
An End-to-End Framework for Business Compliance in Process-Driven SOAs

Huy Tran∗, Ta’id Holmes∗, Ernst Oberortner∗, Emmanuel Mulo∗, Agnieszka Betkowska Cavalcante‡,
Jacek Serafinski‡, Marek Tluczek‡, Aliaksandr Birukou§, Florian Daniel§, Patricia Silveira§, Uwe Zdun†, Schahram Dustdar∗,

∗Distributed Systems Group, Institute of Information Systems, Vienna University of Technology, Austria
Email: {htran|tholmes|e.oberortner|e.mulo|dustdar}@infosys.tuwien.ac.at

‡Telcordia Poland
Email: {abetkows|jserafin|mtluczek}@telcordia.com

§University of Trento, Italy
Email: {birukou|daniel|silveira}@disi.unitn.it

†Software Architecture Group, Department of Distributed and Multimedia Systems, University of Vienna, Austria
Email: uwe.zdun@univie.ac.at

Abstract—It is significant for companies to ensure their
businesses conforming to relevant policies, laws, and regu-
lations as the consequences of infringement can be serious.
Unfortunately, the divergence and frequent changes of different
compliance sources make it hard to systematically and quickly
accommodate new compliance requirements due to the lack
of an adequate methodology for system and compliance engi-
neering. In addition, the difference of perception and expertise
of multiple stakeholders involving in system and compliance
engineering further complicates the analyzing, implementing,
and assessing of compliance. For these reasons, in many
cases, business compliance today is reached on a per-case
basis by using ad hoc, hand-crafted solutions for specific
rules to which they must comply. This leads in the long
run to problems regarding complexity, understandability, and
maintainability of compliance concerns in a SOA. To address
the aforementioned challenges, we present in this invited paper
a comprehensive SOA business compliance software framework
that enables a business to express, implement, monitor, and
govern compliance concerns.

Keywords-Business compliance, process-driven SOA, view-
based, model-driven development, domain-specific languages,
event processing, runtime monitoring, governance dashboard.

I. INTRODUCTION

A service is a distributed object that is accessible via
the network and has certain characteristics: The service
offers a public interface and is both platform- and protocol-
independent. Service-oriented Computing (SOC) is the
paradigm in which services are used as the main constructs
for composing distributed systems. Service-oriented Archi-
tecture (SOA) is the main architectural style for SOC. In
this paper we focus on a particular kind of SOAs, which is
process-driven. In a process-driven SOA, a process engine is
used to orchestrate services in order to implement business
processes.

This paper deals with issues of compliance in process-
driven SOAs. IT compliance means in general comply-
ing with laws and regulations applying to an IT system,

such as the Basel II Accord1, the International Financial
Reporting Standards2, the French financial security law3,
and the Sarbanes-Oxley Act4. Laws and regulations are,
however, just one example of compliance concerns that
occur in process-driven SOAs. There are many other rules
and constraints in a SOA that have similar characteristics.
Some examples are service composition and deployment
rules, service execution order rules, security policies, quality
of services (QoS) rules, or licenses.

In the ideal case, a software framework for automatically
dealing with all kinds of compliance would be provided.
Unfortunately, there is the problem that it is almost impos-
sible to formalize all details of a jurisdictional text, as they
are usually subject to interpretation by domain experts or
judicial experts and typically contain complex references to
other (jurisdictional) texts. For this and other reasons, today,
in many cases, compliance is reached on a per-case basis
using hard-coded solutions that span diverse components of
the SOA.

The consequence is that systems containing implemen-
tations of compliance concerns are hard to maintain, hard
to evolve or change, hard to reuse, and hard to understand.
It is difficult to ensure guaranteed compliance to a given
set of rules and regulations, as well as to keep up with
constant changes in regulations and laws. In many cases,
domain experts are not involved enough in the system
design, and hence often compliance implementations are
missing important domain aspects.

In this paper, we propose an end-to-end approach to
business compliance to overcome these issues in the domain
of process-driven SOAs. In particular, our approach offers
novel techniques for the whole software and compliance
life cycle including modeling, implementing, monitoring,

1http://bis.org/publ/bcbs107.htm
2http://www.ifrs.org/IFRSs
3http://senat.fr/leg/pjl02-166.html
4http://gpo.gov/fdsys/pkg/PLAW-107publ204/content-detail.html

and governance. At design time, the view-based modeling
framework, domain-specific languages tooling, and model
repositories shall support the development and modeling
of processes and compliance concerns. During run-time,
the compliance governance framework shall provide mech-
anisms for monitoring compliance concerns, detecting com-
pliance violations, and reporting to stakeholders.

