
The Cycle of Trust in Mixed Service-oriented Systems

Florian Skopik, Daniel Schall, Schahram Dustdar

Distributed Systems Group

Vienna University of Technology

Argentinierstraße 8/184-1, A-1040 Vienna, Austria

{skopik|schall|dustdar}@infosys.tuwien.ac.at

Abstract—Many collaboration platforms are realized as
service-oriented systems enabling flexible compositions of
services and support of interactions. Interactions between
entities in such systems do not only span software services,
but also human actors. A mixed service-oriented system
is therefore composed of human and software services. In
open environments, interactions between people and services
are highly dynamic and often influenced by the role and
reputation of collaboration partners. In this paper we present
an architecture for the management of trust in such mixed
systems environments. In contrast to traditional solutions
that typically focus on the matching of actors’ skills and
competencies with collaboration requirements only, we pro-
pose a trust-based ’feedback loop’ enabling the inference
and consideration of trust relationships based on observed

interactions. This cycle, spanning interaction monitoring,
trust analysis, trust-enabled collaboration planning, and
trust-supported execution of activities and tasks, permits
dynamic and trust-aware collaborations in service-oriented
environments.

Keywords-trust cycle; trust management; mixed system;
human and service interactions

I. INTRODUCTION

Service-oriented architectures (SOA) were understood

as environments where software services are registered,

discovered, and invoked. This limited perspective on SOA

has changed over the past years because it has been real-

ized by researchers and industry players that humans must

be part of such systems. Not only interactions between

software services and the ability to compose complex

flows are important, but rather the interplay between

compositions of human and software services. We define

such environments as mixed systems comprising software

services and Human-Provided Services (HPS, see [1]).

A key requirement for the success of mixed systems is

the ability to support interactions in a flexible yet reusable

manner. In this work, we focus on an activity-centric

approach to support and manage interactions between

various actors including people and software services. In

contrast to many existing approaches based on workflow

systems, activities are not predefined, for example by

an administrator that is responsible for the design of a

workflow. Activities can be modeled as templates before

collaborations and interactions start; however, activities

are flexible and can be reorganized by adding, removing,

or delegating activities at run-time. Hence, activities are

essential to allow for dynamics in interactions and to struc-

ture collaborations establishing the link between artifacts,

services, and people. Existing work [2], [3], [4] has studied

activities as a concept to cope with the challenges of

dynamic collaboration environments.

Activity-centric collaboration is useful in many different

application domains ranging from business-centric col-

laboration to large-scale social networking platforms. In

enterprises, an activity management platform can be used

to deal with the increasing complexity in coordination

and communication. For example, an activity workspace

allows people to manage their interactions (status, task

progress, or artifact changes) as well as various services

that can be used in the context of activities (e.g., com-

munication services). On the other hand, people using

social networking platforms might use activities in a much

more informal way. Activities in a social context may

depict ’simple’ structures and flows, which are in a manner

similar to user defined data or mashups of services. Such

activity-based templates can be shared with other users to

support collaborations.

We strongly believe that trust and reputation mecha-

nisms are key to the success of open dynamic service-

oriented environments. However, trust between human

and software services is emerging based on interactions.

Interactions, for example, may be categorized in terms of

success (e.g., failed or finished). Therefore, an important

aspect of our approach is the monitoring and analysis

of interactions to automatically determine trust in mixed

systems.

In this paper we present the following key contributions:

• We establish a detailed understanding of trust in

mixed (service-oriented) systems.

• We present our approach for the context-aware anal-

ysis of interactions to establish trust. The Vienna

Trust Emergence Framework (VieTE) [5] comprises

the most important features for the management and

calculation (mining) of trust.

• A graph-based algorithm to perform trust mining over

heteregenous sources of captured interaction data.

In Section II we start with the definition of trust

models for context-based interactions in mixed systems.

Our monitoring and analysis approach is inspired by a

feedback loop (Section III) that is typically applied to

self-organizing and managing systems. An architecture

and implementation overview of our VieTE framework is

given in Section IV, and an end-user perspective discussed

in Section V. We outline related work and approaches

in Section VI, and conclude and present future work in

Section VII.

II. TRUST MODELING IN COLLABORATIONS

A. Entity Roles and Trust Relations

In trust research the roles of entities in a directed trust

relation are often defined as trustor, which is the trusting

entity, and trustee which is the trusted entity [6].

trusteetrustor
?

a b

c

(a) Recommendation.

trusteetrustor
?

d

ba

e
f

(b) Reputation.

