Technical University of Vienna

Autonomic Resource Information Systems Institute
Virtualization in Cloud-like Distributed Systems Group
Environments

Attila Kertesz (MTA SZTAKI)
Gabor Kecskemeti (MTA SZTAKI) and

Ivona Brandic
attila.kertesz@sztaki.hu
kecskemeti @sztaki.hu
ivona@infosys.tuwien.ac.at

TUV-1841-2009-04 December 14, 2009

Cloud computing is a newly emerged computing infrastructure that builds
on the latest achievements of diverse research areas, such as Grid comput-
ing, Service-oriented computing, business process management and virtu-
alization. An important characteristic of Cloud-based services is the provi-
sion of non-functional guarantees in the form of Service Level Agreements
(SLAs), such as guarantees on execution time or price. However, due to
system malfunctions, changing workload conditions, hard- and software
failures, established SLAs can be violated. In order to avoid costly SLA vi-
olations, flexible and adaptive SLA attainment strategies are needed. In this
paper we investigate the application of autonomic computing to SLA-based
resource virtualization considering a three-layered Cloud based infrastruc-
ture including agreement negotiation, service brokering and deployment
using virtualization. For each layer we exemplify how the principles of au-
tonomic computing can be applied to achieve component self-management.

Keywords: Self-management, SLA negotiation, Service Brokering,
On-demand deployment, Resource virtualization

Argentinierstr. 8/184-1
A-1040 Vienna, Austria
phone: +43 1 58801-18402

(©2009, Distributed Systems Group, Technical University of Vienna fax: +43 1 58801-18491
URL: http://www.infosys.tuwien.ac.at/

Autonomic Resource Virtualization
in Cloud-like Environments

Attila Kertesz!, Gabor Kecskemeti! and Ivona Brandic?

! MTA SZTAKI Computer and Automation Research Institute
H-1518 Budapest, P. O. Box 63, Hungary
{attila.kertesz,kecskemeti}@sztaki.hu

? TU Vienna
1040 Vienna, Argentinierstr. 8/181-1, Austria
ivona@infosys.tuwien.ac.at

Abstract. Cloud computing is a newly emerged computing infrastruc-
ture that builds on the latest achievements of diverse research areas, such
as Grid computing, Service-oriented computing, business process man-
agement and virtualization. An important characteristic of Cloud-based
services is the provision of non-functional guarantees in the form of Ser-
vice Level Agreements (SLAs), such as guarantees on execution time or
price. However, due to system malfunctions, changing workload condi-
tions, hard- and software failures, established SLAs can be violated. In
order to avoid costly SLA violations, flexible and adaptive SLA attain-
ment strategies are needed. In this paper we investigate the application of
autonomic computing to SLA-based resource virtualization considering
a three-layered Cloud based infrastructure including agreement negoti-
ation, service brokering and deployment using virtualization. For each
layer we exemplify how the principles of autonomic computing can be
applied to achieve component self-management.

Key words: Self-management, SLA negotiation, Service Brokering, On-
demand deployment, Resource virtualization

1 Introduction

Grid Computing [6] has succeeded in establishing production Grids serving var-
ious user communities all around the world. Cloud Computing [2] is a novel
infrastructure that focuses on commercial resource provision and virtualization.
Both Grids and Service Based Applications (SBAs) already provide solutions
for executing complex user tasks, but they are still lacking non-functional guar-
antees. The newly emerging demands of users and researchers call for expand-
ing service models with business-oriented utilization (agreement handling) and
support for human-provided and computation-intensive services [2]. Providing
guarantees in the form of Service Level Agreements (SLAs) are highly studied
in Grid Computing [10, 1,3]. Nevertheless in Clouds, infrastructures are also
represented as a service that are not only used but also installed, deployed or

2 A. Kertesz, G. Kecskemeti, I. Brandic

replicated with the help of virtualization. These services can appear in complex
business processes, which further complicates the fulfillment of SLAs in Clouds.
For example, due to changing components, workload and external conditions,
hardware and software failures, already established SLAs may be violated. Fre-
quent user interactions with the system during SLA negotiation and service
executions (which are usually necessary in case of failures), might turn out to
be an obstacle for the success of Cloud Computing. Thus, the development of
the appropriate strategies for autonomic SLA attainment represents an emerg-
ing research issue. Autonomic Computing is one of the candidate technologies
for the implementation of SLA attainment strategies. Autonomic systems re-
quire high-level guidance from humans and decide, which steps need to be done
to keep the system stable [17]. Such systems constantly adapt themselves to
changing environmental conditions. In our previous work [16] we presented a
unified service architecture (called SLA-based Resource Virtualization — SRV)
built on a three-layered Cloud-based infrastructure including agreement nego-
tiation, brokering and service deployment/virtualization layer combined with
business-oriented utilization used for SLA handling. In this paper we further
examine this architecture and investigate how to apply principles of Autonomic
Computing to the basic components of the SLA-based virtualization architec-
ture in order to cope with changing user requirements and on demand failure
handling.

