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Abstract—Mixed service-oriented systems composed of hu- difficulties to adopt human expertise into software implame
man actors and software services build up complex interaction tations. Instead of dispensing with human capabilitiesppe
networks. Without any coordination, such system may exhibit honqje tasks behind traditional service interfaces. Irtrash
undesirable properties due to unexpected behavior. Also, commu- . o
nications and interactions in such networks are not preplanned by to p.rocess-centr-lc-: flows (top-.down c-omposmons), we adiec
top-down composition models. Consequently, the management of flexible compositions wherein services can be added at any
service-oriented applications is difficult due to changing interac- time exhibiting new behavior properties. However, esghcia
tion and behavior patterns that possibly contradict and result in  the involvement of and dependencies on humans as a part of
faults from varying conditions and misbehavior in the network. In flexible compositions makes the functioning of applicasion

this paper we present a self-adaptation approach that regulates . . - . .
local interactions to maintain desired system functionality. To difficult to determine. Heterogeneity has a major impact on

prevent degraded or stalled systems, adaptations operate by link all aspects of the system since system dynamics and evolutio
modification or substitution of actors based on similarity and are driven by software services and human behavior [2]. A

trust metrics. Unlike a security perspective on trust, we focus ©  main challenge is to monitor, analyze, and evaluate specific

the notion of socially inspired trust. We design an architecture haviors which m ffect tem performan r reliabili
based on two separate independent frameworks. One providing behaviors ¢ ay affect system performance or religb

a real Web service testbed extensible for dynamic adaptation We present a solution to thi; problem based on an ar-
actions. The other is our self-adaptation framework including chitecture including a Web services testbed [4] at its core.
all modules required by systems with self-* properties. In our The testbed allows to simulate and track the effects on a
experiments we study a trust and similarity based adaptation composition resulting from different environmental cdiutis.
zge)ﬁ)vrizgghtegb:?ulatmg dynamic interactions in the real Web The success of self-adaptation strategies commonly depend

Index Terms—Service-oriented collaboration, monitoring, self- 0N 'the recognition of the system’s current state and patenti
adaptation, web service testbed, dynamic trust actions to achieve desired improvements.

This paper presents the following novel key contributions:

|. INTRODUCTION « Modeling and simulating human behavior in service-

oriented collaboration networks.

A flexible interaction model for service-oriented systems.
The interaction model is based on delegation actions per-
formed by actors. Associated tasks are routed through the
system following standard WS-Addressing techniques.
Models for misbehavior and related repair actions to
prevent inefficient or degraded system performance. We
identify delegation factoryand delegation sinkand their
behavior.

Discovery of delegation receivers to prevent or mitigate
misbehavior. We present a novel trust metric based on
profile similarity measurements.

Service-oriented architectures (SOA) implementatiorss ar
typically designed as large-scale systems. Applicatiores a °
composed from the capabilities of distributed serviceg tha
are discovered at runtime. Dynamic loosely bound systems
make the management of large-scale distributed applitatio
increasingly complex. Adaptations are necessary to keep th*®
system within well-defined boundaries such as expected load
or desired behavior. Changing requirements and flexible uti
lization demand for comprehensive analysis of the regultin
effects prior to integration. Changes interfere with elisaled *
services, connections, or policies and on top of all affect
dependencies. However, service compositions must be main-
tained and adapted depending on predefined runtime preperti The paper’s structure is as follows. Section Il provides a
such as quality of service (QoS) [1] and behavior [2]. motivating scenario for service-oriented collaboratigstems.

In this work we propose a monitoring and self-adaptatioBection Ill explains the concepts of similarity and trusedis
approach ofervice-oriented collaboration networké/e con- for adaptation strategies. Section IV outlines the twofold
sider systems that are based on the capabilities of humastem architecture. Section V details the aspects of bahav
actors, defined as Human-Provided Services (HPSs) [3] amdnitoring. Experiments and results are discussed in @ecti
traditional Software-Based Services (SBSs). The integrat VI followed by related work in Section VII. Section ViIlI
of humans and software-based services is motivated by ttancludes the paper.



Il. ON SELF-ADAPTATION IN COLLABORATIVE SOA consultants (i.e., the network of experts). While the resoft

The goal of self-adaptation in service-oriented systents iscertain simple but often repeated experiments can be effigie
prevent the running system from the trend to an unexpectiPcessed by software services, analyzing more complex dat
low performance. As in autonomic computing the aim igsually needs human assistance. We model a mixed expert
to create robust dependable self-managing systems [5]. THidwork consisting of Human-Provided and Software-Based
established methodology [6], and the one of self-adaptee gServices belonging to different communities. The members
tems [7] is to design and implementcantrol-feedback loap of these communities are discovered based on their main
This feedback loop is know as tHdAPE cycle consisting expertise areas, and connected through certain relatams (
of four essential stepsnonitor, analyze, planand execute tailed in the following sections). Community members reeei
Systems that adapt themselves autonomously are enharf€iests from external service consumers, process thein, an
with sensors and effectottbat allow network modektreation fespond to the requests. Our environment uses standardized
and adaptation strategiesThis provides the necessary selfSOA infrastructures, relying on widely adopted standasdsh
awareness to manage the system autonomously. as SOAP and the Web Service Description Language (WSDL),
to combine the capabilities of humans and software services