Figure 1. Trust relations.

We distinguish between different kinds of trust relation-

ships in a network of collaborating entities.

Direct Trust Relations. These relations base on first-

hand experiences and are inferred from the success and

outcome of previous interactions between the trustor and

the trustee.

Recommendations. These relations, based on second-

hand experiences, are inferred from the success and out-

come of previous interactions between a well trusted entity

and the trustee. This case is depicted in Figure 1(a),

where the relation from a to b is derived by considering

the relations from a to c and from c to b, ultimately c

recommends b to a.

Reputation. Reputation is a concept where trust of the

trustor to the trustee is completely inferred from third party

relationships as depicted in Figure 1(b). By considering

trust of d, e, and f in b, a may derive a notion of trust

in b. Even though reputation is the most unreliable way

to determine trust (compared to first-hand experiences

or recommendations), it is nevertheless a useful concept,

especially the more third party relations to the trustee are

considered.

B. Context of Trust

Trust is context dependent, which means trust relations

cannot be determined generally, but with respect to a

particular situation [7], [6], [8]. Generally each situation,

which is determined and described by context data, is

unique and consists of multi-dimensional properties.

We developed a system for trust inference in collabo-

rative environments; thus we are able to reduce the com-

plexity of context elements. We define that collaboration

situations are basically reflected by describing the actually

performed activity, including the goal and nature of work.

In a simplified case, when considering only the type of

activities performed, a human trustor might trust a trustee

to organize a meeting (context 1), but not to develop a

software module (context 2). In this case contexts are

obviously different and not closely related to each other.

However, there are cases where contexts may be similar.

For instance, the trustor might have established trust to the

trustee regarding software implementation. This means the

trustor can trust the trustee to perform assigned activities

in the area of software implementation reliably in the given

time with the required quality. If the trustor wants to

know how much s/he can trust the trustee with respect

to software testing activities, trust can be inferred from

the relation regarding software implementation, because

both implementation and testing are part of software de-

velopment, and thus activities in both fields will typically

have similar requirements. Hence, the concept of trust con-

text allows (i) distinguishing trust relations with respect

to different contexts and thus, expressing trust relations

more precisely and reliably, and (ii) deriving relations

for new situations based on relations in other, but similar

situations. We call the second case trust propagation over

contexts. This concept permits considering trust relations

established in different contexts by taking the similarities

between contexts into account.

C. The Diversity of Trust

Trust is a diverse concept and relies on various impact-

ing factors. Figure 2 depicts the most important influences

on the trust relationship from a trustor to a trustee with

respect to context 1.

context 1

context 2

Profile of trustee:

education, status,

job position, ...

Recommendations

through transitive

trust relations

Interactions with respect

to other contexts

Situation of trustor,

including risks,

expectations, ...

Context, e.g., the

activity to perform and

the project to realize.

Relationships

of third entities

to the trustee

utilized for

reputation

Profiles of

recommender(s)

Previous interactions used

for direct trust inference

Figure 2. Factors influencing trust.

The profile of the trustee, such as the educational status

and job position, is utilized, e.g., when it comes to collabo-

ration partner selection or activity assignment. The profile

describes if the trustee owns the formal competencies

to be trusted to perform a given activity reliably. The

current situation of the trustor, such as his risks and

expectations with respect to a particular situation is a

further influencing factor. Decisions about whom to trust

always depend on the risks the trustor is facing. If the

trustor wants to assign the trustee a particular activity, but

the negative consequences for the trustor are high in case

the activity is not performed well, then the trustor will

not trust the trustee carelessly. The context, describing

the activity to perform or the overall project to realize,

is used to determine which previous interactions have to

be aggregated to determine the direct trust relation. Inter-

actions with respect to other contexts, can be utilized for

trust inference as well (however with reduced relevance),

especially if previous situations and current situation share

similar contextual properties. Furthermore, direct recom-

mendations from well-known and trusted recommenders

are taken into account. This concept utilizes the transitivity

of trust and is known as trust propagation. Experiments

have shown that this concept works well in several cases

[9], [10]. The profiles of recommenders, may represent

a valuable source of data, to decide if and how much

someone’s recommendation can be trusted. The reputation

of the trustee, is defined as the aggregated community

trust and determined by the sum of all trust relations from

different entities in the trustee. Considering reputation only

is the most unreliable kind of determining trust, because it

does not take personal preferences into account. However,

even if the trustor has not established relations to the

recommending entities, a reasonable notion of trust can

be inferred when relying on large sets of opinions.