The main contributions of this paper are: (i) the application of principles of
autonomic computing to the SLA-based resource virtualization architecture, and
(ii) demonstration of the application of autonomic computing based on selected
case studies for meta-negotiation, meta-brokering, brokering and automatic ser-
vice deployment. In the following section we summarize related works, in Section
3 we introduce the overall architecture and define the participating components.
In Section 4 the components of the three problem areas are detailed, and in
Section 5 we demonstrate the usage of the presented infrastructure in a car
manufacturing scenario. Finally Section 6 concludes the paper.

2 Related work

Though cloud-based service execution is rarely studied, some related works have
already started to investigate, how business needs and more dynamicity could
be represented in service execution. Most of related works consider either virtu-
alization approaches [5, 12, 7] without taking care of agreements or concentrates
on SLA management neglecting the appropriate resource virtualizations [14, 3].
Works presented in [11, 9] discuss incorporation of SLA-based resource brokering
into existing Grid systems, but they do not deal with virtualization. The Rudder
framework [8] facilitates automatic Grid service composition based on semantic
service discovery and space based computing.

Lee et al. discusses application of autonomic computing to the adaptive man-
agement of Grid workflows [20] with MAPE (Monitoring, Analysis, Planning,

Autonomic Resource Virtualization in Cloud-like Environments 3

Execution) decision making [17], but they also neglect deployment and virtual-
ization.

Regarding meta-brokering, LA Grid [13] developers aim at supporting grid
applications with resources located and managed in different domains. They de-
fine broker instances, each of them collects resource information from its neigh-
bors and save the information in its resource repository. The Koala grid scheduler
[4] was redesigned to inter-connect different grid domains. They use a so-called
delegated matchmaking (DMM), where Koala instances delegate resource infor-
mation in a peer-2-peer manner. Gridway introduced a Scheduling Architectures
Taxonomy [23], where Gridway instances can communicate and interact through
grid gateways. These instances can access resources belonging to different Grid
domains. Comparing the previous approaches, we can see that all of them use
high level brokering that delegate resource information among different domains,
broker instances or gateways. These solutions are almost exclusively used in
Grids, they cannot co-operate with different brokers operating in pure service-
based or cloud infrastructures. On the contrary, our proposed Meta-Broker can
manage diverse, separated brokers.

Current deployment solutions do not leverage their benefits on higher level.
For example the Workspace Service (WS) [5] as a Globus incubator project sup-
ports wide range of scenarios involving virtual workspaces, virtual clusters and
service deployment from installing a large service stack to deploy a single WSRF
service if the Virtual Machine (VM) image of the service is available. It is de-
signed to support several virtual machines. The XenoServer open platform [12]
is an open distributed architecture based on the XEN virtualization technique
aiming at global public computing. The platform provides services for server
lookup, registry, distributed storage and a widely available virtualization server.
Also the VMPlants [7] project proposes an automated virtual machine configu-
ration and creation service which is heavily dependent on software dependency
graphs, but this project stays within cluster boundaries.

3 Application of the principles of autonomic computing to
SLA-based resource virtualization (SRV) architecture

In this section we introduce the basic principles of autonomic computing, and
describe the application of the autonomic computing to an SLA-based resource
virtualization environment in Clouds.

3.1 Autonomic Systems

Autonomic systems require high-level guidance from humans and decide, which
steps need to be done to keep the system stable [17]. Such systems constantly
adapt themselves to changing environmental conditions. Similar to biological sys-
tems (e.g. human body) autonomic systems maintain their state and adjust op-
erations considering changing components, workload, external conditions, hard-
ware, and software failures. Usually, autonomic systems comprise one or more
managed elements e.g. QoS elements.

4 A. Kertesz, G. Kecskemeti, I. Brandic

Autonomic Manager

(Analysis T_(‘Planning)

Meta Broker

(MB) <> Broker (B)

Automatic

N) Service
Deployer (ASD)
(Monitoring) (Execution)
A V Meta
Negotiator Resource (R)
(MN)
(a) (b)

Fig. 1. (a) General architecture of an autonomic system and (b) the main components
of SRV and their connections

An important characteristic of an autonomic system is an intelligent closed
loop of control. As shown in Figure 1 the Autonomic Manager (AM) manages the
element’s state and behavior. It is able to sense state changes of the managed
resources and to invoke appropriate set of actions to maintain some desired
system state. Typically control loops are implemented as MAPE (monitoring,
analysis, planning, and execution) functions [17]. The monitor collects state
information and prepares it for the analysis. If deviations to the desired state
are discovered during the analysis, the planner elaborates change plans, which
are passed to the executor.