Various circumstances may cause inefficient task assign-

Service-oriented Collaboration Network)

o % 9 Aadfpiaﬁon ments in expert comm_unit?es. Pe_rf(_)rmqnce degradations can
actions strategy be expected when a minority of distinguished experts become
Monitoring |—°"_["Adaptation | flooded with tasks while the majority remains idle. Load
logsy [ network distribution problems can be compensated wdilegations
Network Model [10], [11]. Each expert in a community is connected to other
Q/“'?_<@ experts that may potentially receive delegations. We assum
— that experts delegate work they are not able to perform tsecau

of missing mandatory skills or due to overload conditions.
Fig. 1. Self-adaptation and behavior monitoring approach. Delegation receivers can accept or reject task delegations
Community members usually have explicit incentives to ptce
Figure 1 illustrates the proposed approach to manage dadks, such as collecting rewards for successfully peddrm
adapt service-oriented collaboration networks. Suchesyst work to increase their community standing (reputation)l-De
comprise different kinds of actors, services, and comjursit egations work well as long as there is some agreement on
thereof. Interactions are captured from the system thranigh members’delegation behaviorHow many tasks should be
terceptor and logging capabilities. Theonitoringcomponent delegated to the same partner in a certain time frame? How
feeds interaction logs into a network representation ofract many task can a community member accept without neglecting
and their relations. Behavior patterns are analyzed basedasher work? However, if misbehavior cannot be avoided in the
a network modelA self-adaptationengine evaluates policiesnetwork, its effects need to be compensated. We identify two
to trigger potential adaptation strategies. Adaptatiomduide types of misbehaviordelegation factoryand delegation sink
structural change (link modification) and actor substitoti A delegation factory produces unusual (i.e., unhealthy)
Our approach with two frameworks allows testing of adaptamounts of task delegations, leading to a performance degra
tion strategies in versatile service-based applicati@magos. dation of the entire network. For example (see Figure 1), if a
Examples arecrowdsourcingapplications [8] in enterprise nodev accepts large amounts of tasks without actually per-
environments or open Internet based platforms. These enliorming them, but simply delegates to one of its neighboring
platforms distribute problem-solving tasks among a grofip nodes (e.g.w). Hence,v’s misbehavior produces high load at
humans. Crowdsourcing follows the ‘open world’ assumptiotiie neighboring nodev. Work overloads lead to delays and,
allowing humans to provide their capabilities to the platio since tasks are blocked for a longer while, to a performance
by registering themselves as services. Some of the magjtagradation from a global network point of view.d&legation
challenges [9] are monitoring of crowd capabilities, detec sink can be characterized by the following behavior. Nade
of missing capabilities, strategies to gather those céifabj accepts more task delegations franmw, andx as it is actually
and tasks’ status tracking. In the following we discussat®ll able to handle. In our collaborative network, this may happe
orations in service-oriented networks. due to the fact thatv either underestimates the workload or
Processes in collaborative environments are not resirtote wants to increase its reputation as a valuable collabaratio
single companies only, but may span multiple organizationsartner in a doubtful manner. Sineeis actually neither able
sites, and partners. External consultants and third-gyerts to perform all tasks nor to delegate to colleagues (becalise o
may be involved in certain steps of such processes. Thesissing outgoing delegation links), accepted tasks rerimain
actors perform assigned tasks with respect to prior negdts task pool. Again, we observe misbehavior as the delegati
ated agreements. Single task owners may consume servieeiver causes blocked tasks and performance degradation
from external expert communities. A typical use case fsom a network perspective.
the evaluation of experiment results and preparation df tes Our approach provides a testing environment for such
reports in biology, physics, or computer science by thiadyp applications to address related challenges.



I1l. PROFILE SIMILARITY AND DYNAMIC TRUST T = {t1,to,t5...} by all actorsA = {u,v,w...}.

Collaborative networks, as outlined in the previous sestio
are subject to our trust studies. Unlike a security view, we
focus on the notion of dynamic trust from a social perspectiv. The populartf*idf model [16] introduces tag weighting
[12]. We argue that trust between community members gsed on the relative distinctiveness of tags; see Eq. (8h E
essential for successful collaborations. The notion ofagiyic  entry in T is weighted by the log of the total number of actors
trust refers to the interpretation of previous collabanati |4/, divided by the amount; = [{u € A | tf(t,u) > 0}| of
behavior [10], [13] and considers the similarity of dynaatig actors who used tag
adapting skills and interests [14], [15]. A

Especially in collaborative environments, where users are tfradf (t,u) = tf(t,u) - |09nft

‘I:<pu7pv>pw~-->|T|X|A| (2)

3)
exposed to higher risks than in common social network ) o
scenarios, and where business is at stake, consideringsrus Finally, the cosine similarity, a popular measure to deter-
essential to effectively guide human interactions. In fisiper, Mine the similarity of two vectors in a vector space model,
we particularly focus on the establishment of trust througf @Pplied to determine the similarity of two actor profiles

measuring interest similarities [10]: andp.; see Eq. (4).
« Trust Mirroring implies that actors with similar profiles
(interests, skills, community membership) tend to trust 8iMyprofite(Pus Pv) = CO{Pu, Pv) = _Pu'Pv (4)
each other more than completely unknown actors. [Pull [IPv]]

« Trust Teleportationrests on the similarity of human orB. The Interplay of Interest Similarity and Trust
service capabilities, and describes that trust in a mem- o model, a trust relation(u, v) mainly relies on the

ber of a certain community can be teleported to Oth?ﬁterest and expertise similarities of actors. We applyousr

members. For 'T‘Stance' if an actor, belonglng_ tq a cgrtaé ncepts to facilitate the emergence of trust among network
expert group, is trusted because of his distinguish mbers

knowledge, other members of the same group may benefi rust Mirroring.  Trust 7., (Figure 2(a)) is typically

from this trust relation as well. applied in environments where actors have the same roles
A. Interest Profile Creation (e.g., online social platforms). Depending on the envirenm
interest and competency similarities of people can be -inter