III. FROM INTERACTIONS TO THE CYCLE OF TRUST

Before we show our new approach for dynamic trust

inference, we introduce the most important applied con-

cepts.

A. Supported Interactions

We define a mixed systems environment which consists

of actors of different types, including humans, services,

and also humans offering their capabilities as services

(Human-Provided Services [1]), interacting with each

other to perform a given set of activities contributing

towards a common goal. In this environment, we dis-

tinguish between the following interactions: (a) Human-

service interactions: services can be used to realize col-

laboration functions in a flexible manner. Humans are able

to use services (the representation frontend) to perform

collaborations. Typical human-service interactions include

map services, document sharing service, etc. (b) Human

interactions as part of software service compositions:

many service interaction scenarios demand for human

interactions. A popular example is BPEL4People [11].

(c) Human interactions using Human-provided Services:

Our previous work included the support of service-human

interactions (e.g., see [1]), allowing humans to express and

offer their capabilities as services. (d) Interactions between

software services: such interaction scenarios are found in

compositions of software services. For example, output

of service A is used as input by service B. (e) Service

initiated interactions towards humans: such scenarios in-

clude notifications or news feeds, which are pushed toward

humans.

Besides capturing the type, each interaction is described

by particular properties, such as its context, success,

exchanged data, and time constraints.

B. Interaction Context

Our system is based on the notion of activities. Activi-

ties represent work done and actions performed by actors

of different type. The activity model, as shown in Figure

3, allows collaborations to be structured in a flexible way.

The model supports dynamic collaborations in mixed

systems because activities can be created at runtime. This

is needed to support more flexibility and agility in inter-

actions. An activity may comprise a set of sub-activities

which can be assigned to different actors. Activity tem-

plates describe the ’how-to’ execute a particular activity

and what services to be used to work on that activity, and

-Name

-Description

-Progress

-StartAt

-Duration

-Priority

-Tags

Activity

Actor

-Type

-Responsibilities

InvolvementRole

0..1

0..*

parent

child

-URI

-Type

GenericResource

-Type

-ExecutedBy

-Receivers

-UsedResources

-Timestamp

Action

Human

Software Service

HPS

-Type

ActivityTemplate

-ProfileRequirements

-TrustRequirements

Requirements

-Skills

-Features

-Competencies

Capabilities

*

*

-Name

-Contact

HumanProfile

-URI

-Vendor

ServiceProfile

-FOAF

Profile

*

1 *

*

applies

describes

exhibits

in

A
c
ti
v
it
y

in
v
o
lv

e
d

as

has1 1

*

*

h
a
s

Figure 3. Activity model.

are associated with requirements that are used to control

the assignment of actors. Activities can be organized in

sets to assemble more complex activities out of the simple

ones. The execution of activities and services has to be

based on the context of the environment. In activity-centric

collaboration, context is any information that lets the

actor understand and estimate the current situation, work

environment, and the information that is relevant given the

actor’s current activity. For example, an actor working on

an activity needs to know details such as the description,

progress and start date of the activity, associated artifacts

and their status; information regarding tools, services, and

available devices; and context details regarding co-actors

(presence status or location information), and finally dis-

cussions that are relevant for an activity. However, services

are not only used as resources to accomplish activities;

instead services play an active role in compositions. For

example, services can trigger notifications or reminders

based on context information.

During the execution activities can also be delegated

to change the ownership and responsibility for a specific

activity. Actors perform different types of actions, such as

coordinating work, discussing with other actors, or exe-

cuting some kinds of tasks. The combination of executed

actions and performed activities appropriately reflects the

situation of interacting actors for trust inference.

C. The Cycle of Trust

Our system design follows the MAPE approach [12], as

depicted in Figure 4. MAPE, incorporating basic concepts

from the control engineering domain, describes a cycle

consisting of four phases, which are monitor, analyze,

plan and execute. Periodically running through these four

phases establishes a kind of environmental feedback con-

trol, and therefore, allows to adapt to varying circum-

stances. Applied in our environment, we are able to infer

trust dynamically during ongoing collaborations.