3.2 Autonomically managed SLA-based resource virtualization
(SRV) approach

In our previous work [16] we presented a unified service architecture (SRV) that
builds on three main areas: agreement negotiation, brokering and service de-
ployment using virtualization. We suppose that service providers and service
consumers meet on demand and usually do not know about the negotiation pro-
tocols, document languages or required infrastructure of the potential partners.
The general architecture is highlighted in Figure 2. The relevant actors of this
architecture are:

— MN — Meta-Negotiator: A component that manages Service-level agree-
ments. It mediates between the user and the Meta-Broker, selects appro-
priate protocols for agreements; negotiates SLA creation, handles fulfillment
and violation.

— MB — Meta-Broker: Its role is to select a broker that is capable of deploying
a service with the specified user requirements, and propagate negotiation
processes to brokers (by acting as a negotiator).

— B — Broker: It interacts with virtual or physical resources, and in case the
required service needs to be deployed it interacts directly with the ASD.

Autonomic Resource Virtualization in Cloud-like Environments 5

— ASD — Automatic Service Deployment: It installs the required service on the
selected resource on demand.

— S — Service: The service that users want to deploy and/or execute.

— R — Resource: Physical machines, on which virtual machines can be de-
ployed/installed.

In our SRV approach users describe the requirements for an SLA negotia-
tion on a high level using the concept of meta-negotiations. During the meta-
negotiation only those services are selected, which understand specific SLA docu-
ment language and negotiation strategy or provide a specific security infrastruc-
ture. After the meta-negotiation process, a meta-broker selects a broker that is
capable of deploying a service with the specified user requirements. Thereafter,
the selected broker negotiates with virtual or physical resources — with the help
of ASD — using the requested SLA document language and the specified negoti-
ation strategy. Once the SLA negotiation is concluded, service can be deployed
on the selected resource using the virtualization approach.

In this paper we focus on illustrating how autonomic computing can be ap-
plied in the SRV components of the architecture. Figure 2 shows the autonomic
management interfaces and connections of the components.

e

O—
Self Seq;or
Management Autonomic

»— Service

Instance (S)

Actuator:

VieSLAF

framework

Job Managgment
(??‘ Negpotiation

Automatic Meta broker [Sensor Meta Sensor Autonomic
Service (MB) negotiatior O Manager (AM)

Deployer (ASD) (MN)

/

Fig. 2. Autonomic components in SRV.

We distinguish three types of interfaces: the job management interface, the
negotiation interface and the self-management interface.

Negotiation interfaces are typically used by the monitoring processes of bro-
kers and meta-brokers during the negotiation phases of the service deployment
process. Self-management is needed to re-negotiate established SLAs during ser-
vice execution. The negotiation interface implements negotiation protocols, SLA
specification languages, and security standards as stated in the meta-negotiation
document [16].

Job management interfaces are necessary for the manipulation of services
during execution, for example for the upload of input data, or for the download

6 A. Kertesz, G. Kecskemeti, I. Brandic

of output data, and for starting or canceling job executions. Job management in-
terfaces are provided by the service infrastructure and are automatically utilized
during the service deployment and execution processes.

In the following we focus on the self-management interface. The Autonomic
manager is notified about the system malfunction through appropriate sensors
(see Figure 2). This interface specifies operations for sensing changes of the de-
sired state and for reacting to that changes. Sensors can be activated using some
notification approach (e.g. implemented by the WS-Notification standard). Sen-
sors may subscribe for specific topic, e.g. violation of the execution time. Based
on the measured values as demonstrated in [18] notifications are obtained, if
execution time is violated or seems to be violated very soon. After the activa-
tion of the control loop, i.e. propagation of the sensed changes to the appropriate
component, the service actuator reacts and invokes proper operations, e.g. migra-
tion of resources. An example software actuator used for the meta-negotiations
is the VieSLAF framework [18], which bridges between the incompatible SLA
templates by executing the predefined SLA mappings. Examples of the control
loops are discusses in Figure 3. Based on various malfunction cases, the auto-
nomic manager propagates the reactions to the Meta negotiatiator, Meta-broker
or Automatic Service Deployer. We discuss the closed loop of control using the
the example with meta-negotiations.