¢ . d ontolodies to defi tain skl d 6 eted directly as an indicator for future trust (Eq. 5). Mehis
axonomies and ontologies to detine certain Skilis and eigger strong evidence that actors ‘similar minded’ tend to trsthe
areas, we follow a mining approach that addresses inher

. : ; . . Bter more than any random actors [12], [15]; e.g., movie
dynamics of flexible collaboration environments. In pariic, ecommendations of people with same interests are usually

skills and expertise as well as interests change over tmite, R,,re trustworthy than the opinions of unknown persons.
are rarely updated if they are managed manually in a regust{)iI1

. ) irrored trust relations are directed, im0 fite (Pu, Pv) #
Z(Iar:ﬁg we determine and update them automatically throu(glmpmf”e(pu,pv)_ For instance an experienced actanight

. . , ) . . have at least the same competencies as a navid&erefore,
The creation of interest profiles without explicit user ihpu

has been studied in [10]. As discussed before, interacti@ns @ﬁﬁﬁﬁ??ﬁ?ﬁ,{ ?rIL g??rffte(r:jus)s ofand 7, (u, v) is high,
delegation requests, are tagged with keywords. As detagati ’
receivers process tasks, our system is able to learn how well
people cope with certain tagged tasks; and therefore, able t
determine their centers of interests. We use task keywards t
create dynamically adapting interest profiles based onaads
manage them in a vector space model.

The utilized concepts are well-known from the area of
information retrieval (see for instance [16]). However,ilh !
they are used to determine the similarities of given docusjen (a) Trust Mirroring. (b) Trust Teleportation
we create th_ese documents (that reflect user profiles) frea u?—‘ig. 2. Concepts for the establishment of trust through @stesimilarities.
tags dynamically on the fly.

The profile vectorp, of actor v in Eqg. (1) describes
the frequenciesf the tagsT = {t1,t2,t5...} are used in
delegated tasks accepted by actor

In contrast to common top-down approaches that ap

Tmir(u,’U) = Simprofile(pu7pv) (5)

*\ similarity

Trust Teleportation. Trust 7;.;. is applied as depicted by
Figure 2(b). We assume thathas established a trust relation-
ship tow in the past, for example, based ars capabilities to

_ assistu in work activities. Therefore, others having interests
Pu={f(h), f(t2) flE)..) @) and capabilities similar tav may become similarly trusted

The tag frequency matriXxX (2) in Eqg. 2, built from by w in the future. In contrast to mirroring, trust teleportatio

profile vectors, describes the frequencies of used tagsy also be applied in environments comprising actors with
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different roles. For example, a manager might trust a sawaSOA environments and, based on these infrastructures, to
developer belonging to a certain group. Other members in therform realistic tests at runtime.
same group may benefit from the existing trust relationship As depicted in Figure 3, the G2 framework comprises a
by being recommended as trustworthy as well. We attemptdentralized front-end, from where testbeds are modeled and
predict the amount of future trust from to v by comparing controlled, and a distributed back-end at which the models
w’'s andv’s profiles P. are transformed into real testbed instances. The front-end
maintains a virtual view on the testbed, allows engineers to
S wenr T w) - (8improfite (Pw, pv))? manipulate it via Qroovy [17] scripts, and prop.agates ckang
S SiMrorite (Pw, Pv) to the back—epq_ln order to adapt the running testbed. To

weM profutelws By ensure extensibility, G2 follows a modular approach where a

Equation 6 deals with a generalized case where several tibigse runtime framework provides a functional grounding for
relations fromu to members of a group/’ are teleported composable plugins. These augment the testbed’s funttiona
to a still untrusted actor. Teleported relations are weightedty, making it possible to emulate diverse topologies, fiomal
and attenuated by the similarity measurement results of acand non-functional properties, and behavior. Furthereaeh
profiles. plugin registers itself at the shared runtime in order offer
functionality via the framework’s script API.

The sample script in Listing 1 demonstrates a specification
This section provides an overview of the components afla Web service which queries a registry plugin, appliesla de
services that allow simulatons and tests of adaptationesiten egation strategy, and forwards the request message to @mwork

in collaborative service-oriented systems. Our architecsee service. First, a call interceptor is created and custotniviéh
Figure 3) consists of two main building blocks: thestbed a Groovy closure which passes the SOAP message to the
runtime environmenbased on the Genesis2 framework [4logger plugin. Then, a data type definition is imported from
and the VieCuradaptationandself-healing frameworkpartly an XML Schema file for being later applied as a message
adopted from our previous work [2]. The integration of botlype for the subsequently defined web serviieoxy. The
systems enables the realization of ttentrol-feedback loop proxy service first attaches the created call interceptor to
as illustrated in Figure 1. itself and defines an operation which delegates the request.