Con

Monitoring Planning ExecutingAnalyzing

WSDL

Act
i-

vi
ty

Resources

WSDL

Observe interactions

and context

Infer trust considering

contextual constraints

Define new trust constraints

and plan collaboration

Run collaboration and

apply corrective actions

Act
i-

vi
ty

A
ct
i-

vi
ty

WSDL

A
ct
i-

vi
ty

WSDL

Resources

interaction

context 1

interaction

context 2

WSDL

WSDL

trust

scope

WSDL

WSDL

WSDL

Con

Figure 4. The MAPE cycle applied for dynamic trust inference.

In the Monitoring Phase our system observes ongoing

collaborations, particularly the creation of new activities,

actions executed therein, and interactions taking place,

according to the previous descriptions, between humans,

services, and HPSs. These interactions, including their

types and contexts, are captured and modeled as an

interaction network utilized in further trust analyzes. In the

Analyzing Phase the created interaction network is used

to infer trust relationships. For this purpose, the relevance

of each interaction is graded automatically considering

configurable trust constraints (Con). These constraints

define the scope of trust and depend on the purpose of trust

inference, e.g., constraints differ when calculating trust in

an actor to fulfill a particular activity type, or trust in an

actor to hold a particular involvement role. Direct trust

relationships are calculated by evaluating interactions and

their relevance in the defined scope. Based on these direct

trust relationships, the concepts of recommendation and

reputation are applied to establish relationships relying

on second-hand experience and collective opinions. The

following Planning Phase covers the set up of collab-

oration scenarios taking the inferred trust relations into

account. Furthermore, trust constraints for the next run of

the cycle are configured with respect to planned activity

requirements. This means it is set up which contextual

properties have to be taken into account when calculat-

ing trust. This depends on the planning use case, such

as the composition of actors, the assignment of roles

and responsibilities, the assignment and scheduling of

activities, and sharing of artifacts. The Execution Phase

provides support to enhance the execution of activities,

including observing activity deadlines, solving activity

scheduling conflicts, checking the availability of actors,

and compensation of resource limitations. Furthermore, in

parallel the collaboration behavior of actors is monitored,

including their actions and interactions. This closes the

cycle of trust.

IV. ARCHITECTURE AND IMPLEMENTATION

We developed the VieTE architecture depicted in Figure

5, that has been developed utilizing the MAPE approach.

Users, logged in to the management portal, can register

new humans and services by entering their profile data.

Furthermore, they manage own activities and specify trust

constraint sets. On system level, interactions are moni-

tored, captured by software sensors, and analyzed using

the configured trust constraints. Recent analysis results

lead to the formation of new trust relations, and impact

existing ones. This knowledge about existing trust rela-

tions can be retrieved through a Web service component

(Trust Provisioning). On the one side, the management

portal itself uses this knowledge, e.g., to suggest new team

compositions or activity delegations based on interpersonal

trust. On the other side, further third-party collaboration

tools could use this knowledge as it is provided in a

standardized manner (SOAP and REST-based versions).

VieTE – Vienna Trust Emergence Framework

Management

Portal

Trust

Constraints

Actor Profiles

Inter-

action

Data

Service Bus

Service

Lookup

Service

Registry Logging
Invocation and

Routing

Trust Inference

Configuration

Actor

Management

Activity

Management
Context Data

Trust

Provisioning

Trust

Analysis

Trust

Data

Figure 5. VieTE architecture.

In the following, we discuss in detail the realization of

each phase of the MAPE cycle.

A. Monitoring

The Logging component captures interactions during

activity execution, such as human communication through

services and Web service calls (Listing 1), e.g., through

intercepting SOAP calls, and explicit actions undertaken

by actors through VieTE’s Management Portal, such as

the delegation of activities (see Listing 2). Data of both

sources are processed, including analysis of faults and in-

teraction correlation to discover request-response patterns

[13], and converted to more generic interactions. This

generic type describes in detail the type and success of

an interaction between two particular actors (Listing 3).

At the end of each run through the monitoring phase,

an interaction network is built based on available generic

interactions and stored in the interaction database (see

Figure 5). We model this network as a directed graph

GI = (V, EI), whose vertices V represent the actors and

multiple edges EI reflect interactions between them. An

edge eı = (u, v, ı, ctx) is described by the source u of an

interaction, the sink v, the generic interaction ı with its

properties, and the interaction context ctx.

<ServiceInteraction>

<clientEndpoint>192.168.0.101</clientEndpoint>

<messageCorrelationID>000a1460−25ba−...</messageCorrelationID>

<messageType>Response</messageType>

<serviceEndpoint>http://www.coin−ip.eu/ss/IMService</serviceEndpoint>

<eventSourceID>AL−invoke@192.168.0.100</eventSourceID>

<timeStamp>1207212091812</timeStamp>

</ServiceInteraction>

Listing 1. Service interaction log example.