SRV Component Meta-negotiation (MN) Meta-Brokering (MB) Automatic S?Rgg’; Deployment
Autonomic Negotiation Broker .

process phase Bootstrapping Breakdown Self-initiated Deployment
orsor) [z =
S Tracking of all Identification of '
v ' Execution of a Meta . 9 defunct or !
. > Negotiation interconnected verloaded i
Monitoring ! egotiatio Brokers overloade |
N VIRN £ service state 1
| 1
| Evaluation of Analysis of the Decision about .
! existing performance ossible state |
j' bootstrapping results and {)ransfer |
N P 1
N strategies VIRN availability p, \ . i

I
| Application of 1

I
Knowledge 0 existing and MatchMaker Deployment job |
| definition of new component descriptor i
’EV bootstrapping deti!’mms Broker generation '

: ranking

5 | strategies Ji L J 1L) 3
1 - i
E Broker with the eD::(lzi,i?:m rjgf |
E " L Bootstrapping highest rank is installatioﬁrf)or ¥ [
xecution | selected request forwardin, i
RN 41\ VRN 9 !
V |- . . - ST -.. . 3. — S .. . &

Fig. 3. Use cases for applying the autonomic processes to SRV

Autonomic Resource Virtualization in Cloud-like Environments 7

4 Autonomic components in SRV

In this section we investigate the SRV architecture considering self-management
capabilities. We discuss autonomic capabilities using representative use cases for
each SRV layer. Figure 3 summarizes the SRV components and the correspond-
ing self-management examples. In section 4.1 we discuss the meta-negotiation
component and present autonomic negotiation bootstrapping. In Section 4.2 we
discuss the brokering functionalities of SRV and present a self-management solu-
tion for dealing with broker failures. Finally, in section 4.3 we discuss autonomic
service deployment and virtualization for handling resource and service failures.

4.1 Meta-negotiation

In this subsection we demonstrate, how the principles of autonomic comput-
ing can be applied to the self-management of the meta-negotiation process by
presenting a case study for negotiation bootstrapping and a case study for an
autonomic system based on service mediation. A taxonomy of possible faults in
this part of the architecture, and the autonomic reactions to these faults are
summarized in Table 1.

Table 1. Taxonomy of faults and autonomic reactions for Meta Negotiation.

Fault Autonomic reaction
non matching SLA templates SLA Mapping [18]
non matching SLA languages bootstrapping [19]

lack of adequate offers or providers|lookup for additional meta-negotiation repositories

inconsistencies in SLA templates initiate new SLA mappings

Negotiation Bootstrapping Case Study. Before using the service, the
service consumer and the service provider have to establish an electronic con-
tract defining the terms of use. Thus, they have to negotiate the detailed terms
of contract, e.g. the execution time of the service. However, each service pro-
vides a unique negotiation protocol, often expressed using different languages
representing an obstacle within the SOA architecture and especially in emerging
Cloud computing infrastructures [2]. We propose novel concepts for automatic
bootstrapping between different protocols and contract formats increasing the
number of services a consumer may negotiate with. Consequently, the full po-
tential of publicly available services could be exploited.

Figure 3 depicts how the principles of autonomic computing can be applied
to negotiation bootstrapping [19]. The management is done through following
steps: as a prerequisite of the negotiation bootstrapping users have to specify a
meta negotiation (MN) document describing the requirements of a negotiation,
as for example required negotiation protocols, required security infrastructure,
provided document specification languages, etc. (More on meta negotiation can
be read in [1].) The autonomic management phases are described in the following:

8 A. Kertesz, G. Kecskemeti, I. Brandic

— Monitoring. During the monitoring phase all candidate services are se-
lected, where negotiation is possible or bootstrapping is required.

— Analysis. During the analysis phase the existing knowledge base is queried
and potential bootstrapping strategies are found (e.g. in order to bootstrap
between WSLA and WS-Agreement).

— Planning. In case of missing bootstrapping strategies users can define new
strategies in a semi-automatic way.

— Execution. Finally, during the execution phase the negotiation is started
by utilizing appropriate bootstrapping strategies.

Service Mediation Case Study. The principles of autonomic computing
can also be applied to service mediation as described next:

— Monitoring. During service negotiation and based on monitoring informa-
tion inconsistencies in SLA templates may be discovered. Inconsistencies may
include for example different indicators for the same term of contract e.g.,
the service price, which may be defined as the usage price at the consumer’s
side and as the service price at the provider’s side.

— Analysis. During the analysis phase existing SLA mappings are analyzed
e.g., existing and similar SLA mapping are queried.

— Planning. During the planning phase new SLA mappings can be defined,
if existing SLAs cannot be applied.