The remainder of this paper is organized as follows.
In Section II, a Mobile Virtual Network Operator process
extracted from a real industrial case study is exemplified to
illustrate our approach and the realization of our approach.
Section III describes the overall architecture of the proposed
end-to-end business compliance framework. The view-based
modeling framework, domain-specific languages tooling,
and a model-aware service environment are presented in
Section IV whilst the compliance governance framework is
elaborated in Section V. Section VI discusses the relevant
literature. Finally, a summary and an outlook on future
research are provided in Section VII.

II. CASE STUDY

Modern mobile telecommunication infrastructures are
rapidly expanding into SOAs. This is motivated by the
need for delivery of advanced multimedia voice and video
services to the users through new telecom service delivery
platforms. It is crucial to provide real-time monitoring
of such services (e.g. the services’ QoS parameters and
licensing clauses) and adaptability mechanisms to react to
any compliance violations.

In this paper, we demonstrate our approach in a Mobile
Virtual Network Operator (MVNO) process that provides
advanced telecom services such as on-demand aggregated
audio and video streaming content (see Figure 1). The
MVNO process, which is offered by a fictitious company,
namely, WatchMe, shall serve as a proxy between customers
and audio and video streaming providers. As the MVNO
process executes, a customer can log in and search for the
audio and video content of his choice. As the search com-
plete successfully, the customer is provided the requested
media streams. In this way, the MVNO process enables the
customers to watch, for example, a selected sport event with
an audio commentary in the chosen language.

There are several business compliance requirements that
the MVNO process must comply with. For instance, the
MVNO process must ensure particular quality levels of
provided services, the protection of customer personal and
payment data, the compliance with the licenses of content
providers, and so forth. The terms and conditions of the
offered services are regulated by appropriate Service Level
Agreements (SLAs) that contain various compliance require-
ments. In this paper, we illustrate our approach with two
compliance concerns that are quality of services (QoS) and
licensing. Nevertheless, our approach is applicable to other
compliance concerns as well.

Mobile Virtual Network Operator
 (MVNO)

User login

Search for video
and audio content

Request streams
from chosen providers

Receive the
search results

Bob

AudioSport

FootballGames

VideoSport

SportingAudio

Third party
media providers Customers

Search request
to the third party
providers

Search response
from the third party
providers

Stream request
to the third party
providers

Stream response
from the third party
providers

User authentication

Search results
sent to the
customer

Search query

submitted by

the customer

St
re

am
s

tra
ns

m
itt

ed

to
 th

e
cu

st
om

er

Stream the merged
content to customer

Carol

Alice

Figure 1. The scenario of the MVNO case study

Compliance Con-
cern

Example Compliance Requirements

QoS: Availability The availability of the Login and Search
services must be more than 99%.

QoS: Processing-
Time

The Search service must return useful
searching results within less than 2 min-
utes.

QoS: Minimal-
FrameRate

The minimal frame rate that the Stream
service provides is at least 15 frames per
second (fps) .

Licensing: Compo-
sition permission

Only pre-defined combinations of video
and audio providers are allowed due
to the licenses specified by the video
provider.

Licensing: Pay-per-
view plan

The WatchMe enterprise acquires a lim-
ited number of streams based on the
amount paid to the media supplier.

Licensing: Time-
based plan

The WatchMe enterprise acquires any
number of times any possible streams
in a certain period, based on the amount
paid to the media supplier.

Table I
EXCERPT OF COMPLIANCE REQUIREMENTS OF THE MVNO PROCESS

As illustrated in Table I, there are many QoS and licensing
compliance requirements associated with the MVNO process
and accompanying services to ensure that the process is
compliant to the negotiated SLAs. It is crucial to monitor
and avoid any potential compliance violations which lowers
the services’ quality offered to its customers. Monitoring
any performance drops of the quality of the third parties’
services is also important because these can impact the
overall performance of the MVNO process. In addition,
some licensing compliance requirements must be satisfied in
order to ensure that the data streams are properly delivered to
the customers according to the contract established between

the WatchMe company and the content providers.

