defined

by XSDs, provided by administrators of the platform.

Information Registration. Users register each item of

information that they intend to share in the Information Cat-

alog (however, this can be automatized with more advanced

tool support). By creating catalog entries, they link infor-

mation (identified by uris of XML data and corresponding

XSD(s)) to scopes. In this way, users decide on their own

which information can be shared in which scopes. Listing 1

shows an excerpt of the schema of such catalog entries.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema" ...>

<xsd:element name="entry" type="tEntry"/>

<xsd:complexType name="tEntry">

<xsd:sequence>

<xsd:element name="registeredName" type="xsd:string"/>

<xsd:element name="infoXSD" type="xsd:anyURI"/>

<xsd:element name="infoURI" type="xsd:anyURI"/>

<xsd:element name="owner" type="xsd:anyURI"/>

<xsd:element name="scope" type="xsd:anyURI" maxOccurs="unbounded"/>

<xsd:element name="mode" type="tmode"/>

<xsd:element name="registeredAt" type="xsd:dateTime"/>

<xsd:element name="updatedAt" type="xsd:dateTime"/>

<xsd:element name="comment" type="xsd:string"/>

</xsd:sequence>

<xsd:attribute name="uri" type="xsd:anyURI" use="required"/>

</xsd:complexType>

...

</xsd:schema>

Listing 1. Catalog entry schema excerpt.

The main advantage of separating the actual information

(e.g., paper drafts) from sharing management data (e.g.,

scope of sharing, owner, mode) is that the same information

can be linked to different scopes, and links can be dy-

namically modified without affecting the actual information

(separation of concerns). The schema (Listing 1) is designed

to enable multiple types of search queries, such as retrieving

shared information in a scope, of a specific type (XSD), of

a particular user, or combinations of these parameters.

Sharing Rule Definitions. In addition to catalog entries,

users who want to share information also define sharing rules

that account for dynamically changing trust relations.

According to the excerpt in Listing 2, users define in

which scope(s) a rule is valid, and which type of information

(XSD) is concerned. A condition block describes the actual

trust requirements for firing a rule, e.g., minimum personal

trust, recommendation, and reputation of the requesting

community member. The resulting action is a transformation

of the desired information (XML) with a pre-defined XSLT

script, to filter content and provide restricted views.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"...>

<xsd:element name="rule" type="tRule"/>

<xsd:complexType name="tRule">

<xsd:sequence>

<xsd:element name="owner" type="xsd:anyURI"/>

<xsd:element name="validScope" type="xsd:anyURI" maxOccurs="unbounded"/>

<xsd:element name="applyOnType" type="xsd:anyURI"/>

<xsd:element name="condition" type="tCondition"/>

<xsd:element name="applyXSLT" type="xsd:anyURI"/>

...

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name="tCondition">

<xsd:sequence>

<xsd:element name="trust" type="tnValop" minOccurs="0"/>

<xsd:element name="recomendation" type="tnValop" minOccurs="0"/>

<xsd:element name="reputation" type="tnValop" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

...

</xsd:schema>

Listing 2. Sharing rule schema excerpt.

Sharing View Definitions. The mentioned XSLT scripts

for restricting XML-based information are pre-defined by

domain experts (who also define XSDs of information

types), and selected by end-users when defining rules. The

output of transformations are HTML fragments that are di-

rectly embedded in a dynamic (X)HTML page and rendered

in a Portlet of the Collaboration Portal.

Querying Information Collections. In contrast to the

extensively discussed case of an already referenced informa-

tion (identified by a well-known uri), community members

will also search the network for larger sets of data (uri/listIn-

fos). For instance, ‘who are co-workers of member ni?’,or

‘what are the documents of ni in the dissemination scope?’.

Algorithm 1 Discover information of type in the network

Require: information type, requester requ
sharedInfoXML[]← ∅
for each e ∈ getInfoCatalogEntries(type) do

if ∄ jointActivity(requ, e.owner) then
continue loop

end if
trustRel← getTrustRelation(e.owner, requ, e.scope)
rule← getRule(e.owner, e.type, e.mode, trustRel)
view← getView(rule)
info← getInformation(e.uri)
info′ ← applyTransformation(info, view)
if info′ 6= ∅ then

add(info′ , sharedInfoXML[])
end if

end for
return sharedInfoXML[]

Algorithm 1 depicts the order of requests from the Sharing

Proxy perspective, when requester requ queries for infor-

mation of a particular type in the whole network. After

retrieving all catalog entries of the type of interest, each

entry is processed. The trust relation to the corresponding

information owner in the selected scope is evaluated, and

configured rules applied (using XSLTs). Finally, all found

information is returned in its individually restricted shape.

