
Performance-based Vertical Memory Elasticity

Soodeh Farokhi∗, Pooyan Jamshidi†, Drazen Lucanin∗ and Ivona Brandic∗
∗Faculty of Informatics, Vienna University of Technology, Austria.

†Department of Computing, Imperial College London, United Kingdom.
Email: ∗{firstname.lastname}@tuwien.ac.at, †p.jamshidi@imperial.ac.uk

Abstract—Cloud computing offers the elasticity features by
dynamically resizing the infrastructure in response to changes in
workload demands to meet performance guarantees and minimize
costs. In the last decade, a large body of work has been done
in the area of horizontal elasticity, while only few research
efforts addressed vertical elasticity. This paper develops a vertical
elasticity controller for cloud-based applications using control
theory principles to guarantee performance requirements by
adjusting the memory allocation as a control knob. The novelty
of our work lies on applying a controller synthesis technique by
guaranteeing robustness and stability of the controlled system,
using the application response time as a decision making criterion.
The experimental results reveal that the controller is able to
efficiently save at least 47% memory usage while keeping an
acceptable user experience.

I. INTRODUCTION

Modern web applications are getting more performance
sensitive while they face unpredictable workloads. Therefore,
resource auto-scaling is necessary not only to avoid application
performance degradation but also to avoid acquiring resources
which may not be used. In cloud computing, elasticity is a
mean to decide the right amount of resources each application
needs to avoid under- or over-provisioning. Two types of
elasticity are defined: horizontal and vertical. While the former
is the ability to provision and release virtual machines (VMs),
the later is adjusting the capacity of a single VM to cope with
runtime changes.

In this work, we design a controller for vertical mem-
ory elasticity of cloud-based applications (mem-controller) by
adopting a controller synthesis technique introduced in [1]
that guarantees the stability of a controlled system. The main
motivation behind the choice of control theory in our work is
to use this well-established theory for modeling and designing
feedback loops to make the cloud-based applications self-
adaptive and achieve a proper balance between faster reaction
and better stability. Moreover, since the time to adjust memory
at runtime is close to instantaneous, control theory is a good
fit. We evaluated mem-controller based on an experimental
study using RUBBoS, a cloud benchmark application, under
Wikipedia and FIFA traces.

Different from the existing approaches in the domain of
cloud vertical elasticity, our approach has several distinguish-
ing aspects: (i) because of the special challenges in memory
elasticity, research on this topic is scarce compared to other
resources such as CPU [2]; (ii) among the work exploring
memory elasticity, most of them [3] look at the data storage
(DS) tier, as the effect of memory on retrieving data is clear;
therefore, being concerned with the memory elasticity of the
business logic (BL) tier (i.e., the tier hosting web server)
has not yet been well investigated; (iii) we have looked at
memory elasticity from a performance point of view instead
of memory utilization as the most common used indicator

controller target
system MA

desired
output (y)

control
output (u)

disturbance (d)

ac
tu

at
or

m
on

ito
r

measured
output (y)

elastic-
memory

controller

application

VM
MA

desired-rt
(rt)

memory size
(ctlimi)

workload

ac
tu

at
or

m
on

ito
r

measured -rt
(rti)

(a)

(b)

control
error (e)

controlled system

+
-

+
-

ei = rt - rti

~

~ ~

controller target
system

desired
output

controller's
output

disturbances

controllerd
output

memory
controller

application

VM

desired-rt
(rt)

memory size
(ctlimi)

workload

measured -rt
(rti)

(a)

(b)

control
error

controlled system

+
-

+
-

ei = rt - rti
~ ~

Figure. 1: (a) Standard feedback loop, (b) Our feedback loop. [5]
of the memory scarcity [4]. In other words, we consider
application performance, i.e., response time (RT), as a decision
making criterion to scale up or scale down the allocated
memory of VMs. Notice that the proposed solution targets
applications with dynamic memory requirements, and in which
the performance bottleneck is memory, not CPU.

The contribution of the paper lies in developing and ex-
perimentally evaluating a controller by applying a controller
synthesis technique and an error smoothing method. The
controller goal is to realize the vertical memory elasticity
and guarantee RT for cloud-based applications. The effect of
memory elasticity of the BL tier on application performance
is the main investigation in our work.

II. MEMORY CONTROLLER

In the context of control theory, a standard feedback control
loop is as illustrated in Fig. 1[5] (a). In an equivalent feedback
loop consisting of mem-controller shown in Fig. 1 (b), the
target system is a cloud-based application deployed on a VM.
The controller’s output at each control iteration ctli is mapped
to a memory size mi to enable elasticity by scaling up or
down the allocated VM memory. The parameters r̃t and rti
are the desired and measured RT , respectively. The control
error ei is the difference between these two values at each
control iteration. The number of user requests (workload) and
a change in the mix of different request types in the workload
are considered as the disturbances, and as the controller
cannot control the workload, it should change the application
deployment environment in order to meet the desired RT .

