
GENESIS 2 - HOWTO, Tutorial, and
Documentation

Lukasz Juszczyk

30. Dezember 2012

1 General Information

This is a HOWTO/Tutorial document for the GENESIS2 (G2) testbed generator
framework. It is supposed to give an overview of how G2 can be installed, applied,
and extended. Of course, this document is not complete and does not explain
everything, but rather provides a good starting point for users. For getting familiar
with it, I highly recommend to take a look at the source code and to play around
with it in order to understand the framework’s internals.

2 HOWTO Install

What you need is:

• G2 - obviously...

• Java 6 JDK - Available at http://www.oracle.com/technetwork/

java/javase/downloads/index.html

• Maven2 - Available at http://maven.apache.org/

It is very important that you have the Java 6 JDK installed, not just the JRE.
G2 will need some libraries which are only avaible with the JDK.
The installation procedure looks as follows:

1. In the root directory run mvn clean package. This will download all de-
pendencies, compile G2, package it and put the resulting jar and all de-
pendencies into target.

1



2. Create (or copy) working directories for your G2 instances. This includes
exactly one front-end and at least one back-end instance. You can take
the directories from sample/workingdirs as templates.

3. For each instance, change into the working directory and start the front-end
with ’java -jar genesis2-0.0.2.jar -fe’ and the back-end(s) with
’java -jar genesis2-0.0.2.jar’. Use the front-end console for inter-
active scripting or, alternatively, execute ’java -jar genesis2-0.0.2.jar

-s {script.groovy}’ for executing already existing scripts non-interactively.

For configuration, there is (for now) only one file to edit: conf/genesis2.conf.
As G2 consists of a front-end (FE) part and an arbitrary number of back-end
(BE) hosts, and sometimes users would like to have them running on the same
machine, it is necessary to specify the ports in order to avoid conflicts. For
that, each G2 instance (whether FE or BE) should be started in its own working
directory which should contain the conf/genesis2.conf file, whose content is:� �

1 net.local.host=localhost

2 net.local.port =8080� �
The host is used for constructing the URI’s of the generated components. The
port is the instance’s main port and should be distinct from the other instances.
However, please note that G2 reserves this port plus the subsequent one. If you
specify 8080 then it will also reserve 8081.

3 First Steps

I will not explain all details of G2 in this document, as this is not possible. For
having a basic understanding of what G2 is I recommend to read the papers avail-
able at http://www.infosys.tuwien.ac.at/prototyp/Genesis/. However,
some quick facts which are important for understanding G2:

1. G2 is a framework which is extensible via plugins. The plugins provide
model types of testbed components (e.g., Web services, clients, registries)
which are customizable but also the routines to translate these models into
running instances.

2. G2 uses Groovy scripts for modeling and programming of testbeds.

3. A G2 testbed comprises a single FE, where scripts are executed and from
where everything is steered, and a distributed BE, consisting of an arbitrary
number of hosts on which the testbed instances are deployed.

2



4. Testbeds are modeled by instantiating model instances, customizing and
programming them and deploying them on the BE hosts.

3.1 Providing Model Types via Plugins

Plugins which provide functionality to generate new testbed components must
provide the corresponding types. These must be derived from the class Abstract-
ModelElement and contain all necessary routines. In particular the following
methods are important:

• The constructor which will be called, when the type is instantiated in the
scripts via create(...).

• getProperty() and setProperty() for assigning property values the
Groovy way.

• And all the necessary public variables, getter/setter methods, and functions
for accessing and customizing the model.

The plugin, which must be derived from AbstractGenesis2Plugin, must im-
plement the method deployElement(el) which is will be called at the back-end,
when a model type comes in and a running instance must be generated out of
it.

3.2 Creating Model Instances

Model types which are registered at the framework, can be instantiated in two
ways. 1) Either by instantiating a single object and customizing its properties
or 2) by using Builders. Normal instantiations are done via the create(...)

constructor. For instance:� �
1 def wsModel = webservice.create("TestService")

2

3 def clientModel = client.create ()

4

5 def msgPertModel = msgperturber.create("xml")� �
Later, these instances can be customized, e.g., via:� �

1 wsModel.bindingStyle = "doc ,lit"

2

3 def opModel = wsoperation.create("HelloWorld")

4 opModel.returnType = String

3



5 opModel.behavior = { re tu rn "hello world!" }

6

7 // bind operation to service

8 wsModel.operations = [opModel]� �
Builders, however, can help to instantiate and create nested structures of testbed
models. As in the example above, first a Web service is created, later on a Web
service operation is created, and finally, the operation is attached to the service.
The more complex the nested structure is, the more script code would be needed
to specify it. With Groovy Builders, this can be simplified as follows:� �

1 def wsModel = webservice.build {

2 TestService(bindingStyle:"doc ,lit") {

3 HelloWorld(response:String) {

4 re tu rn "hello world!"