V. EVALUATION AND DISCUSSION

A fundamental aspect of our trust-based adaptation ap-

proach is the context-awareness of data and trust. Due to the

high complexity of large-scale networks comprising various

kinds of interactions, distinct scopes of trust, and large

blocks of shared information, we evaluate the feasibility

of our framework by well-directed performance studies. We

focus on the most critical parts, i.e., potential bottlenecks,

in our system, in particular, on (i) trust inference upon

interaction logs, (ii) trust provisioning, (iii) and the overall

performance of trusted information sharing. The conducted

experiments address general technical and research problems

in complex networks, such as emerging relations in evolving

structures, graph operations on large-scale networks, and in-

formation processing with respect to contextual constraints.

A. Preparation

For conducting our performance studies, we generate an

artificial interaction and trust network that we would expect

to emerge under realistic conditions. For that purpose we

utilize the preferential attachment model of Barabasi and

Albert to create2 network structures that are characteristic

for science collaborations [7]. As shown in Figure 6 for a

graph with 500 nodes, the output is a scale-free network with

node degrees3 following a power-law distribution. These

structures are the basis for creating realistic interaction logs

that are used to conduct trust inference experiments. For a

graph G = (N,E), we generate in total 100·|E| interactions

between pairs of nodes (ni, nj). In our experiments we

assume that 80% of interactions take place between 20%

of the most active users (reflected by hub nodes with high

degree). Generated interactions have a particular type (sup-

port request/response, activity success/failure notification)

and timestamp, and occur in one of two abstract scopes.

While we payed attention on creating a realistic amount

and distribution of interactions that are closely bound to

node degrees, the interaction properties themselves, i.e.,

type, timestamp, do not influence the actual performance

study (because they do not influence the number of required

operations to process the interaction logs). Furthermore, we

created required XML artifacts, including some information

to be shared, catalog entries, and common sharing rules

(accounting for trust and recomendation) and views.

2see JUNG graph library: http://jung.sourceforge.net
3the node size is proportional to the degree; white nodes are ‘hubs’

(a) scale-free graph structure.

10
0

10
1

10
2

10
0

10
1

10
2

10
3

k

N
(k

)

N(k) ∼ k
−2.5

(b) power-law node distribution

Figure 6. Generated network using the preferential attachment model.

B. Experiments

For the following experiments, the Sharing Proxy and

the backend services are hosted on a server with Intel

Xeon 3.2GHz (quad), 10GB RAM, running Tomcat 6 with

Axis2 1.4.1 on Ubuntu Linux, and MySQL 5.0 databases.

The client simulation runs on a Pentium 4 with 2GB on

Windows XP, and is connected with the servers through a

local 100MBit Ethernet.

Interaction Logging and Trust Inference. Through

utilizing available interaction properties, we calculate three

metrics (i) average response time, (ii) success rate (ratio

of success to the sum of success and failure notifications),

and (iii) support reciprocity (ratio of served to requested

support). Individual response times are normalized to [0, 1]
with respect to the highest and lowest values in the whole

network. Confidence between each pair of connected nodes

accounts for all three metrics equally. If the amount of inter-

actions |I(ni, nj)| between a pair (ni, nj) is below 10, we

set the reliability of confidence to
|I(ni,nj)|

10 , else we assume

a reliability of 1. Trust is calculated (for two independent

scopes) by multiplying confidence with its reliability.

We measure the required time to completely process the

interaction logs, including reading logs from the interaction

database (SQL), aggregating logs and calculating metrics,

normalizing metrics (here only the response time, because

the values of other metrics are already in [0, 1]), computing

trust, and updates in the trust graph (EMA with α = 0.5).

The results show that especially for medium and large

networks only a periodic offline calculation is feasible.

Table II
TRUST INFERENCE PERFORMANCE RESULTS.

network characteristics trust computation time

Small-scale: 100 nodes, 191 edges 1 min 44 sec

Medium-scale: 1000 nodes, 1987 edges 17 min 20 sec

Large-scale: 10000 nodes, 19983 edges 173 min 19 sec

Network Management and Trust Provisioning. This

second set of experiments, deal with trust provisioning and

the calculation of recommendation and reputation on top of a

large-scale trust network (10000 nodes). Figure 7(a) depicts

the required time in seconds to calculate the recommen-

dation τsrec(ni, nj), having 10 and 100 recommender (i.e.,

intermediate nodes on connecting parallel paths (ni, nj)

of length 2). Several ways to implement recommendations

exist. First, a client may request all recommender nodes and

their relations and calculate recommendations on the client-

side. However this method is simple to implement on the

provider side, it is obviously the slowest one due to large

amounts of transferred data. Still retrieving all recommender

and relations directly from the backend database, but per-

forming the calculation server-side, dramatically improves

the performance. However, this method produces heavy load

at the provider and its database and deems not to be scalable.