. This procedure is split into querying the registry for tagge
A. Genesis2 Testbed Generator Framework Web services, applying the delegation strateghBt(r at )

The purpose of the Genesis2 framework (in short, G2) is for determining the destination, and invoking tReocess
support software engineers in setting up testbeds formenti operation on it. For later adaptations, the delegation \ieha
evaluation of SOA-based concepts and implementations; iigelf is not hardcoded into the operation but outsourced as
particular also collaboration networks. It allows to efigib service variable containing the delegation code. This mdtke
environments consisting of services, clients, registreasd possible to update the deployed service’s behavior atmnti
other SOA components, to program the structure and behavigrreplacing the variable. Finally, in Lines 24 and 25 a back-
of the whole testbed, and to steer the execution of test casesl host is referenced and the proxy service is deployed on
on-the-fly. G2’s most distinct feature is its ability to gesmte it. Due to space constraints, this demo script does onlyrcove
real testbed instances (instead of just performing sirmuria) a heavily restricted specification of the testbed and alsksla
which allows engineers to integrate these testbeds instiegi the definition of other participants, such as worker sesvice

(6)

Ttele(u7 ’U) =

IV. DESIGN AND ARCHITECTURE
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li=callinterceptor.create() logging interceptor <soap:Envelope 1
li.hooks=[in" RECEI VE", out ' PRE_STREAM'] // bind to phases xmins:soap=ht t p: / / www. w3. or g/ 2001/ 12/ soap- envel ope" 2
li.code={ctx —> logger.logToDB(ctx.soapMsg) // process msg xmins:xsi=' waw. wa. or g/ 2001/ XM.Schena-i nst ance” _ 3
xmins:wsa=ht t p: / / schemas. xm soap. or g/ ws/ 2004/ 08/ addr essi ng" 4
_ won N xmins:hpshtht t p: / / nyhps. or g/ HumanTask" 5
msgType=datatype.credté( | e. xsd" " typeName™) // xsd import xmins:vietypestht t p: / / vi et e. i nf osys. t uwi en. ac. at/ Type" 6
. . . <soap:Heades 7
sList=webservice.builq <wsa:MessagelD 052c5e11-5abd-4763—8725-86eaa48fb0fe /wsa:MessagelD | 8
/I create web service <wsa:ReplyTos http:/mww.expertnetwork.org/Actor#Haratdwsa:Reply To> 9
Proxy(binding doc, I i t", namespace-http://...") { <wsa:From> http://www.expertnetwork.org/Actor#Haratdwsa:From> 10
/I attach logging interceptor <wsa:To> http://www.expertnetwork.org/Actor#Florianiwsa: To> 11
interceptors+=li <wsa:Actiorn>http://myhps.org/Action/Delegatic/wsa:Actiorn> 12
Il create web service operation <v@etypes:a_1ctivity url2htt p: // www. exper t net wor k. or g/ Acti vi t y#42"/> 13
Delegate(input:msgType, resonse:msgType) zx':;{]gf;;ggﬁi;p valué2010- 05- 06T15: 13: 21" /> 1151
refs = registry.gefs—> " Worker " in s.tagg // by tag <hpsht:deadline=2010- 05- 07T12: 00: 00" /> 16
r = dStrat(refs) <hpsht:priority> 17
return r.Process(input).response <!—— task priority — —> 18
} </hpsht:priority> 19
/I delegation strategy as closure variable <hpsht:keywords-WS, Adaptation, Trust/hpsht:keywords- 20
dStrat{ refs —> return refs[0] } // default: take first </hpsht:taskContext 21
1 </soap:Heades 22
} <soap:Body> 23
<hps:prepareRepast 24
. ) ) <! details omitted > 25
srv=sList[0]// only one service declared, take it </hps:prepareRepast 26
h=host.creaté6onehost : 8181") // import back-end host <Isoap:Body> 27
srv.deployAt(hy/ deploy service at remote baelend host <Isoap:Envelope 28
srv.dStratf refs—> /«..«/ } // adapt strategy at runtime Listing 2. Simplified SOAP interaction example.

Listing 1. Groovy script specifying delegator service.

and clients for bootstrapping the testbed’s activity. Inr ou
evaluation, we have applied G2 in order to have a custonézabl

Web service testbed for verifying the quality of our consdpt
realistic scenarios, e.g., for a detailed analysis of perémce

and scalability. For a more detailed description of the G2

framework and its capabilities we refer readers to [4].

B. Adaptation Framework

The adaptation framework is located on the right side in e
Figure 3. The framework has monitoring features includ-
ing logging, eventing, and a component for capturing actor
behavior. Based on observations obtained from the testbed,

adaptation actions are taken.
o The Logging Servicds used by the logger plugin (see

tasks control the status of interactions and constraints in
processing certain activities.

Multiple instances of the logging service can be deployed
to achieve scalability in large scale environments.

o Event Subscriberseceive events based on filters that

can be specified for different types of (inter-)actions, for
example, to capture only delegation flows. Subscribers
are used to capture the runtime state of nodes within the
testbed environment such as current load of a node.
The Behavior Monitorupdates and stores periodically the
actual interaction behavior of nodes as profiles in the
behavior registry This mechanism assists the following
diagnosis to correlate environment events and behavior
changes.

« Diagnosis and Analysialgorithms are initiated to eval-

PLogger in Figure 3). Logged messages are persistently
saved in a database for analysis. The logging service
also implements a publish/subscribe mechanism to offer
distributed event notification capabilities. Subscribzan
specify filters using XPath statements which are evaluated
against received logged messages.

A short example is shown in Listing 2. Header extensions ®
(Line 7 - 22) include the context of interactions (i.e.,
the activity that is performed), delegation restrictions,
identify the sender and receivers using WS-Addressing
[18] mechanisms, and hold some meta-information about®
the activity type itself.Messagel Ds enable message
correlation to correctly match requests and responses.
Ti mest anps capture the actual creation of the message
and are used for message ordering. For HPSs, SOAP

uate the root cause of undesirable system states. Pre-
configured triggers for such events, e.g., events reporting
violations, inform the diagnosis module about deviations
from desired behavior. Captured and filtered interaction
logs as well as actual node behaviors assist in recognizing
the system’s health state.