III. CONCEPTUAL ARCHITECTURE

Our end-to-end approach to business compliance is
achieved through a conceptual architecture illustrated in
Figure 2. This architecture covers the whole life cycle of
business compliance at design time and runtime.

events with UUID

Application Server,
Process Engine,

ESBs m
od

el
s

qu
er

ie
s

Compliance
Governance
Dashboard

Runtime
Compliance
Monitoring

Runtime compliance environment

Display
information

Compliance governance architecture

Model-Aware Repository
and Service Environment

MORSE
Repository

Code Generator

models

DSL Tooling

View-based
Modeling

Framework

MDSD software
framework

EMF models

models

deployable
business process code

Figure 2. Overview of the Architecture

At design time, the View-based Modeling Framework
(VbMF) along with the domain-specific language (DSL)
tooling and model repository enable modeling and shar-
ing process-driven SOAs and compliance concerns that
we would like to address. The models capture a process-
driven SOA in form of architectural views, with each view
providing a distinct perspective (concern) of the SOA [8, 11,
20, 21]. The domain-specific languages complement these
view models with the specifications of compliance concerns.
Finally, the design time components generate code that is
deployed to the various platforms to be executed.

At runtime we have the execution environment to which
code is deployed, for example, business processes are exe-
cuted by a process engine. Dynamic verification and vali-
dation at run-time are performed by rule-based event-driven
monitoring. The runtime compliance monitoring component
can query the Model-Aware Repository and Service Envi-
ronment (MORSE) to leverage models for runtime analysis
and reasoning [9]. The monitoring results are assembled
for comprehensive reporting on a compliance governance
dashboard.

IV. PROCESS-DRIVEN SOAS DEVELOPMENT AND
COMPLIANCE MODELING

A. View-based Modeling Framework

The View-based Modeling Framework (VbMF) [20, 21]
exploits the notion of architectural views [11] to re-
duce the complexity of software development in process-
driven SOAs. In our approach, each view model is a
(semi-)formalized representation of a particular process-
driven SOA concern such as the control flow, service
interactions, data handling, message exchange, or human
interaction [8, 14, 20–23]. All VbMF view models are built
up around a Core model as shown in Figure 3. The Core
model plays an important role in our approach because it
provides essential concepts for extending and integrating
view models, and establishing and maintaining the depen-
dencies between view models [20–23]. A new concern, for
instance, a certain compliance concern, can be integrated
into our approach by using a corresponding New-Concern-
View model that extends the concepts of the Core model
and defines additional (and/or domain-specific) concepts of
that concern.

Core Model

Flow View
Model

Collaboration
View Model

Information
View Model

Licensing
DSL

extends extends extends

BPEL
Flow View

Model

BPEL
Collaboration
View Model

BPEL
Information
View Model

extends extends extends

Process-driven SOA Modeling

QoS policy
DSL

Security policy
DSL

Business Compliance Modeling

annotates

Schematic Recurrent
Code & Configurations

generates

extends

Regulatory
DSL

Documentation
Report

generates

Figure 3. Overview of the View-based Modeling Framework

In addition, VbMF facilitates the model-driven develop-
ment (MDD) paradigm to offer view models tailored to
particular expertise and interests of the involving stake-
holders at different abstraction levels. Views belonging to
the abstract layer represent high-level or domain concepts
that the business and domain experts can understand and
manipulate. Then, the IT experts can refine or map these
abstract concepts into the platform- and technology-specific
views (see Figure 3) that enrich the abstract view models
with more technology-specific details [20, 21]. Last but not
least, VbMF provides code generations that take these views
as inputs and generate process implementations and deploy-
ment configurations. In addition, VbMF code generators can
also insert appropriate traceability meta-data in the generated
process descriptions and/or configurations in order to enable

the tracing from the running process to the corresponding
process models. This will be elaborated in Section IV-C.