<Action xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="http://www.coin-ip.eu/ns/action"

xsi:type="CoordinationAction"

ActionURI="http://www.coin-ip.eu/CoordinationAction#6564"

DescribesActivityURI="http://www.coin-ip.eu/Activity#222"

Timestamp="2009-03-05T15:13:21.563Z">

<ExecutedBy>http://www.coin−ip.eu/Actor#Daniel</ExecutedBy>

<CoordinationType>

<DelegateType>Delegate</DelegateType>

</CoordinationType>

<ToActor>http://www.coin−ip.eu/Actor#Florian</ToActor>

</Action>

Listing 2. Action log example.

<GenericInteraction>

<sender>http://www.coin−ip.eu/Actor#Daniel</sender>

<receiver>http://www.coin−ip.eu/Actor#Florian</receiver>

<class>human−human</class>

<type>Coordination</type>

<subtype>MeetingOrganization</subtype>

<numberOfConcernedCoActors>5</numberOfConcernedCoActors>

<success>true</success>

<successLevel>3</successLevel>

<faultLevel>0</faultLevel>

<faultReason></faultReason>

<transportService>http://www.coin−ip.eu/ss/IMService</transportService>

<context>http://www.coin−ip.eu/Activity#222</context>

<timeStamp>1207212091812</timeStamp>

</GenericInteraction>

Listing 3. Generic interaction log example.

B. Analyzing

We understand trust to emerge from and to be highly im-

pacted by the success (or faults) and types of interactions,

considered with respect to particular situations described

by the introduced context model.

For inferring trust relations, we define a second graph

model, the trust network GT = (V, ET), where the actors

V are the same as in GI , but the edges eτ = (u, v, τ, Con)
reflect the level of direct trust τ ∈ [0, 1], emerging

from interactions, with respect to the satisfaction of given

constraints Con. Algorithm 1 is used to update GT with

the captured GI , applying the given constraints Con used

to weight the influence of interactions on trust calculation.

Algorithm 1 is periodically executed by the system

to update the trust network, stored in the trust database

(see Figure 5), considering captured interactions in pre-

defined time intervals. The basic mode of operation is

as follows: (i) Retrieve GI built from recent interactions

Table I
SYMBOL DESCRIPTIONS.

Symbol Description

α impact factor of ∆τ on τ

Con set of constraints determining the relevance of ı

ctx interaction context described by activity structures

∆τ trust obtained from recent interactions captured in the last

run of the execution phase

eı, et edge in GI and GT respectively

fI fault score based on a set of ı

γ relevance of ı calculated using Con

GI interaction network modeled as graph GI = (V, EI)
GT trust network modeled as graph GT = (V, ET)
ı generic interaction between actors

sI success score based on a set of ı

τ direct trust ∈ [0, 1] evolving over time

τrec recommended trust from neighbors

u source vertex of an interaction

v sink vertex of an interaction

Algorithm 1 Periodic update of GT with recently captured

GI applying Con

/* retrieve GI = (V, EI) from the interaction db */

/* retrieve GT = (V, ET) from the trust db */

/* retrieve Con from the constraints db */

for each u ∈ V do

for each v ∈ V do

if getEdges(EI , u, v) 6= ∅ then

if getEdge(ET , u, v, Con) = 0 then

et ← createEdge(u, v, 0, Con)
else

et ← getEdge(ET , u, v, Con)
end if

fI ← 0, sI ← 0
τ ← getT rust(et)
for each eı ∈ getEdges(EI , u, v) do

ı← getInteraction(eı)
ctx← getContext(eı)
γ ← satisfy(Con, ctx)
sI ← sI + successLevel(ı) · γ
fI ← fI + faultLevel(ı) · γ

end for

∆τ ← sI

sI+fI

τ ← ∆τ · α + τ · (1− α)
updateT rust(ET , et, τ)

end if

end for

end for

/* save updated GT in trust db */

/* dispose GI in interaction db */

in the previous run of the execution phase. Furthermore

get current GT and configured constraints. (ii) Extract all

interactions from GI between the ordered pair of actors

(u, v). (iii) Determine aggregated success score (sI) and

fault score (fI) for available interactions from u to v.