The control law, as originally devised in [1], is presented
in Eq. (1). As shown, the control output ctli is calculated based
on its previous value ctli−1 and a coefficient of the control
error (ei = r̃t− rti). The coefficient is based on the value of
α, a model parameter, and pole. The parameter α is estimated
at runtime based on the effect of ctl on rt. We apply the linear
regression to capture this relationship.

ctli = ctli−1 − 1− pole

α
· ei (1)

The choice of pole determines the stability of the controlled
system, and how fast it approaches to its equilibrium. The
stability of the controller is ensured as long as 0 ≤ pole < 11.

1pole = 0.99 is used in our work.

0

1000

2:00 7:00 12:00 16:00 21:00

us
er

 re
qu

es
ts

time during 24 hours

1000

 0
 Jun'98 14-Jun 28-Jun 12-Jul

us
er

 re
qu

es
ts

date during 40 days(a) (b)

Figure. 2: Wikipedia trace (a); FIFA trace (b).

In order to develop a more stable and robust controller, we
apply the weighted moving average error smoothing method
used in time series analysis on calculating control error before
using it in Eq. (1). At each control interval, memory controller
tracks the r̃t by rejecting the influence of workload fluctuation
on the rti and withstands the control error ei as long as it is
insignificant. Te controller’s output ctl ∈ (0, 1) is mapped to
a memory size mi ∈ [mmin,mmax] using Eq. (2).

mi = ctli · (mmax −mmin) +mmin (2)

where mmin and mmax are the maximum and the minimum
amount of VM memory sizes expressed by the number of
memory units2 munit, which are allowed to be allocated, mi

is the output of mem-controller.

III. EVALUATION

For the evaluation, we compared the results of self-adaptive
with two non-adaptive scenarios based on two provisioning
policies: over- and under-provisioning in an experimental
setup. We used a load generator tool with the ability to
measure the RT , named httpmon3 to measure RT at runtime.
As shown in Fig. 2, while the used Wikipedia trace has a
hourly incremental pattern, the FIFA trace includes sudden and
temporal peaks. To facilitate the reproduction of our research,
we released the source code (in Python) that prepares these
traces4. The experiments were conducted on a single Linux
Ubuntu 14.04 server, equipped with 16 processors and 32GB
of memory. We used KVM hypervisor to create two VMs
each for different tiers (BL and DS). Since the focus of
this work is on memory elasticity of the VM hosting BL
tier (VM1), we assigned a static number of CPU cores–
4– to each VM. While the amount of allocated memory
for VM1 is dynamic (512MB-6GB) and is managed by the
controller, a static amount of memory–4GB–was assigned to
the VM hosting DS tier (VM2). VM1 runs the application web
server, Apache 2.0, and VM2 runs the application database,
MySQL.

For the evaluation metrics, we consider: (i) the average
of measured RTs; (ii) the average number of memory units
used over time, which determines the variable part of the
ownership cost. This memory saving is beneficial for the
resource provider, since the physical host can take advantage
of that memory reduction and uses it for other VMs; (iii)
violation rate throughout the experiment. The goal is to meet
the desired RT , which is set to r̃t = 600ms and 300ms in
the experiments associated with the Wikipedia and the FIFA
traces, respectively, while keeping memory usage and violation
rate as low as possible. A visual summary of the aggregated
results is depicted in diagrams of Fig. 3 and is discussed briefly
in the following sections.

Wikipedia trace. As shown in Fig. 3 (a), in comparison
with the over-provisioning policy, the controller has acquired

2memory unit is a discrete block of memory, e.g., 64MB in this work.
3https://github.com/cloud-control/httpmon
4Wikipedia: http://goo.gl/iy36Pg and FIFA: http://goo.gl/iUGF6O

600 490

51
18

600

15
96

600
2109

16
58

1

100

10000 (a) aggregated results under the Wikipedia trace

non-adaptive (over-provisioning)
non-adaptive (under-provisioning)
self-adaptive (memory controller)

300

61
14

4

300

26 32

2

300
1963

8

76

1

100

10000

desired RT
(ms)

avg measued RT
 (ms)

 avg memory usage
 (unit)

RT violation rate
(% of time)

(b) aggregated results under the FIFA trace

0

Figure. 3: Results under the Wikipedia (a), and the FIFA (b) traces.
less memory, so decreasing the resource cost by 47 percent (51
vs. 96 unit). In comparison with the under-provisioning policy,
mem-controller is significantly better in terms of RT (490ms
vs. 2109ms), giving applications’ owners a better chance to
guarantee the performance metric. The percentile of time in
which violation has accrued during the experiment is shown
as RT violation rate in Fig. 3. In an ideal situation, a controller
should be able to keep the violation rate close to zero. As
depicted, although the controller was able to keep the total
average of measured RT less than the desired RT (490ms vs.
600ms), at 18% of time, the violation was accrued.