2 3

4 5

1

Figure 4. MVNO process development in VbMF: (1) The FlowView,
(2-3) The high-level CollaborationView and InformationView, and (4-5)
The low-level, technology-specific BpelCollaborationView and BpelInfor-
mationView

Figure 4 shows the MVNO process implemented using
VbMF. The business and domain experts sketch out the
fundamental behavior of the MVNO process to achieve the
business goal using the Flow view as well as define high-
level business objects such as customer requests using the
abstract Information view. The IT experts will refine these
concepts in the low-level views that are specific to the BPEL
and Web services technology. The process implementation
in form of Business Process Execution Language (BPEL)5

and Web Services Description Language (WSDL)6 code can
be quickly generated out of the aforementioned views for
deploying and testing.

B. QuaLa: A DSL for Specifying QoS Compliance Concerns

So far we have presented the development of process-
driven SOAs via the view-based modeling framework (i.e.,
the left part of Figure 3). Next, we elaborate the DSL tooling
for modeling compliance requirements relating to process-
driven SOA concepts and elements along with a model
repository for storing, sharing, and inquiring about process
and compliance models.

To offer expressive and convenient languages for the
different stakeholders, our approach provides a separation of
DSLs into multiple sub-languages, where each sub-language

5http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
6http://www.w3.org/TR/wsdl

WatchmeSLA {
Search {

ProcessingTime<2min
=> mailto "abc@abc.at"

}
}

(a) High-level QuaLa

#measuring the ProcessingTime
ProcessingTime chain ServerIn
ProcessingTime phases

{InPreInvoke InInvoke}

#Location of WSDL file
Search wsdl "./search.wsdl"

(b) Low-level QuaLa

Figure 5. Quality of service language (QuaLa)

is tailored for the appropriate stakeholders [17]. We divide
our Quality of Service Language (QuaLa) into two sub-
languages. The first language, the high-level QuaLa, is
tailored for experts of the QoS domain and offers expres-
sive notations for specifying the required QoS compliance
concerns. Hence, the high-level QuaLa serves for specifying
which QoS compliance concerns to monitor. In Figure 5(a)
we illustrate an example of specifying one of service’s QoS
constraints presented in Table I using our high-level QuaLa.

The second language, the low-level QuaLa, extends the
high-level QuaLa for specifying the required technological
aspects that are needed for monitoring the QoS constraints
during the runtime of the system. Hence, the low-level
QuaLa serves for specifying how to monitor the correspond-
ing QoS compliance concerns. In Figure 5(b) we present
our low-level QuaLa and how to use it for specifying the
technological aspects.

Based on the high- and low-level specifications, the
QuaLa code generator generates interceptors for measuring
the services’ QoS properties at runtime. The interceptors
send events to the runtime compliance governance compo-
nents, which are responsible for checking the QoS compli-
ance concerns.

C. Model-Aware Repository and Service-Environment

In our approach, all models (i.e., meta-models and con-
forming models (cf. [4]) are stored in a model repository.
For this we have employed MORSE [9, 10] as a central
component of the architecture as shown in Figure 2. For the
compliance monitoring of the business processes, different
services in the SOA reflect on models. Using MORSE they
can look-up these models and related models dynamically
and in a service-oriented fashion at runtime.

Our approach applies the MDD paradigm to generate
service description, process code, deployment artifacts, and
monitoring directives out of the VbMF view models. In a
typical MDD approach, there are no backward or traceability
links in the sense that the generated source code “knows”
from which model it has been created. For correlating model
instances or code at runtime with source models or model
instances, respectively, traceability of model transformations
is essential.

To overcome this limitation in order to achieve trace-
ability, models (as the output of the generator) can hold
a reference to their source models. As MDD artifacts in

<process name="WatchMe">
<extensions>
<extension mustUnderstand="yes" namespace=

"http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd"
/>

</extensions>
<morse:traceability

build="a3627172-38bc-4ff3-96d9-dc814d3a7ab2">
<row query="/process[1]">
<uuid>b0e5aad1-8aa1-406d-859c-324caf6044db</uuid>

</row>
<row query="/process[1]/sequence[1]/receive[1]">
<uuid>1f56c377-7d12-436b-9760-349a0979df49</uuid>

</row>
<row query="/process[1]/sequence[1]/invoke[1]">
<uuid>16a7749e-9560-4194-b9a8-ab04d6d8f2c9</uuid>

</row>
<row query="/process[1]/sequence[1]/invoke[2]">
<uuid>16a7749e-9560-4194-b9a8-ab04d6d8f2c9</uuid>