These scores are based on the level of success and fault

respectively of an interaction ı, and on the satisfaction of

constraints with respect to the interaction context (γ in

Equation 1 expresses the relevance of an interaction for

given constraints). (iv) Calculate trust (∆τ) from u to v

only based on recent interactions. (v) Update previous trust

τ with ∆τ by applying the exponential moving average1

method using the weighting factor α ∈ [0, 1]. (vi) Update

changed trust edge et in GT . (vii) Repeat steps (ii) to (vi)

for each ordered pair of actors. (viii) Finally, save GT ,

and dispose processed GI .

The function satisfy() applies Equation 1 to determine

the relevance γ ∈ [0, 1] of an interaction by comparing

to which extend configured constraints Con match to the

interaction context ctx. Each single constraint is set up

with a weight. The result of the function match() is either

true or false.

γ =

∑
∀c∈Con match(c, ctx) · weight(c)

∑
∀c∈Con weight(c)

(1)

On top of GT we realize algorithms for deriving rec-

ommendations and reputations. Algorithm 2 implements

the inference of a collective recommendation trust τrec

from a trustor u to a trustee v, by evaluating all second-

hand experiences of the vertices vertexList with respect

to set constraints (Con not shown for the sake of brevity).

Recommendations from different vertices w ∈ vertexList

may have different impact (e.g., depending on the actors’

roles) reflected by im(w). The concept of reputation can

be realized in a similar way, but without accounting for

the connections to a particular trustor.

Algorithm 2 recommendation(u, v, vertexList)

τrec ← 0
sum← 0
for each w ∈ vertexList do

if predecessor(w) = u ∧ successor(w) = v then

τrec ← τrec + τ(u, w) · τ(w, v) · im(w)
sum← sum + im(w)

end if

end for

return τrec

sum

The outcome of the analyzing phase is a global view

on trust relations between actors. The Trust Provisioning

Web service interface (see Figure 5) offers the ability to

query the periodically updated GT using, for example,

the Management Portal. Besides directed trust relations in

GT , recommendations as well as reputations with respect

to configured constraints can be dynamically obtained.

C. Planning

Planning collaborations includes the selection of trusted

actors for particular activities. Thus, defining the con-

straints used to infer trust from interactions is part of

the planning phase. These constraints are configured for

specific trust cases. As an example, consider that trust in

humans has to be determined regarding their management

skills. Constraints will be set up in order to parameterize

1http://www.itl.nist.gov/div898/handbook/

the algorithm emphasizing the performance of past orga-

nizational activities and management interactions therein.

For defining constraints we integrated the popular

Drools2 engine in VieTE and utilize the Java semantic

module. Listing 4 shows an example constraint defini-

tion. Furthermore, the relevance of each constraint is

weighted (ConWeight). This weight is used by the function

satisfy() to determine the degree to which constraints are

fulfilled with respect to each interaction’s context.

<rule−set name="trust_constraints"

xmlns="http://drools.org/rules"

xmlns:java="http://drools.org/semantics/java">

<application−data identifier="results">

java.util.HashMap

</application−data>

<rule name="CheckIfTypeOfActivityIsOrganizational">

<parameter identifier="context">

<class>at.ac.tuwien.infosys.viete.InteractionContext</class>

</parameter>

<java:condition>

context.getActivity().getType().equals("organizational")

</java:condition>

<java:consequence>

results.put("RuleActivityTypeIsOrg", ConWeight.MEDIUM);

</java:consequence>

</rule>

<rule name="...">

...

</rule>

</rule−set>

Listing 4. Constraint definition example.

D. Executing

In the execution phase the actual collaboration between

actors in activities takes place. Every collaboration system

requires typical procedures such as escalations that are

triggered based on missed deadlines or limited resource

availability. VieTE supports these procedures by providing

trust relations between affected actors and thus supporting

decision making to solve the problems.

V. DISCUSSION

In this section we present an example screenshot of

VieTE’s Management Portal in Figure 6 to demonstrate

the application of the VieTE framework in a real world

collaboration scenario. We show how the end-user is

supported in trust-based selection of actors to perform a

specific activity.

In the left frame (Activity Selection) an activity struc-

ture is visualized. The details of the selected activity are

shown in the lower box, including the name and type,

a short description, temporal constraints (deadlines), the

current status (pending, running, paused, finished, failed),

and assigned resources (e.g., documents).

The right frame (Activity Execution Support) consists

of 5 tabs:

• Actor Evaluation providing information about the

user’s personal trust relations to other actors as well

as their reputation.