The Similarity Serviceuses the tag database to search for
actors based on profile keywords (i.e., to replace an actor
or to establish a new link to actors). Tags are obtained
from logged interactions.

The Adaptation Moduledeployed appropriate adaptation
actions. An example for an adaptation action is to update
a node’sdelegation strateggs indicated in Figure 3. For
that purpose, th@Actionplugin communicates with G2's
control interface.

messages are mapped to user interfaces by the HP® set of Web-baseddmin Toolshave been implemented to
framework [3]. Task Cont ext related information is offer graphical user interfaces for configuring and visziatj
also transported via header mechanisms. While activitidee properties of testbeds. User tools include, for example
depict what kind of information is exchanged between apolicy design for adaptations or visualizations of moretbr
tors (type system) and how collaborations are structuredteractions.



V. BEHAVIOR MONITORING AND SELF-ADAPTATION channels for those problem nodes. A feasible adaptatiort mus

temporarily decouple misbehaving nodes from the netwodk an

The design of the architecture presented in the previoptantly find possible candidates for substitution. Ptién
section provides a variety of possibilities for self-addioh candidates must expose similar properties as the misbehavi
strategies. Figure 3 shows that the adaptation frameworknjgqe, e.g., have similar capabilities, and additionatyenthe
loosely coupled to the testbed. Furthermore, logging &wer |east tendency to misbehavior, e.g., those with least otirre
tions is a very generic approach to monitor the environmeRksk |oad. In a real mixed system environment nodes’ capabil
The focus of this paper is adaptation of service misbehavigfes will change and the initial registered profiles wilveige
Misbehavior appears on any unexpected change of behavjgih time from the current. Therefore our framework inclade
of a testbed component with noticeable function degradatig Similarity Servicethat keeps track of the profile changes
impacts to the whole or major parts of the testbed. Owupd provides alternatives to nodes according to their ntirre
monitoring and adaptation strategies follow the principfe snapshot profile.
smooth integration with least interference. However, sébyp In the following we show how the misbehavior patterns
coupled design often results in delayed and unclear stgi@oduced in the scenario of Section Il can be detected
information. This can cause a possibly delayed deploymesiq adapted with the tools of our adaptation framework. A
and application of adaptations. On the other hand, theddsthink pehavior is observed when a node persists in accepting
remains more authentic and true to current real environsnefisks from other nodes however prefers to work on tasks of
which lack direct monitoring and adaptation functionality  certain neighbors, or under-performs in task processihis T

Monitoring in this architecture relies on the accuracy angehavior is recognizable by a dense delegation of tasks to
timeliness of theLogging Service Diagnosis and Analysis the sink possibly requiring different capabilities and avlo
get all required status updates with the help of ®vent task completion notification in the observed time span. & th
Subscribermechanism. Filtered status information populatasotion of Groovy scripts introduced in Section IV, Listing 3

the network model held byiagnosis and Analysisnodule. shows the procedure used to detect and adapt nodes with sink

During start-up the first interaction information is used t@ehavior in the testbed framework.

build the initial structure of the model. During runtime ghi

information synchronizes the model with actual status gkan| // in the monitoring loop

observed on the network Especially the interaction data f sinkNode = env.triggerSink(4) sink trigger with threshold 4 tasks
. ; X . it (sinkNode){ // sink suspected

tered by theBehavior Monitormodule allOWSD|agn03|S and if (env.analyzeTaskQueueBehavior(sinkNodg)) analyze task history

Analysisto draw conclusions from interactions about possille def simNodes = sim.getSimilar(sinkNodé)call similarity service

misbehavior at the services. altNodes =[]

0O ~NOO U WN R

. . X . . simNodes.eac s —>
Detectable misbehavior patterns are described irPtiiey if (env.loadTolerable(s))

Store together with related recovery strategies. The compo- aitNodes += s/ find nodes with tolerable load

nents of the store include trigger, diagnosis and recov
action modules (cf., [2]). Whilst the trigger defines potaht
misbehavior in a rule, the fired diagnosis analyzes the tiste

incident using its network model. The model informatign
in combination with current interaction facts from the Igg

history is used to estimate the necessary recovery acti

¥
erydef neighborNodes = env.getNeighbors(sinkNode)ffected neighbors
neighborNodes.each n —>
C n.dStrat ={ refs —> // overwrite dStrat from Listing 1.
refs += altNodes/ add alternatives channels
refs —= sinkNode// remove channel to sink
... Il selection strategy

ons. }

PR ERPRRPRRPRRPRREO
0 ~NOO O~ WNREO

Finally, recovery strategies are estimated and deployed tp}
adapt the real network. Referring, e.g., to the misbehayipr
patterns presented in Section Il a sink behavior triggetdco
be expressed according to the previously given descrifiityon
a threshold value defining an admissible amount of tasks at arhe script extract defines the task queue trigger's
monitored node. A fired diagnosis would further inspect ther i gger Si nk threshold first. If the limit of four tasks is vi-
delegation history of a suspected node by consulting its taslated by a node analys@nal yzeTaskQueueBehavi or
delegation log data an integral part of its network mode& If scans the affiliated task history and compares the latest del
sink behavior is identified the diagnosis plans recoveripest gation and task status reporting patterns of the node. Ifila si
Actions are situation dependent and there are possiblyipfeult is detected, th&imilarity Servicesi mis called and returns a
options for recovery. setsi mMNodes of possible candidates for replacement. In the
In this paper the recovery approach is to reconfigure tiext loop the candidates’ current task queue size is examine
network by adapting the interaction channels between tfleoadTol er abl e). Only those with few tasks are added to
service nodes. Channels are opened to provide new interdie final alternative nodesl t Node list. In the last step the
tions to alternative nodes and closed to hinder misbehavidglegation strategies of the neighbors of the sink node are
nodes to further affect the surrounding nodes and degraxle tipdated. The alternatives are added to the possible delegat
environment’s function. The challenge is not only to detecandidates and thei nkNode is avoided.
misbehaving nodes but also to find alternative interaction A moderate use of queue capacity in contrast to high and