</row>
</morse:traceability>
<sequence>
<!-- ... //-->

</sequence>
</process>

Listing 1. MVNO BPEL process with extensions for MORSE traceability

MORSE repositories are identifiable by Universally Unique
Identifiers (UUIDs)7, MORSE annotates the destination mod-
els with the UUIDs of the models. The VbMF code genera-
tors automatically insert references to these UUIDs into the
generated source code or configuration directives, so that the
corresponding models can be identified and accessed from
the running system. The code in Listing 1 shows a gen-
erated BPEL process description that contains traceability
information as a BPEL extension. The BPEL process engine
shall emit events for, e.g., the process activities that contain
matching UUIDs. Finally, the events will be processed by
the monitoring and governance infrastructure.

V. RUN-TIME COMPLIANCE GOVERNANCE

Extended Process
Engine

(Apache ODE)

ESB
(ApacheActiveMQ)

Compliance
Governance Input

JMS-Topic

 CEP Engine Output

JMS-Topic

Complex Event
Processing Engine

(Esper)

Pattern
Match

Event Log

ETL Analysis/
Business

Intelligence

Compliance
Governance
Dashboard

results of the
violations analysis

system level
events with

UUIDs

business level
events with

UUIDs

system/business level
events with UUIDs

Data
Warehouse

Data

system level
events

with UUIDs

Data

Figure 6. Runtime compliance governance architecture

In this section we present the compliance governance
framework for monitoring the compliance of business pro-
cesses at runtime. It is the bottom part of the architecture

7http://itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf

depicted in Figure 2, and its detailed view is provided in
Figure 6. Runtime governance starts with deploying a BPEL
business process to the Apache ODE process engine. The
process contains the UUIDs of the process model and the
UUIDs of the activities relevant for monitoring compliance
requirements. After the deployment a Process Deployed
system-level event is emitted in the Apache ActiveMQ
Enterprise Service Bus (ESB).

Both the Event Log and the Complex Event Processing
(CEP) engine are subscribed to the ESB to receive all
system-level events relevant to runtime compliance monitor-
ing. The goal of CEP is to detected violations (complex event
patterns) within the low-level streams of events generated by
the process engine. The results of CEP will be shown in the
Compliance Governance Dashboard, allowing for near real-
time detection of violation patterns of events, which could
lead to violations of the licenses of the content providers.
Hence, it is possible to verify event violations detected on
the fly and take actions to avoid such violations in the future.
In this way, the dashboard allows business process experts
to react quickly and efficiently to violations.

The Event Log stores all low- and high-level events. The
Extract, Transform, and Load (ETL) routines extract the data
from the Event Log and load them into the Data Warehouse.
The Analysis/Business Intelligence component is used to
perform advanced off-line analysis of the historical data
about compliance violations to raise awareness of the overall
compliance status of the company. The MORSE repository
may be queried in order to perform drill-down analysis to see
in detail what at lower levels led to violations. The results
of the off-line compliance monitoring of all compliance
requirements (e.g., QoS and Licensing) are shown on the
Compliance Governance Dashboard. Section V-B describes
the use of the dashboard in the MVNO scenario. In the
subsequent sections, we describe the major components of
the runtime compliance governance framework including the
Rule-based, Event-driven Compliance Monitoring compo-
nent and the Compliance Governance Dashboard. For further
details of the rest of the runtime compliance governance
framework, please consult our previous work in [5].

A. Rule-based Event-driven Compliance Monitoring

In order to be able to quickly react to compliance vi-
olations, it is important to conduct the online monitoring
of process execution. In our approach, we realize the run-
time monitoring using complex event processing (CEP) for
efficient and fast detection of events that match violation
patterns. The process engine generates events during the
course of process execution. The CEP engine aggregates
the events and evaluates them according to a number of
predefined rules. Listing 2 presents an excerpt of the event-
based rules for monitoring the violations of the composition
permission licensing concern shown in Table I. Those rules
are used by the CEP engine to detect patterns of video and

audio request events that are not compliant with a certain
license.