— Execution. Finally, during the execution phase the newly defined SLA map-
pings can be applied and the negotiation between heterogeneous consumers
and providers may start.

4.2 Service brokering

In this subsection we are focusing on the brokering components of the SRV ar-
chitecture and demonstrate, how the principles of autonomic computing can be
applied to these components. Brokers are the basic components that are respon-
sible for finding the required services with the help of ASD. This task requires
various activities, such as service discovery, matchmaking and interactions with
information systems and service registries. In our architecture brokers need to
interact with ASD and use adaptive mechanisms in order to fulfill agreements.
A higher-level component is also responsible for brokering in SRV: the Meta-
Broker. Meta-brokering means a higher level resource management that utilizes
existing resource or service brokers to access various resources. In a more gener-
alized way, it acts as a mediator between users or higher level tools (e.g. meta
negotiators or workflow managers) and environment-specific resource managers.
The main tasks of this component are: to gather static and dynamic broker prop-
erties (availability, performance, provided and deployable services, resources, and
dynamic QoS properties related to service execution), to interact with MN to
create agreements for service calls, and to schedule these service calls to lower
level brokers, i.e. match service descriptions to broker properties (which includes
broker provided services). Finally the service call needs to be forwarded to the

Autonomic Resource Virtualization in Cloud-like Environments 9

Table 2. Taxonomy of faults and autonomic reactions in Service brokering.

Fault Autonomic reaction
physical resource failure new service selection
service failure new service selection
wrong service response new service selection
broker failure new broker selection
no service found by some broker| initiate new service deployment
no service found by some broker new broker selection
broker overloading initiate new broker deployment
meta-broker overloading initiate new meta-broker deployment

selected broker. More information on the components of the Meta-Broker can be
read in [16]. Autonomic behaviour is needed by brokers basically in two cases:
the first one is to survive failures of lower level components, the second is to
regain healthy state after local failures. A taxonomy of the sensable failures and
the autonomic reactions of the appropriate brokering components are gathered
and shown in Table 2. The fourth case, the broker failure, is detailed in the next
paragraph. To overcome some of these difficulties brokers in SRV use the help
of the ASD component to re-deploy some services. Its autonomic operation is
detailed in the next subsection.

Broker Failures Case Study. In the following we present a case study
showing how autonomic principles can be applied to the Meta-Broker to handle
broker failures:

— Monitoring. During the monitoring phase all the interconnected brokers
are tracked: the IS Agent component of the Meta-Broker gathers state in-
formation about the brokers. The Matchmaker component also incorporates
a feedback-based solution to keep track of the performances of the brokers.

— Analysis. During the analysis phase the Information Collector of the Meta-
Broker is queried for broker availability and performance results.

— Planning. In case of incoming service request the MatchMaker component
determins the ranking of the broker according to their performance data
gathered in the previous phases. In case of a broker failure the ranks are
recalculated and the failed broker is skipped.

— Execution. Finally, during the execution phase the broker with the highest
rank is selected for invocation.

4.3 Service deployment and virtualization

Automatic Service Deployment (ASD — [15]) is a higher-level service manage-
ment concept, which provides the dynamics to SBAs, e.g. during the SBA’s
lifecycle services can appear and disappear without the disruption of their over-
all behavior. The master copies of all deployable services should be stored in the
repository. In this context the master copy means everything what is needed in
order to deploy a service on a selected site — which we call a virtual appliance

10 A. Kertesz, G. Kecskemeti, I. Brandic

(VA). A VA could be either defined by an external entity or the ASD should be
capable of acquiring it from an already running system. The repository entries
help determine which services are available for deployment and which are the
static ones.

In SRV there is a bidirectional connection between the ASD and the service
brokers. First the service brokers could instruct ASD to deploy a new service.
This scenario was discussed in detail in [16]. However, deployments could also
occur independently from the brokers as explained in the following. After these
deployments the ASD has to notify the corresponding service brokers about the
infrastructure changes. This notification is required, because information systems
cache the state of the SBA for scalability. Thus even though a service has just
been deployed on a new site, the broker will not direct service requests to the
new site. This is especially needed when the deployment was initiated to avoid
an SLA violation.

Table 3. Taxonomy of faults and autonomic reactions in Self-Initiated Deployment.