FIFA trace. For the results shown in Fig. 3 (b), the situa-
tion is much better. In comparison with the over-provisioning
policy, the controller has allocated less memory, so consequen-
tially decreasing the memory usage by 57% (14 vs. 32 unit).
In comparison with the under-provisioning policy, it behaves
better in terms of the average of measured RT (61ms vs.
1963ms). In this workload trace, the violation rate is 4%.

IV. CONCLUSION
In this paper, we developed a vertical memory elasticity

controller by using a controller synthesis technique and er-
ror smoothing method. The controller adjusts the allocated
VM memory to boost performance by taking the application
response time as an indicator of the memory scarcity. The
evaluation results show the benefit of the controller to save
the memory usage (cost) by 47% in case of the Wikipedia,
and 57% in case of FIFA traces in comparison with the over-
provisioning policy, while satisfying the desired response time
in all scenarios. Such a controller can be used to make a
cloud-based application self-adaptive (memory-wise) and to
guarantee the desired performance while decreasing the cost
for the application owner.

ACKNOWLEDGMENT
This work was supported by the HALEY project, and the

WWTF through the PROSEED grant.
REFERENCES

[1] A. Filieri, H. Hoffmann, and M. Maggio, “Automated Design of
Self-Adaptive Software with Control-Theoretical Formal Guaran-
tees,” in ICSE, 2014, pp. 299–310.

[2] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler, and
R. Griffith, “Runtime vertical scaling of virtualized applications
via online model estimation,” in SASO, 2014, pp. 157–166.

[3] L. Lu, X. Zhu, R. Griffith, P. Padala, A. Parikh, P. Shah, and
E. Smirni, “Application-driven dynamic vertical scaling of virtual
machines in resource pools,” in NOMS, 2014, pp. 1–9.

[4] A. Baruchi and E. T. Midorikawa, “A survey analysis of memory
elasticity techniques,” in Euro-Par, 2011, pp. 681–688.

[5] S. Farokhi, P. Jamshidi, I. Brandic, and E. Elmroth, “Self-
adaptation challenges for cloud-based applications: A control
theoretic perspective,” in Feedback Computing, 2015.

References

Performance-based Vertical Memory Elasticity
Soodeh Farokhi1, Pooyan Jamshidi2, Drazen Lucanin1, and Ivona Brandic1

1Faculty of Informatics, Vienna University of Technology, Austria. 2Department of Computing, Imperial College London, UK.
Introduction

Motivation

Memory Controller

Experimental Evaluation

Summary of Results

Conclusion

allocated m
em

 units

16
32
48
64
80
96

6

60

600

6000

0 100 200 300 400 500 600 700 800 900 1000
desired-rt measured-rt(average) memory unit(64MB)

0

500

1000

6

60

600

6000

0 100 200 300 400 500 600 700 800 900 1000
desired-rt measured-rt(average) workload

0

500

1000

6

60

600

6000

0 100 200 300 400 500 600 700 800 900 1000

re
sp

on
se

 ti
m

e
(m

s)

num
ber of concurrent users

Self-adaptive RUBBoS (memory controller)

Non-adaptive RUBBoS (over-provisioning – 96 memory unit)

Non-adaptive RUBBoS (under-provisioning – 16 memory unit)

re
sp

on
se

 ti
ne

 (m
s)

RUBBoS
BL tier

(Apache 2.0)
OS (Ubuntu)

KVM hypervisor

elastic memory

memory controller

memory (4GB)

RUBBoS
DS tier
(MySQL)

OS (Ubuntu)

VM2 VM1

CPU (4 cores) CPU (4 cores)

httpmon
client+monitoring

workload
traces

http GET request

response time

556

PM (32 GB memory, 16 processors)

< Java + Matlab > 22 11

33

44

controller target
system

target output control output
disturbance

measured output

memory
controller

Application

VM

memory size
(ctli memi) measured RT (rti)

control error

+

+ -

target RT (rt)~ errori = rt - rti
~

workload

-

us
er

 re
qu

es
ts

time during 24 hours
1:00 5:00 11:00 16:00 23:00

1000

Future Work

	ICAC-paper-and-poster_7July-2015
	Soodeh-Farokhi_submitted_ICAC2015-poster

	ICAC_poster-Final-A4-landscape