In this case, the pattern includes combinations of Watch-
MeGetAudioStream events from the audio stream of Au-
dioSport and from the video stream of VideoSport in a cer-
tain session. The query has to match only the events related
to the same session (matching is done by the “sessionID”
property of the events). CEP allows for constant, real-
time accumulation of events collected to evaluate the event
patterns specified within the rules. Thus, any compliance
violation specified by the CEP rule is evaluated in real-
time, i.e., just in time when the last event required to
match the event pattern arrives. When the rule is positively
evaluated, the proper notification of compliance violation
is immediately sent to run-time compliance dashboard. The
notifications are also stored for off-line processing and
analysis.

select * from pattern [every (
VidProvVideoSport = Event
(name = ’WatchMeGetVideoStreamEvent’
AND VideoProviderID= ’VideoSport’)
AND (AudProvAudioSport = Event
(name = ’WatchMeGetAudioStreamEvent’
AND NOT (AudioProviderID = ’AudioSport’))))]
where AudProvAudioSport.sessionID =
VidProvVideoSport.sessionID

Listing 2. An example of event monitoring rules in the MVNO process

B. Compliance Governance Dashboard

The current state of compliance of the organization’s
business processes is shown in the Compliance Governance
Dashboard (CGD) that comprises a number of Key Compli-
ance Indicators (KCIs) widgets and interactive tables. It is
possible to quickly check violations in different perspectives
(e.g., business vs. compliance) and summarization levels
(e.g., compliance source, requirement, or policies, which
group related requirements, such as licensing requirements).
In our approach, KCIs are defined and their values are
displayed in the dashboard. Having both business and com-
pliance perspective and different summarization levels, it is
possible to show high-level information (e.g., KCIs of com-
pliance sources) useful for CEOs and CFOs and low-level
information (e.g., list of violations events per compliance
requirement) useful to technical experts.

Figure 7 shows the monitoring of compliance require-
ments in the MVNO process. The top left part contains the
KCIs of different business process activities in descendant
order, where the first widget shows the compliance source
or activities with the lowest compliance performance (the
worst case). The results of monitoring QoS compliance
requirements from Table I are reported in the top right part of
the CGD. In addition, the CGD also offers interactive tables
(the bottom part) that enable users to inspect the details of
KCIs from the highest level information to the lowest level.
The values showed by the KCIs are calculated based on

the compliance requirements and the data stored into the
Data Warehouse. For example, looking at the interactive
table the business and domain experts can see the high-level
KCIs showing that the Composition permission concern is
100% compliant whilst the monitoring of QoS concerns
shows unexpected results that need to be investigated and
addressed. Furthermore, the IT experts can click on these
high-level KCIs to drill down and investigate the root causes
and technical details of the compliance results. For more
technical details about the CGD design and implementation,
we recommend the readers to consult [18] and the CGD
website8.

VI. RELATED WORK

In this section, we discuss the major related works in the
area of an end-to-end framework for business compliance
in general as well as model repositories and compliance
runtime monitoring and governance. We categorize compli-
ance into two main strategies: “compliance at design time”,
i.e., the implementation of compliance through designing it
into a system, and “compliance at detection runtime”, i.e.,
the implementation of compliance by monitoring a system’s
compliance state.

For checking “compliance at design time”, most of the
existing approaches focus on one single specific compliance
domain. For example, the European MASTER project [13]
introduces a full life cycle for modeling, assessing, and
monitoring security related business compliance concerns.
We deal with multiple domains, especially in this work with
QoS and licensing. Our approach enables the adaptation to
various domains of compliance by extending the conceptual
model for compliance governance. Daniel et al. [7] intro-
duce the related components in the compliance governance
architecture accordingly.

Namiri et al. [16] support compliance experts to add
control patterns to the business process models to make
the processes compliant. In our work, we concentrate to
support the stakeholders with tailored model-driven DSLs
that automatically transform the compliance requirements
into rules that are checked during the system’s runtime.

AMOR [1], Odyssey-VCS 2 [15], and EMFStore [12] are
model repositories that follow a similar approach to our
MORSE approach. These repositories have a focus on the
versioning aspect of model management (see also [2]). In
contrast, MORSE abstracts from modeling technologies and
its UUID-based implementation allows for a straightforward
identification of models and model elements. None of the
mentioned model repositories offers an integration scheme
for runtime events, like our approach, or automated model
generation and deployment capabilities.