Fault Autonomic reaction
Degraded service health state Service reconfiguration
Reconfiguration fails Initiate service cloning with state transfer
Defunct service Initiate service cloning
Service decommissioned Offer proxy
Proxy lifetime expired Decommission service proxy

Self-initiated Deployment. Here we provide some examples how third
party entities that can initiate deployment. Firstly, a BPEL engine could initiate
deployment of a service that is going to be used by the currently executed process
or workflow. Secondly, a prediction engine can initiate preemptive deployments
to avoid future peak service usages. Thirdly, it is possible to implement a service
container that could deploy services in order to serve requests to previously
unknown services. Finally, services with self-management interfaces (seen on
figure 2) could identify erroneous situations that could be solved by deploying
an identical service on another site. A summary of these possible faults and the
autonomic reactions can be seen in Table 3. We call this autonomous technique
the self-initiated deployment, and in the following we describe its autonomous
behavior:

— Monitoring. During the monitoring phase the ASD identifies two critical
situations. Firstly, when the autonomous service instance gets defunct (it is
not possible to modify the service instance so that it could serve requests
again). And secondly, the service instance could also get overloaded on such
an extent that the underlying virtual machine cannot handle more requests.

— Analysis. The ASD first decides whether the service initiated deployment
is required (because it was overloaded) or the its replication is necessary
(because it has became defunct). First in both cases the ASD identifies the

Autonomic Resource Virtualization in Cloud-like Environments 11

service’s virtual appliance to be deployed, then in the latter case the ASD also
prepares for state transfer of the service before it is actually decommissioned.

— Planning. After the ASD identified the service it generates a deployment
job and requests its execution from the service broker.

— Execution. If a service is decommissioned on the original site, then a service
proxy is placed instead on the site. This proxy forwards the remaining service
requests to the newly deployed service using WS-Addressing. The proxy
decommissions itself when the frequency of the service requests to the proxy
decreases under a predefined value.

5 Scenario for autonomic arrangements of car assembly
testing services with the SRV architecture

Manufacturing

Issue Material Production Testing Package

Send initial materials @ F*a"dom tcehsf(wse for

Send coatings,
colorings, paints

Initial /

Assembly

Negotiate for
Pressing Test
Evaluation

Broker for
negotiated

1
] i

Send preassembled Agreement] |
parts fon i !

Deploy] !

Pressing Test ' f

Evaluation : |

Painting Service [i

Provide Pressing
& design feedback

Final Applying Surfrace protection
Assembly { for transportaton

Fig. 4. Example scenario with the SRV architecture.

S80INIBS
a|qe|iene azAjeue

In this section we demonstrate the utilization of our proposed SRV architec-
ture. We use the Auto Inc. scenario developed by the S-Cube project [21]. We
extend this scenario, and focus on its manufacturing step (see the step called
M1.3 on figure 4.9 in [22]). This step can be detailed on arbitrary levels, Figure 4
however does not plan to give a full overview on the car manufacturing process.
The main objective of this figure is to show the relation between the production
and testing processes of the manufacturing step. The production process is split
to several phases by Auto Inc. After the completion of every phase of the pro-
duction process, there is an option for testing the partially ready product. On
Figure 4 we choose the decision after the phase Pressing to show the initiation

12 A. Kertesz, G. Kecskemeti, I. Brandic

of the testing process. This decision however happens after every phase (e.g. ini-
tial assembly or painting), and the corresponding testing process could be also
initiated after their completion.

In the following paragraphs we are going to discuss what happens after the
decision is made that the scenario takes the alternative course towards testing.
The available computing resources are limited by the Auto Incs infrastructure,
so the services evaluating the test results are autonomously managed by our
proposed three layered service infrastructure (SRV). The infrastructure layers
are negotiation, brokering, and deployment. These layers adapt the Auto Incs
infrastructure to fit the current needs. In case the adaptation is not possible
within the boundaries of Auto Inc. the infrastructure layers could introduce
external Cloud computing [2] resources for the actual demands.

When a new testing evaluation request is formulated the testing process, it
initiates the meta-negotiation to propagate/translate the request details towards
lower levels. The meta-negotiation service applies self-management during the
negotiation bootrstrapping procedure as follows. Before using a service, the ser-
vice consumer and the service provider have to establish an electronic contract
defining the terms of use. Thus, they have to negotiate the detailed terms of
contract, e.g. the execution time of the service. However, each service provides a
unique negotiation protocol, often expressed using different languages represent-
ing an obstacle within the SOA architecture and especially in emerging Cloud
computing infrastructures. Automatic bootstrapping between different protocols
and contract formats increases the number of services a consumer may negotiate
with. Consequently, the full potential of publicly available services could be ex-
ploited. The management is done through following steps: as a prerequisite of the
negotiation bootstrapping Auto Incs testing process specifies a meta-negotiation
document describing the requirements of a negotiation, as for example required
negotiation protocols, required security infrastructure, provided document spec-
ification languages, etc. The autonomic meta-negotiation management steps are
described in the following:

1. All candidate services are selected, where negotiation is possible or boot-
strapping is required.

2. The knowledge base is queried and potential bootstrapping strategies are
found (e.g. in order to bootstrap between WSLA and WS-Agreement). In
case of missing bootstrapping strategies users can define new strategies in a
semi-automatic way.