=
[(e]

N
o

Listing 3. Code example for sink adaptation.
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exceeding delegation rates despite available alterrsatizases
overload at single nodes. This identifies fhetory behavior.

Again interaction data uncovers the misbehavior exprebged
a high fluctuation of tasks from the factory and a low ta

misbehavior analysis and detections is the data contaimed i
the delegated tasks.

sﬁ' Scenario Overview

completion rate in the monitored interval. The Groovy scrip Following the concept of crowdsourcing we modeled a
in Listing 4 presents our factory adaptation algorithm foe t scenario showcasing the interaction dynamics of a specific

testbed framework.

/I 'in the monitoring loop
def factoryNode = env.triggerFactory(2) factory trigger with threshold 2 tasks
if (factoryNode){ //factory suspected
if (env.analyzeDelegationBehavior(factoryNod¢§)) analyze task history
def simNodes = sim.getSimilar(factoryNodg)call similarity service
altNodes =[]
simNodes.eacf s —>
if (env.loadTolerable(s))
altNodes += g/ find nodes with tolerable load
}
def neighborNodes = env.getDelegator(factoryNote)ffected delegators
neighborNodes.eachn —>
n.dStrat ={ refs —> // overwrite dStrat from Listing 1.
refs += altNodes/add alternatives channels
refs —= factoryNode// remove channel to factory
.../l selection strategy
}
}
factoryNode.dStratf} / no delegations allowed
}
}

Listing 4. Code example for factory adaptation.

The factory trigger's threshold ri gger Fact ory fires
diagnosis on task queue sizes below two tasks.
anal yzeDel egati onBehavi or confirms a pattern with

sector comprised by a bunch of teams. Interested parties
wish to outsource multiple tasks to a crowd. In order to get
their tasks completed they refer to an entry point service
that forwards tasks to multiple teams of the crowd. A team
comprises two types of members. The first, the delegators,
receive new tasks directly from the entry point. Instead of
working on the tasks their concern is to redistribute th&gas

to their neighbors. These neighbors are also called warkers
A delegator picks its most capable and trusted workers that
can process the assigned task. Each team is specialized on a
particular type of task. Tasks carry keyword information in
order to distinguish which team receives a particular task.

A task’s life-cycle starts at the entry point that providke t
team constantly with new tasks. It acts as a proxy between
team and actual task owner and its main assignment is to
decide which of the team members is suitable for processing.
The question is how to find the appropriate worker for a
task. All services are registered at startup by the registry
including their capabilities. Though, the information dfet
registry remains static and becomes outdated over the &ours
of time. Members’ processing behaviors can change over time
when tasks start to be delegated and processing loads vary.
Thus, the entry point can refer to the environment’s regiftr

high delegation frequency a factory node is detected. Timesacandidates at the beginning and shortly after bootstrapipir
as with a sink, a selection of alternative nodes for a factopnce profiles start to change the lookup information becomes
node replacement is collected. From this list only thosdnwiinaccurate. The solution is th8imilarity Servicewhich is
minor load are further considered. Then the affected neighb aware of these changes. It tracks the interest shift by mon-

who are delegating nodegdt Del egat or s) are freed from

itoring the delegation behavior between interacting nedgh.

the factory and provided with the alternative nodes. FjpallTherefore, the service provides the most accurate camdidat
the delegation strategy of the delegating neighbors istadap for a delegation during runtime. However, at the contrag th

In contrast to the sink in the last step all factory’s delegat
channels are closed temporarily.

VI. EXPERIMENTS

Similarity Servicecannot provide satisfying results from the
beginning because of the lack of interaction data.

Once the appropriate candidate is selected by the entry poin
it delegates the task. Teams, as in our scenario are composed

In our experiments we evaluate the efficiency of similaritgf a sub-community of HPSs that know and trust each other

based adaptation in a virtual team of a crowd of task-basadd, hence, keep references to each other in a neighhor-list
services. This team comprises a few hundreds of collabmratdelegations in the team are only issued between thesedruste
The assumption is that some of the HPSs expose a misheighbors. Tasks are associated with a deadline to define
havior with the progress of time. Misbehavior is caused ke task’s latest demanded completion time and a processing
team members that for various reasons including, e.g., tafort. Each worker has its individual task processing dpbe
assignment overload, change of interest, or preference fmnding on the knowledge compared to the tasks requirements
particular tasks, start to process assigned tasks irmdgulur and the current work load. At the end of a task’s life-cycle,
strategy is to detect misbehavior by analyzing the task pra-worker reports the task as complete, or if the deadline is
cessing performance of the team. A degrading task progessiissed, expired. The main focus of the misbehavior regurati
rate indicates misbehavior. The main idea is to detect thaseto avoid tasks to expire. Our algorithm identifies failing
degradations, identify the misbehaving team members withsarvices by observing the task throughput. It filters tabks t
task history analysis, and, in time, provide a fitting replaent missed their deadline in a certain periode. Such a mishehavi
for the misbehaving member. This member match is providéithen adapted with the help of the knowledge ofSimilarity

by our Similarity Servicghat mines the capabilities and notederviceand the task history. First the most similar members to
changes at the members The main information source of dbe misbehaving are selected and than with a task queue size



(a) No adaptation applied. (b) Adaptation through mirroring. (c) Adaptation through teleportation.