For checking “compliance at runtime”, Sriraman et
al. [19] focus on business utility and agility provided by

8http://compas.disi.unitn.it/CGD/home.html

Figure 7. Monitoring compliance using the Compliance Governance Dashboard

the union of SOA, event-driven architecture and model-
driven architecture. The approach does not consider mon-
itoring and reasoning business compliance. During the last
decade Business Activity Monitoring has gained a lot of
attention, and dedicated tools have been proposed to support
it (e.g., Oracle Business Activity Monitoring, HP Business
Availability Center, Nimbus IBM Tivoli, among others). The
compliance management part of these tools, if any, comes
in the form of monitoring of SLA violations, which need
the SLA formal specifications as one of their inputs. In
our research, we adopt a more general view on compliance
(beyond SLAs, which are a special case to us) and cover
the whole life cycle of compliance governance, including an
appropriate dashboard for reporting purposes. Such tools still
do not have the capability to process and interpret generic
events. They only support the definition of thresholds for
parameters or SLAs to be monitored. Also, the ability to
compare monitored business process executions or, more in
general, business patterns with expected execution behaviors
is not supported.

To the best of our knowledge, there are no research
approaches that specifically address the issue of visualizing
compliance concerns using dashboards. Existing approaches,
such as described in [3] or [6], do not provide suitable
navigation models supporting different analysis perspectives,
summarization levels, and user roles.

VII. CONCLUSION

In this invited paper, we have presented an end-to-end
approach and architecture for dealing with business com-

pliance in process-driven SOAs. In summary, our approach
supports stakeholders to deal with the variety of compliance
requirements, including, but not limited to, QoS policies
or license policies. The presented view-based, model-driven
framework lays a solid foundation for modeling process-
driven SOAs and compliance engineering. DSLs and view
models together can be tailored to present compliance con-
cerns to each stakeholder in an understandable form. During
the course of process execution, a runtime governance
infrastructure enacts the detection of compliance violations
and compliance reporting according to the monitoring direc-
tives generated from the compliance DSL models. For this,
traceability information emitted in process events is used and
dynamic model look-up is supported through a model-aware
service environment that consolidates design- and runtime
use and management of models. Finally, the stakeholders,
such as business analysts, IT experts, and end-users, can
use the compliance governance dashboard to observe and
analyze the current status of software systems’ compliance,
the root cause of any compliance violations, and so forth.

ACKNOWLEDGMENT

This work was supported by the European Union FP7
project COMPAS, grant no. 215175.

REFERENCES

[1] K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzeg-
ger, W. Schwinger, M. Seidl, and M. Wimmer, “AMOR
– towards adaptable model versioning,” in 1st Interna-
tional Workshop on Model Co-Evolution and Consis-

tency Management, in conjunction with MODELS ’08,
2008.

[2] K. Altmanninger, M. Seidl, and M. Wimmer, “A survey
on model versioning approaches,” IJWIS, vol. 5, no. 3,
pp. 271–304, 2009.

[3] R. Bellamy, T. Erickson, B. Fuller, W. Kellogg,
R. Rosenbaum, J. C. Thomas, and T. V. Wolf, “Seeing
is believing: Designing visualizations for managing
risk and compliance,” IBM Systems Journal, vol. 46,
no. 2, pp. 205–218, 2007.

[4] J. Bézivin, “On the unification power of models,”
Software and System Modeling, vol. 4, no. 2, pp. 171–
188, 2005.

[5] A. Birukou, V. D’Andrea, F. Leymann, J. Serafinski,
P. Silveira, S. Strauch, and M. Tluczek, “An integrated
solution for runtime compliance governance in SOA,”
in Proc. of the 8th International Conference on Service-
Oriented Computing (ICSOC10), 2010.

[6] P. Chowdhary, T. Palpanas, F. Pinel, S.-K. Chen,
and F. Y. Wu, “Model-driven dashboards for busi-
ness performance reporting,” in IEEE Int’l Enterprise
Distributed Object Computing Conference. IEEE
Computer Society, 2006, pp. 374–386.

[7] F. Daniel, F. Casati, V. D’Andrea, S. Strauch,
D. Schumm, F. Leymann, E. Mulo, U. Zdun, S. Dust-
dar, S. Sebahi, F. de Marchi, and M.-S. Hacid, “Busi-
ness compliance governance in service-oriented archi-
tectures,” in Proceedings of the IEEE Twenty-Third
International Conference on Advanced Information
Networking and Applications (AINA’09), May 2009.