• Actor Composition is used for creating new ’mixed’

teams, i.e., compositions of humans and services.

2http://sourceforge.net/projects/drools/

Figure 6. VieTE trust and activity management portal.

• Resource Management enables users to manage vir-

tual resources, such as documents, and physical re-

sources, including conference room reservations.

• Service Operation provides facilities to dynamically

interact with software services by generating custom

user interfaces and SOAP messages based on ser-

vices’ operations.

• Human Communication provides facilities to dynam-

ically interact with humans by the means of e-mail,

instant messaging or text chats.

We assume that the user has certain trust preferences,

for example, selecting the most trusted service. (However,

at this stage we do not consider trade-off models to

account for multiple criteria such as costs versus trust.)

Therefore, the top box of the right frame allows the

selection of a particular actor to be evaluated. The results

of trust evaluation in this co-actor (expressed as emoticons:

happy, neutral, sad), based on interaction metrics such as

successful calls and availability, is visualized. It is shown

that the ’Information Distribution Service’ behaves trust-

worthy for the logged in user (personal evaluation: happy

emoticon), however the composed actor experience from

the involved activity members is only medium (neutral

emoticon). The global experience is largely negative (sad

emoticon).

The lower box shows actors with similar features as the

currently selected one, for supporting fast replaceability

(here: three software services and one Human-Provided

service). Furthermore, their recommendations from well-

trusted actors (’buddies’) and their global reputation is

visualized.

VI. RELATED WORK

Recently, trust in service-oriented systems has become

a very important research area. Many EU-funded projects

such as COIN3 as well as Master4 or Spike5 focus on, for

example, trusted collaboration in networked enterprises.

Marsh [14] introduced trust as a computational concept,

including a basic definition of trust, the factors it relies on

and first concepts to model trust. Based on this work, sev-

eral definitions of and models for trust have been proposed.

Some surveys of trust related to computer science have

been performed [7], [8], [15], which outline common con-

cepts of trust, clarify the terminology and show the most

popular trust models. From the many existing definitions

of trust, we adopt those from [16], [17], which describe

that trust relies on previous interactions and collaboration

encounters.

Various computational trust models have been intro-

duced ([18], [19]), as well as service reputation models

([20], [21]). However, these models mostly focus human

relations or software services only, and are not suitable to

manage trust relations in our context-aware mixed systems

environments, comprising of collaborating humans and

services.

Trust in SOA has to be managed and updated in an

automated manner. SOA-based infrastructures are typi-

cally distributed comprising a large number of available

services and huge amounts of interaction logs. A trust

management framework for service-oriented environments

has been presented in [22], however without considering

human actors in SOA.

Context dependent trust was investigated by [7], [8],

[14], [17]. Context-aware computing focusing modeling

and sensing of context can be found in [23], [24], [25],

[26].

3http://www.coin-ip.eu
4http://www.master-fp7.eu
5http://www.spike-project.eu

VII. CONCLUSION AND FURTHER WORK

In this paper we presented our approach for the man-

agement and inference of trust in mixed service-oriented

systems. Interactions in such systems are typically highly

dynamic making it impractical to manage trust in a manual

manner. At this stage, we focused on the design of

the VieTE architecture and a graph-based algorithm to

calculate trust. In our future work, we plan to set up and

evaluate real scenarios in cross-enterprise collaborations.

We will study influence factors on trust inference such as

the impact of constraints and fine tuning of the presented

algorithm.

ACKNOWLEDGMENT

This work is supported by the European Union through

the IP project COIN (FP7-216256).

REFERENCES

[1] D. Schall, H.-L. Truong, and S. Dustdar, “Unifying human
and software services in web-scale collaborations,” IEEE
Internet Computing, vol. 12, no. 3, pp. 62–68, 2008.

[2] A. Cozzi, S. Farrell, T. Lau, B. A. Smith, C. Drews, J. Lin,
B. Stachel, and T. P. Moran, “Activity management as a web
service,” IBM Systems Journal, vol. 45, no. 4, pp. 695–712,
2006.

[3] S. Dustdar, “Caramba - a process-aware collaboration sys-
tem supporting ad hoc and collaborative processes in virtual
teams,” Distributed and Parallel Databases, vol. 15, no. 1,
pp. 45–66, January 2004.