Fig. 4. Evolving interaction networks based on adaptatictioas.

analysis the least loaded chosen for an adaptation. Dapgndb all the connected delegators. Figure 4(a) shows thatethes
on the current trust-based adaptation strategy channslgbe delegators prefer selected workers to complete their tdeks
working nodes are added or delegations shifted to competémits figure six extremely overloaded workers are preseet aft
but less busy workers. the first 200 tasks have left the entry point. Only a few others
are sporadically called. Figure 4(b) represents the effatt
. i . . the end of the experiment for the mirroring strategy. The
In order to simulate described medium size teams of g (s of this strategy are clearly visible. The load bemwthe
aforementioned crowdsourcing model, we set up followingqers is better distributed. A few, however more equilter
environment. The teams comprise a total of 200 collabosatqfker nodes remain compared to no action because the
represented by Web services created by G2 scripts deployRfegators still prefer to assign tasks to their most tdiste
to one backend instance. 20% of these members exposg fuers. However, a lager number of new workers is added
delegation behavior the rest works on assigned tasks. Aflihe guter leaves of the tree which release these nodes from
services are equipped with a task queue. As in the real wogthir 45k load. Figure 4(c) highlights the situation wittet
the services are not synchronized and have their individygls; teleportation strategy. The side-effects here shawthe
working slots. Usually a worker processes one entire task R mper of loaded nodes remains almost the same. However,
slot. A worker starts to misbehave once its task queue iglfillg o |0ad peek at the preferred workers is kept below the
past the threshold of 6 tasks. It then reduces its working®pe&,redefined threshold. Once exceeded the worker is relieved
to one third. A total of 600 task are assigned to. the enViroym its delegator and a replacement found. With this sirate
ment. We do not adapt from start. At start there is a period @f, kers get loaded to their boundary and are then replaced
200 task with no adaptation. Then in an adaptation cycle th&, new workers.
workers task queue size is monitored by tracing the delegati |, or experiments we tested the effectiveness of adapgatio
flow among the nodes. The dlfferen_ce between acknowledggfh gifferent task queue threshold triggers. The effemimss
assignments and complete or expired reported tasks resptg,easured by the total task processing performance anthe e

in the current task queue size at a particular worker. ONge the experiment. Only completely processed and reported
this number exceeds the preset task queue threshold whicha@& s \went into the final result.

vary for the different results of our experiments, the samii/ o
service is invoked for a list of workers with similar capétigs. C. Result Description
In a loop over this list sorted by best match the candidateFigure 5 presents the results of our simulation evaluations
is picked with the currently smallest task queue size. ThHgoth diagrams provide the time-line in minutes on the x-
applied adaptation action depends on the experiment'®curraxis and the number of completed tasks at the end of this
adaptation strategy. In trust mirroring a channel between t period on the y-axis. In both cases there is a well noticeable
similar workers is opened which allows the overloaded nodigcrementation of completed tasks until minute 4. This is
additionally to delegate one task per slot over the new cblannwhen the first 200 tasks have been distributed to the workers.
In trust teleportation the overloaded worker is relieveahfr The task distribution is not linear over the measured period
the most delegating neighbor and a new channel is operHEus is due to the fact that at the beginning not so many
from the delegator to a substitute worker. tasks can be distributed because of bootstrapping delays in
Figure 4 shows the temporal evolution of dynamic interathe G2 backend. This is also when the first adaptations are
tions under different adaptation actions. It demonstraibes deployed. Whilst the task completion ratio decreases napidl
changes in interactions for a threshold of 6 tasks in tted this point if no adaptation actions are taken (demoresirat
three sub-figures. A node’s size represents the total numbgrthe dashed line) the other lines represent the progress of
of incoming delegations. Larger edges indicate a high numbge task completion when different thresholds trigger&togr
of delegations across this channel with the arrow pointing with reconfigurations are applied. The diagrams in Figure 6
the delegation direction. Therefore, the node in the middé#ow again the time-line on the x-axis and the number of
is easily identified as the entry point. It sheer providekdasapplied actions at the end of the period on the y-axis.