3. Finally, the negotiation is started by utilizing appropriate bootstrapping
strategies.

After the negotiation has completed the brokering services further process
the test evaluation request. Brokers are the basic services that are responsible
for finding the requested services with the help of a deployer service. This task
requires various activities, such as service discovery, matchmaking and inter-
actions with information systems and service registries. Autonomic behaviour
is needed by brokers basically in two cases: the first one is to survive failures

Autonomic Resource Virtualization in Cloud-like Environments 13

of lower level components (e.g. broker, job execution), the second is to regain
healthy state after local failures (e.g. overloading of available testing services,
breakdown of the used services). To overcome these difficulties, the meta-broker
uses the self-management techniques presented in 4.2, and the brokers may rely
on the deployer component, the automatic Service Deployment (ASD). In the
testing phase of the Auto Inc. scenario, deployment or decomission of a ser-
vice instance on local resources or on the Cloud could also occur independently
from the brokers. Therefore after these deployments the ASD notifies the corre-
sponding service brokers about the infrastructure changes. This notification is
required, because the information system caches the states for scalability. Thus
even though a service has just been deployed on a new site, the broker will
not direct service requests to the new site. This is especially needed when the
deployment was initiated to avoid an SLA violation.

Services with self-management interfaces could identify erroneous situations
that could be solved by deploying an identical service on another site (e.g. a
testing service replication to a Cloud resource due to increased service requests).
We call this autonomous technique the self-initiated deployment, and in the
following we describe its autonomous behavior:

1. The ASD monitors the occurance of critical situations. First of all it looks
for service instances that became defunct because they cannot modify them-
selves so that they can serve future requests properly. Secondly, a service
instance could also get overloaded on such an extent that the underlying
resources cannot handle more requests.

2. In critical situations the ASD first decides whether the service initiated de-
ployment is required (because the service was overloaded) or replication is
necessary (because the service became defunct). First in both cases the ASD
identifies the service’s virtual appliance (or master copy) to be deployed,
then in the latter case the ASD also prepares for state transfer of the service
before it is actually decommissioned.

3. The ASD generates a deployment job for the service broker layer. This job
refers to the sevice to be deployed and the state the deployment service
needs to resume. As a result the test evaluation service can serve the testing
processs request.

4. Optional behavior in case a service is decommissioned: A service proxy is
placed on the computing resource instead of the decommissioned service
instance. This proxy forwards the remaining service requests to the newly
deployed service. The proxy decommissions itself when the frequency of the
service requests to the proxy decreases under a predefined value.

Finally after the requested test evaluation service is identified (or even de-
ployed) the test process can invoke the evaluation service and retrieve the results
to provide feedback for the production and design processes.

14 A. Kertesz, G. Kecskemeti, I. Brandic
6 Conclusions

In this paper we described the first steps towards an autonomic architecture
for SLA-based resource virtualization with on-demand service deployment. The
proposed solution incorporates enhancements of a meta-negotiation component
for generic SLA management, a meta-brokering component for diverse broker
management and an automatic service deployment for resource virtualization on
the Cloud. We have discussed how the principles of autonomic computing can
be incorporated to the SRV architecture, and demonstrated MAPE actions with
the corresponding case studies. Our future work aims at defining a taxonomy of
events for sensors and actuators in the Automatic Manager of SRV.

7 Acknowledgement

The research leading to these results has received funding from the European

Community’s Seventh Framework Programme FP7/2007-2013 under grant agree-

ment 215483 (S-Cube), and by the Vienna Science and Technology Fund (WWTF)
under agreement ICT08-018, FoSII — Foundations of Self-governing ICT Infras-

tructures.

References

1. I. Brandic, D. Music, S. Dustdar, S. Venugopal, and R. Buyya. Advanced qos meth-
ods for grid workflows based on meta-negotiations and sla-mappings. In The 3rd
Workshop on Workflows in Support of Large-Scale Science, pages 1-10, November
2008.

2. R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging it platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Computer Systems, 2009.

3. M. Q. Dang and J. Altmann. Resource allocation algorithm for light communica-
tion grid-based workflows within an sla context. Int. J. Parallel Emerg. Distrib.
Syst., 24(1):31-48, 20009.