[4] P. Moody, D. Gruen, M. J. Muller, J. C. Tang, and T. P.
Moran, “Business activity patterns: A new model for col-
laborative business applications,” IBM Systems Journal,
vol. 45, no. 4, pp. 683–694, 2006.

[5] F. Skopik, H.-L. Truong, and S. Dustdar, “VieTE - enabling
trust emergence in service-oriented collaborative environ-
ments,” in International Conference on Web Information
Systems and Technologies, 2009, pp. 471–478.

[6] E. Chang, T. S. Dillon, and F. K. Hussain, Trust and
reputation for service-oriented environments: technologies
for building business intelligence and consumer confidence,
Wiley, 2006.

[7] D. Artz and Y. Gil, “A survey of trust in computer science
and the semantic web,” Journal of Web Semantics, vol. 5,
no. 2, pp. 58–71, 2007.

[8] A. Jøsang, R. Ismail, and C. Boyd, “A survey of trust and
reputation systems for online service provision,” Decision
Support Systems, vol. 43, no. 2, pp. 618–644, 2007.

[9] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins, “Prop-
agation of trust and distrust,” in International World Wide
Web Conference. New York, NY, USA: ACM, 2004, pp.
403–412.

[10] P. Massa and P. Avesani, “Controversial users demand local
trust metrics: An experimental study on epinions.com com-
munity,” in Association for the Advancement of Artificial
Intelligence. AAAI Press / The MIT Press, 2005, pp.
121–126.

[11] A. Agrawal et al., “WS-BPEL Extension for People
(BPEL4People), Version 1.0,” 2007.

[12] IBM, “An architectural blueprint for autonomic comput-
ing,” Whitepaper, 2005.

[13] R. Gombotz and S. Dustdar, “On web services work-
flow mining,” in Business Process Management Workshops,
2005, pp. 216–228.

[14] S. P. Marsh, “Formalising trust as a computational concept,”
Ph.D. dissertation, University of Stirling, April 1994.

[15] S. Ruohomaa and L. Kutvonen, “Trust management sur-
vey,” in iTrust, ser. LNCS, vol. 3477. Springer, 2005, pp.
77–92.

[16] L. Mui, “Computational models of trust and reputation:
Agents, evolutionary games, and social networks,” Ph.D.
dissertation, Massachusetts Institute of Technology, Decem-
ber 2002.

[17] T. Grandison and M. Sloman, “A survey of trust in internet
applications.” IEEE Communications Surveys and Tutori-
als, vol. 3, no. 4, 2000.

[18] T. D. Huynh, N. R. Jennings, and N. R. Shadbolt, “An
integrated trust and reputation model for open multi-agent
systems,” Autonomous Agents and Multi-Agent Systems,
vol. 13, no. 2, pp. 119–154, 2006.

[19] G. Theodorakopoulos and J. S. Baras, “On trust models and
trust evaluation metrics for ad hoc networks,” IEEE Journal
on Selected Areas in Communications, vol. 24, no. 2, pp.
318–328, 2006.

[20] S. Kalepu, S. Krishnaswamy, and S. W. Loke, “Reputation
= f(user ranking, compliance, verity),” in International
Conference on Web Services. Washington, DC, USA: IEEE
Computer Society, 2004.

[21] E. M. Maximilien and M. P. Singh, “Toward autonomic web
services trust and selection,” in International Conference on
Service Oriented Computing. ACM, 2004, pp. 212–221.

[22] W. Conner, A. Iyengar, T. Mikalsen, I. Rouvellou, and
K. Nahrstedt, “A trust management framework for service-
oriented environments,” in International World Wide Web
Conference, 2009.

[23] G. D. Abowd, A. K. Dey, P. J. Brown, N. Davies, M. Smith,
and P. Steggles, “Towards a better understanding of context
and context-awareness,” in International Symposium on
Handheld and Ubiquitous Computing. London, UK:
Springer-Verlag, 1999, pp. 304–307.

[24] N. A. Bradley and M. D. Dunlop, “Toward a multidisci-
plinary model of context to support context-aware com-
puting,” Human-Computer Interactions, vol. 20, no. 4, pp.
403–446, 2005.

[25] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu, “a
CAPpella: programming by demonstration of context-aware
applications,” in SIGCHI Conference on Human factors in
computing systems. ACM, 2004, pp. 33–40.

[26] S. W. Loke, “Context-aware artifacts: two development
approaches,” IEEE Pervasive Computing, vol. 5, no. 2, pp.
48–53, Apr./Jun. 2006.