[8] T. Holmes, H. Tran, U. Zdun, and S. Dustdar, “Mod-
eling Human Aspects of Business Processes - A View-
Based, Model-Driven Approach,” in 4th European
Conf. Model Driven Architecture Foundations and Ap-
plications (ECMDA-FA) 2008. Springer, 2008, pp.
246–261.

[9] T. Holmes, U. Zdun, F. Daniel, and S. Dustdar, “Mon-
itoring and Analyzing Service-Based Internet Sys-
tems through a Model-Aware Service Environment,”
in CAiSE, ser. LNCS, vol. 6051. Springer, Jun. 2010,
pp. 98–112.

[10] T. Holmes, U. Zdun, and S. Dustdar, “MORSE: A
Model-Aware Service Environment,” in Proceedings of
the 4th IEEE Asia-Pacific Services Computing Confer-
ence (APSCC). IEEE, Dec. 2009, pp. 470–477.

[11] IEEE, “Recommended Practice for Architectural De-
scription of Software Intensive Systems,” IEEE, Tech.
Rep. IEEE-std-1471-2000, 2000.

[12] M. Koegel and J. Helming, “EMFStore: a model
repository for EMF models,” in ICSE (2), J. Kramer,
J. Bishop, P. T. Devanbu, and S. Uchitel, Eds. ACM,
2010, pp. 307–308.

[13] V. Lotz, E. Pigout, P. M. Fischer, D. Kossmann,
F. Massacci, and A. Pretschner, “Towards

systematic achievement of compliance in service-
oriented architectures: The MASTER approach,”
WIRTSCHAFTSINFORMATIK, vol. 50, no. 5, pp.
383–391, Oct. 2008. [Online]. Available: http:
//www.springerlink.com/content/lgr0v556845tt036/

[14] C. Mayr, U. Zdun, and S. Dustdar, “Model-Driven
Integration and Management of Data Access Objects
in Process-Driven SOAs,” in ServiceWave, 2008, pp.
62–73.

[15] L. Murta, C. Corrêa, ao Gustavo Prudêncio Jo and
C. Werner, “Towards Odyssey-VCS 2: Improvements
over a UML-based version control system,” in CVSM
’08: Proceedings of the 2008 international workshop
on Comparison and versioning of software models.
New York, NY, USA: ACM, 2008, pp. 25–30.

[16] K. Namiri and N. Stojanovic, “Pattern-Based Design
and Validation of Business Process Compliance,” in
OTM Conferences (1), 2007, pp. 59–76.

[17] E. Oberortner, U. Zdun, and S. Dustdar, “Tailoring a
model-driven quality-of-service DSL for various stake-
holders,” in MISE ’09: Proceedings of the 2009 ICSE
Workshop on Modeling in Software Engineering. Van-
couver, BC, Canada: IEEE Computer Society, 2009,
pp. 20–25.

[18] P. Silveira, C. Rodriguez, F. Casati, F. Daniel,
V. D’Andrea, C. Worledge, and Z. Taheri, “On the
design of compliance governance dashboards for ef-
fective compliance and audit management,” in Proc. of
the 3rd Workshop on Non-Functional Properties and
SLA Management in SOC (NFPSLAM-SOC’09), 2009.

[19] B. Sriraman and R. Radhakrishnan, “Event driven
architecture augmenting service oriented architectures,”
Report of Unisys and Sun Microsystems, 2005.

[20] H. Tran, T. Holmes, U. Zdun, and S. Dustdar, Mod-
eling Process-Driven SOAs – a View-Based Approach,
handbook of research on business process modeling ed.
IGI Global, Apr. 2009, ch. 2.

[21] H. Tran, U. Zdun, and S. Dustdar, “View-based and
Model-driven Approach for Reducing the Development
Complexity in Process-Driven SOA,” in Int’l Conf.
Business Process and Services Computing, ser. LNI,
vol. 116. GI, 2007, pp. 105–124.

[22] ——, “View-based integration of process-driven soa
models at various abstraction levels,” in 1st Int’l Work-
shop on Model-Based Software and Data Integration.
Springer, Apr. 2008, pp. 55–66.

[23] ——, “View-based reverse engineering approach for
enhancing model interoperability and reusability in
process-driven SOAs,” in 10th Int’l Conf. Software
Reuse (ICSR). Springer, 2008, pp. 233–244.