4. A.Tosup, T. Tannenbaum, M. Farrellee, D. Epema, and M. Livny. Inter-operating
grids through delegated matchmaking. Sci. Program., 16(2-3):233-253, 2008.

5. K. Keahey, 1. Foster, T. Freeman, and X. Zhang. Virtual workspaces: Achieving
quality of service and quality of life in the grid. Sci. Program., 13(4):265-275, 2005.

6. C. Kesselman and 1. Foster. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann Publishers, November 1998.

7. L. Krsul, A. Ganguly, J. Zhang, J. A. B. Fortes, and R. J. Figueiredo. Vmplants:
Providing and managing virtual machine execution environments for grid comput-
ing. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing,
Washington, DC, USA, 2004. IEEE Computer Society.

8. Z.Liand M. Parashar. An infrastructure for dynamic composition of grid services.
In GRID ’06: Proceedings of the 7th IEEE/ACM International Conference on Grid
Computing, pages 315-316, Washington, DC, USA, 2006. IEEE Computer Society.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

Autonomic Resource Virtualization in Cloud-like Environments 15

D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and K. Krishnakumar. A
multi-agent infrastructure and a service level agreement negotiation protocol for
robust scheduling in grid computing. In Proceedings of the 2005 European Grid
Computing Conference (EGC 2005), February 2005.

M. Parkin, D. Kuo, J. Brooke, and A. MacCulloch. Challenges in eu grid contracts.
In Proceedings of the 4th eChallenges Conference, pages 6775, 2006.

D. M. Quan and J. Altmann. Mapping a group of jobs in the error recovery of
the grid-based workflow within sla context. Advanced Information Networking and
Applications, International Conference on, 0:986-993, 2007.

D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford. Xenoservers: Accountable
execution of untrusted programs. In In Workshop on Hot Topics in Operating
Systems, pages 136—-141, 1999.

I. Rodero, F. Guim, J. Corbalan, L. Fong, Y. Liu, and S. Sadjadi. Looking for
an evolution of grid scheduling: Meta-brokering. In Grid Middleware and Services
Challenges and Solutions, pages 105—119. Springer US, 2008.

M. Surridge, S. Taylor, D. De Roure, and E. Zaluska. Experiences with gria —
industrial applications on a web services grid. In E-SCIENCE ’05: Proceedings
of the First International Conference on e-Science and Grid Computing, pages
98-105, Washington, DC, USA, 2005. IEEE Computer Society.

G. Kecskemeti, P. Kacsuk, G. Terstyanszky, T. Kiss, T. Delaitre. Automatic service
deployment using virtualisation. In Proceedings of 16th Euromicro International
Conference on Parallel, Distributed and network-based Processing. IEEE Computer
Society. February 2008.

A. Kertesz, G. Kecskemeti and I. Brandic. An SLA-based Resource Virtualization
Approach For On-demand Service Provision. In Proceedings of 3rd International
Workshop on Virtualization Technologies in Distributed Computing. ACM. June,
20009.

J.O. Kephart, D.M. Chess. The vision of autonomic computing. Computer . 36:(1)
pp. 41-50, Jan 2003.

I. Brandic, D. Music, P. Leitner, S. Dustdar. VieSLAF Framework: Enabling
Adaptive and Versatile SLA-Management. In the 6th International Workshop on
Grid Economics and Business Models 2009 (Gecon09), 2009.

I. Brandic, D. Music, S. Dustdar. Service Mediation and Negotiation Bootstrap-
ping as First Achievements Towards Self-adaptable Grid and Cloud Services. In
Proceedings of Grids meet Autonomic Computing Workshop. ACM. June, 2009.
K. Lee, N.W. Paton, R. Sakellariou, E. Deelman, A.A.A. Fernandes, G. Mehta.
Adaptive Workflow Processing and Execution in Pegasus. In Proceedings of 3rd
International Workshop on Workflow Management and Applications in Grid En-
vironments, pages 99-106, 2008.

S-Cube project website. http://www.s-cube-network.eu/, 2008.

The S-Cube deliverable CD-IA-2.2.2. Collection of Industrial Best
Practices, Scenarios and Business Cases. Project deliverable, 2008.
http://www.s-cube-network.eu/results/deliverables/wp-ia-2.2/CD-IA-
2.2.2_Collection_of_industrial_best_practices_scenarios_and_business_cases.pdf

T. Vazquez, E. Huedo, R. S. Montero, and I. M. Llorente. Evaluation of a utility
computing model based on the federation of grid infrastructures. In Euro-Par 2007
Parallel Processing, pages 372-381. Springer Berlin / Heidelberg, 2007.

	TUV-1841-2009-04-Deckblatt
	mona-srv