Therefore, we map the network data, i.e., a directed graph

model with annotated nodes and edges, in memory and

perform operations without the backend database. Since all

data is held in memory, the performance of calculating rec-

ommendations online is comparable to provisioning of pre-

calculated data only. Hence, we design our system with an

in-memory graph model, and further measure some aspects

of this design decision. Figure 7(b) illustrates required time

for mapping the whole graph from the backend database to

its in-memory representation. Figure 7(c) shows the memory

consumption for instances of different sizes, first for the

whole Trust Network Provider Service, and second only for

the graph object itself.

0 1 2 3 4 5 6 7

server-side (pre-calculation)

server-side (in-memory model)

server-side (SQL)

client-side

time (sec)

100 recommender

 10 recommender

(a) different recommendation calculation approaches.

0,1

1

10

100

1000

10000

1 10 100 1000 10000 100000

#nodes

ti
m

e
 (

s
e

c
)

(b) graph mapping time.

0,1

1

10

100

1000

1 10 100 1000 10000 100000

#nodes

m
e

m
o

ry
 (

M
B

)

mem (full service)

mem (graph model)

(c) memory consumption.

Figure 7. Performance tests for mapping the graph model.

Overall End-To-End Performance and Caching. The

overall process of trusted information sharing involves sev-

eral backend services. Communicating with and retrieving

data from these Web services is time-intensive, especially

if they are frequently utilized and/or large amounts of data

are transferred (and processed by respective SOAP stacks).

Besides the actual Information Repository, we identified

the Information Catalog, Sharing View Service and Sharing

Rule Service as the most data-intensive services. Therefore,

we studied the overall performance when caching data. In

particular, the Sharing Proxy implements the strategy of self-

pruning cache objects as widely adopted [15].

Figure 8 depicts the required time of the Sharing Proxy

to process different amounts of concurrent client requests.

0

5

10

15

20

25

30

1 10 100 1000

concurrent requests

p
ro

c
e
s
s
in

g
 t

im
e
 [

s
e
c
]

uncached

XSLTs and rules cached

XSLTs, rules, catalog cached

full response cached

Figure 8. Overall performance of the Sharing Framework.

In detail, we measured the processing time (i) without any

caching mechanisms, (ii) when caching only rarely changed

sharing rules and associated sharing views (XSLTs), (iii)

when caching rules, XSLTs, and catalog entries, (iv) for

delivering the response only, i.e., providing the already trans-

formed and cached information. The results show that with

applying different caching strategies the overall performance

can be significantly increased. However, depending on the

application domain, a trade-off between performance and up-

to-dateness of cached data has to be carefully considered.

VI. RELATED WORK

The problem of composition and adaptation is strongly

related to organization and control. The autonomic com-

puting paradigm [5] advocates self-* principles to reduce

human intervention in configuring systems and services. An

autonomic computing environment has the ability to manage

itself and dynamically adapt to changes in accordance with

objectives and strategies. Enhanced flexibility of complex

systems is introduced by establishing a cycle that feeds back

environmental conditions to allow the system to adapt its

behavior. This MAPE cycle [5] is considered as one of the

core mechanism to achieve adaptability through self-* prop-

erties. While autonomic computing allows for autonomous

elements and applies these principles to distributed systems,

current research efforts left the human element outside the

loop. Based on the observed context of the environment,

different adaptation strategies can be applied [16] to guide

interactions between actors, the parameters of those strate-

gies, and actions to prevent inefficient use of resources and

disruptions.

Recently, trust in social environments and service-oriented

systems has become a very important research area. Various

surveys of trust in computer science have been performed

[1], [2], which outline common concepts of trust, clarify the

terminology and show the most popular trust models. Trust

management systems for service-oriented environments [17]

as well as for mixed systems [4], comprising humans and

services, are a focus of current research. They aim at collect-

ing interaction data and user feedback in collaborations of

humans and services, and facilitating the emergence of trust

among social and collaborative network members. Various

works deal with trust models for complex networks, formed

by agents [12], [18] as well as services in SOA [17].

Although several models define trust on interactions and

behavior, and account for reputation and recommendation,

there is hardly any case study about the application of

these models in service-oriented networks. While various

theoretically sound models have been developed in the last

years, fundamental research questions, such as the techni-

cal grounding in SOA and the complexity of trust-aware

context-sensitive data management in large-scale networks

are still widely unaddressed.

Trusted information sharing in the introduced science

collaboration network is related to selective dissemination

of information (SDI) [19], [20]. SDI deals with questions

regarding which (parts of) data are shared with others,

and mechanisms to disseminate data. We adopted concepts

of SDI, such as the representation of information through

XML, or mechanisms to process XML-based data.