5 }

6 }

7 }[0]� �
Please note the following. The Builder returns a list of models, as after specifying
the TestService another specification could have followed. Therefore, we are
accessing the created model via appending [0] to the call. Furthermore, Builders
must be provided by the plugin which provides the model type. This is due
to the necessary knowledge about which structures can be combined, how to
interpret the commands, etc. In the presented listing the structure comprises a
webservice that contains a wsoperation which, again, contains a datatype

for the return type.
For more information about builders we refer to the Groovy guide1, to the

abstract class AbstractModelBuilder, and to the concrete implementations,
such as WebServiceBuilder or WsOperationBuilder.

3.3 Customizing Model Instances

Once, model types are instantiated, they must be customized according to the
requirements of the test run. What kind of customization is possible, depends
heavily on the type. For instance, Web services can be assigned different binding
styles, different operations with different functional behavior, etc., clients, can
be assigned different behavior, and so on.

In any case, the model type must provide the corresponding means to cus-
tomize it. These can be public variables, getter/setter methods, operational meth-
ods, etc. These will be accessible in the scripts, e.g., as in here:

1http://groovy.codehaus.org/Builders

4



� �
1 wsModel.bindingStyle = "doc ,lit"

2 wsModel.deleteOperation("HelloWorld")� �
3.4 Deploying Model Instances

Once customized and ready, model types can be sent to a BE host where running
instance will be generated out of these. This happens via calling the deployAt()
method.� �

1 def host1 = host.create("hostnameOrIP" ,8080)

2

3 wsModel.deployAt(host1)� �
If the model must be deployed on more than one host, this can be done via:� �

1 def host1 = host.create("hostnameOrIP" ,8080)

2 def host2 = host.create("hostnameOrIP" ,8181)

3

4 def hostList = [host1 ,host2]

5

6 wsModel.deployAt(host1 ,host2)

7 // or

8 wsModel.deployAt(hostList)� �
This causes G2 to serialize the model, to transfer it to the BE hosts, and to call
the deployElement() method of the plugin that provides these types.

3.5 Implementing new Plugins

Well, that would require a lot of documentation to cover everything. . . Instead,
I’m giving a very short overview.

First of all, it is necessary to distinguish between plugins which provide new
model types and generate instances out of it, and these who are just doing some
tasks in the background. Also between plugins which are standalone and these
who must communicate with each others. Etc., etc.

For generating testbed components, plugins must provide the model type via
the method getTypesAndBuilders() and implement the deployElement()

routine accordingly in order to accept all provided types and to generate instances
out of them. Furthermore, if the plugin wants to be accessible remotely via a Web
service, it must implement this and provide it via getPluginWsImplementor().

5



Furthermore, plugins can provide any other additional methods, macros, data
objects, which are accessible via the shared runtime environment. These are regis-
tered via the methods getAliases() (aliases for accessing the plugin instance),
getCommands() (register commands/macros via aliases), etc. I recommend to
get familiar with the classes AbstractGenesis2Plugin and all its subclasses
implementing specific plugins in order to understand the plugin system.

3.5.1 Shared Runtime Environment

The Shared Runtime Environment (SRE) is the binding that connects all Groovy
scripts that are executed within G2. It provides access to all plugins (via their
aliases), to the model types (via their names), macros, global variables, etc. G2
makes sure that SRE is the same on all hosts in the testbed in order to have
a homogeneous environment, especially as it installs the same set of plugins on
each host and each plugins performs the same deployment procedure on its host.

In the Java code (e.g. of the plugin implementation), the SRE can be ac-
cessed via ExecutionEnvironment.getGlobalInstance() in order to regis-
ter variables/scripts in it. However, these changes will be only local. If they
are supposed to be global (on each instance of the testbed), either make sure
that each plugin instance registers the same data or use the ObjectPropaga-
torPlugin which automatically forwards all declarations to all known instances
(prop.variablename=value).

6