B. Experiment Setup
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VIl. RELATED WORK

Two main research directions aelf-adaptive properties

Figure 5(a) details the results of an adaptation stratemgusemerged in the past years. One initiated by IBM and presented
trust mirroring. Generally all strategies perform betteart by the research of autonomic computing [19], [20] and the
when no action is taken. With a trigger threshold of 4 tasksther manifested by the research on self-adaptive systems
and approximately 3 actions every minute the curve expod@$ Whilst autonomic computing includes research on all
an increment followed by a decrement between 70 and pOssible system layers and an alignment of self-* propertie
completed task every minute. The pattern is similar to the all available system parts, self-adaptive system rekear
curve representing a threshold of 8. Figure 6(a) shows thairsuits a more global and general approach. The efforts in
the adaptations are less and the altering of direction inr€ig this area focus primarily on research above the middleware
5(a) is slower. The smoothest adaptations result from gerig layer and consider self-* methodologies that adapt theeayst
matching the real worker’s threshold of 6 tasks. Compariras a whole. These include higher layers such as models and
the figures, a smaller growth of success in task completionsgstems’ architecture [21], application layer, and in isatar
noticed after the deployment of the 3 followed by 4 adapietio interesting for our research are large-scale agent-bystéehss
between minute 4 and 6. A threshold of 10 tasks decrea$2g], Web services , and their orchestration [23]. Selfgve
slower than an adaptation free environment but with onlyuabadeas can be found for middleware [24] and also at a lower
20 more successfully processed tasks. With the same adaf#ger include, e.g., operating systems [25]
tion effort as at threshold 8 this strategy exposes an dveral With current systems growing in size and ever changing
inconvenient timing of the adaptations and can be congidenequirements plenty of challenges remain to be faced such
impractical. The situation is different in Figure 5(b). Aggire as autonomic adaptations [26] and service behavior maglelin
6(b) shows, there are more adaptations deployed with tlis]. The self-adaptive research demonstrated in this pape
strategy. But not without leaving following side-effectehe strongly relates to the challenges in Web services and work-
curve of adaptations triggered at threshold 4 increaseadlyap flow systems. Apart from the cited, substantial research on
after minute 5 when a total of 11 new channels are provideélf-adaptive techniques in Web Service environments has
to new workers in a time slot of 1 minute. Even if again witlbeen conducted in the course of the European Web service
the smoothest progress among the successful strategiestéicnology research project WS-Diamond (Web-Service DI-
curve representing actions at threshold 6 cannot reactofhe Agnosinbility, MONitoring and Diagnosis). The recent cont
performances of their neighbors (threshold 4 and 8). lstebutions focus in particular on QoS related self-adaptivatet
the 20 new channels set between minute 4 and 6 let the systgigs and adaptation of BPEL processes [28], [29]. Others are
performance progress even. Finally the curve of thresh@ld theoretical discussions on self-adaptive methodolodiés. [
has a noticeable regress between minute 3 and 4 caused by tlRegardingruntime evaluation, several approaches have
dynamics of the system. In the following this type of strgtegbeen developed which could be applied for testing adaptatio
with only 9 adaptations in total is not able to recover and imechanisms. SOABench [31] and PUPPET [32], for instance,
even outperformed by the no adaptation run. The final resustspport the creation of mock-up services in order to teskwor
show that the precise timing of multiple adaptations in artshdlows. However, these prototypes are restricted to emugjatin
term is most convenient for environment adaptation actionson-functional properties (QoS) and cannot be enhancdd wit
However this has a trend to highly altering task processimpgogrammable behavior. By using Genesis2 [4] which allows
results (e.g., approximately 40 task for a threshold 8 irufég to extend testbeds with plugins we were able to implement a
5(b)). Comparing both, a strategy where the trigger matchiestbed which was flexible enough to test diverse adaptation
the environments actor’s threshold of 6 is most practicad inmechanisms.
balanced environment. Strategies with a threshold above 8 a Human-Provided Services [3] close the gap between
infeasible for this setup. Generally the teleportatioratelyy Software-Based Services and humans desiring to provide the
performs better than mirroring, however requires the deubskills and expertise as a service in a collaborative process
and more adaptation actions. Instead of a strict predefined process flow [33], these system



are denoted by ad-hoc contribution request and looselg-stru[s]

tured processes collaborations. The required flexibitiduices

even more unpredictable a system property responsible fgsl]
various faults. In our approach we monitor failures causgd b[7]
misbehavior of service nodes. The contributed self-adapti

method recovers by soundly restricting delegation paths %)
establishing new connections between the nodes.

Over the last yearstrust has been defined from several
points of views [13], however, until now, no agreed defimitio

[0

exists. Unlike the area of network and computer security ]
focus on the notion of dynamic trust from a social perspectiv
[12]. Our notion of trust [10] is based on the interpretatio[h]

of collaboration behavior [10], [13] and dynamically adagt

skills and interest similarities [14], [15]. In the introckd
environment we make explicit use of the latter one.

. — . 14
The main objective of this work was to demonstrate the

VIIl. CONCLUSION AND OUTLOOK

(12]
(23]

[14]

successful integration of two frameworks. On one side tlj&5]
G2 [4] SOA testbed and on the other the extensible VieCure [2]

adaptation framework. The two remain separate and indepgi;
dent frameworks and are only loosely coupled. As a first

extension in this paper we added to the adaptation Ioop[i ]
module providing similarity ratings for the testbed seedc [1g]
The results of our evaluation confirm that the deployed task

processing team scenario and the two adaptation strate %

trust mirroring and teleportation interplay satisfadioriA

precise timing and a careful aligned threshold for the astio

is essential to reach high amounts of task completion raté&]
This observation emphasizes our attempt in implementimg no
intrusive self-healing recovery strategies that can notgs
relate on accurate status information for a decision. 24]
In our future work we plan to deploy a whole crowdsourcing

environment with miscellaneous teams to a distributedbéebt

(23]

It will then also become essential to distribute and dupical?!
some of the components of the adaptation framework, e.gg;
logging, diagnosis and analysis modules. We plan a layered

adaptation strategy that provides an interface to deplogllo

[27]

adaptations and allows global adaptations on a higher layer
involving utility based changes for the whole crowd. New2s]
models of Mixed System’s misbehavior and extended rules for
detection and diagnosis of behavior will become necessaryg
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