VII. CONCLUSION AND FURTHER WORK

In this paper we highlighted the application of the widely

adopted MAPE approach for adaptations in mixed human-

service systems, and discussed the implications of com-

plex interaction networks. Instead of a purely conceptual

and algorithmic perspective, we demonstrated the technical

grounding, using state-of-the-art Web services technologies.

We discussed a framework that supports a concrete use

case, i.e., adaptive information sharing in complex research

networks, and the underlying concepts, such as information

models, trust provisioning, and rule-based adaptation strate-

gies. The evaluation of the running framework discovered

important design issues, such as the need for appropriate

caching strategies depending on the scale of supported

networks. Our approach has important implications on adap-

tation in complex systems, because it reduces configuration

burdens for the user and permits self-regulation of shared

information based on collaboration strength.

Future work include the application of our Information

Sharing Framework in real end-user scenarios. Therefore,

we will integrate the system in the collaboration portal of

the COIN4 project. The focus of COIN is to study new

concepts and develop tools for supporting the collaboration

and interoperability of networked enterprises. The end-user

evaluation in COIN will discover the usability of adaptive

information sharing in real business use cases.

ACKNOWLEDGMENT

This work is supported by the European Union through

the IP project COIN (FP7-216256).

REFERENCES

[1] D. Artz and Y. Gil, “A survey of trust in computer science and
the semantic web,” Web Semantics, vol. 5, no. 2, pp. 58–71,
2007.

4http://www.coin-ip.eu

[2] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and
reputation systems for online service provision,” Decision
Support Systems, vol. 43, no. 2, pp. 618–644, 2007.

[3] M. Salehie and L. Tahvildari, “Self-adaptive software: Land-
scape and research challenges,” ACM Transactions on Au-
tonomous and Adaptive Systems, vol. 4, no. 2, May 2009.

[4] F. Skopik, D. Schall, and S. Dustdar, “The cycle of trust in
mixed service-oriented systems,” in SEAA, 2009, pp. 72–79.

[5] IBM, “An architectural blueprint for autonomic computing,”
Whitepaper, 2005.

[6] D. Schall, H.-L. Truong, and S. Dustdar, “Unifying human
and software services in web-scale collaborations,” IEEE
Internet Computing, vol. 12, no. 3, pp. 62–68, 2008.

[7] A. Reka and Barabási, “Statistical mechanics of complex
networks,” Rev. Mod. Phys., vol. 74, pp. 47–97, June 2002.

[8] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Propa-
gation of trust and distrust,” in WWW, 2004, pp. 403–412.

[9] C.-N. Ziegler and J. Golbeck, “Investigating interactions
of trust and interest similarity,” Decision Support Systems,
vol. 43, no. 2, pp. 460–475, 2007.

[10] F. Skopik, D. Schall, and S. Dustdar, “Trustworthy Interac-
tion Balancing in Mixed Service-oriented Systems,” in ACM
Symposium on Applied Computing, 2010, pp. 801–808.

[11] A. Agrawal et al., “WS-BPEL Extension for People
(BPEL4People), Version 1.0.” 2007.

[12] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt, “An
integrated trust and reputation model for open multi-agent
systems,” AAMAS, vol. 13, no. 2, pp. 119–154, 2006.

[13] Z. Gyngyi, H. Garcia-Molina, and J. Pedersen, “Combating
web spam with trustrank,” in VLDB, 2004, pp. 576–587.

[14] R. T. Fielding, “Architectural styles and the design of
network-based software architectures,” Ph.D. dissertation,
University of California, Irvine, 2000.

[15] B. D. Goodman, “Accelerate your web services with caching,”
IBM Advanced Internet Technology, December 2002.

[16] E. Di Nitto, C. Ghezzi, A. Metzger, M. Papazoglou, and
K. Pohl, “A journey to highly dynamic, self-adaptive service-
based applications,” Automated Software Engineering, 2008.

[17] D. Kovac and D. Trcek, “Qualitative trust modeling in soa,”
Journal of Systems Architecture, vol. 55, no. 4, pp. 255–263,
2009.

[18] J. Caverlee, L. Liu, and S. Webb, “Socialtrust: tamper-resilient
trust establishment in online communities,” in JCDL. ACM,
2008, pp. 104–114.

[19] M. Altinel and M. J. Franklin, “Efficient filtering of xml
documents for selective dissemination of information,” in
VLDB, 2000, pp. 53–64.

[20] Y. Diao, S. Rizvi, and M. J. Franklin, “Towards an internet-
scale xml dissemination service,” in VLDB, 2004, pp. 612–
623.

