
MELA: Monitoring and Analyzing Elasticity of
Cloud Services

Daniel Moldovan, Georgiana Copil, Hong-Linh Truong, Schahram Dustdar

Distributed Systems Group, Vienna University of Technology

E-mail: {d.moldovan, e.copil, truong, dustdar}@dsg.tuwien.ac.at

Abstract—Cloud computing has enabled a wide array of
applications to be exposed as elastic cloud services. While the
number of such services has rapidly increased, there is a lack
of techniques for supporting cross-layered multi-level monitoring
and analysis of elastic service behavior. In this paper we introduce
novel concepts, namely elasticity space and elasticity pathway,
for understanding elasticity of cloud services, and techniques
for monitoring and evaluating them. We present MELA, a
customizable framework, which enables service providers and
developers to analyze cross-layered, multi-level elasticity of cloud
services, from the whole cloud service to service units, based on
service structure dependencies. Besides support for real-time elas-
ticity analysis of cloud service behavior, MELA provides several
customizable features for extracting functions and patterns that
characterize that behavior. To illustrate the usefulness of MELA,
we conduct several experiments with a realistic data-as-a-service
in an M2M cloud platform.

Keywords-elastic computing, cloud service, elasticity monitor-
ing, elasticity analysis

I. INTRODUCTION

With the increasing popularity of cloud systems, the number

of applications and systems born in or migrated to cloud

environments has substantially increased. Diverse types of

stakeholders in cloud environments, ranging from business

oriented software providers to e-science professionals, have

continuously investigated techniques exposing diverse func-

tionalities as a service (XaaS). In this context, substantial effort

have been paid for the development of emerging elastic cloud
services, which scale up/out as long as the workload is high,

and scale back in/down when possible, reducing cost while

maintaining performance and quality. Going beyond the tradi-

tional ”elastic scalability” which concentrates on scaling in/out

resources to achieve performance, in general, elastic cloud

services have three main dimensions: ”resource elasticity”,

”cost elasticity”, and ”quality elasticity” [1].

Developing and managing elastic cloud services with such

multi-dimensional elasticity is challenging. One of the main

questions is how to monitor and evaluate cloud service’s elastic

behavior, determining the proper cost and quality indicators

and their boundaries, and utilize them for optimizing and

controlling the services’ elasticity. Currently, deciding cost and

quality indicators and their boundaries is a difficult task, usu-

ally done by cloud experts. Existing monitoring and analysis

tools focus either on the whole cloud service level [2] or on

This work was partially supported by the European Commission in terms
of the CELAR FP7 project (FP7-ICT-2011-8 #317790)

the underlying virtual infrastructure [3][4], and do not provide

a cross-layered, multi-level service elasticity behavior picture,

hindering the discovery of the cause for stakeholder goal’s

violations. For controlling elastic cloud services one must be

able to detect if a goal violation originates in a poorly chosen

cloud service, subscription scheme, resource congestion, or

failing service unit. In particular, we think that in order to

understand elastic cloud services, we need to investigate new

concepts that can be used to characterize the cloud service’s

elastic behavior from multi-dimensional monitoring data.

In this paper, we present MELA, a framework for monitor-

ing and analyzing elasticity of cloud services. MELA allows

cloud service developers and providers to trace their service

behavior from the whole service level to the underlying virtual

infrastructure, extracting characteristics and providing crucial

insight in their elastic behavior. Providing aggregated moni-

toring data and analysis of elastic cloud services, MELA acts

as a base for analyzing and controlling elastic cloud services.

The main contributions of our paper are:

• a novel concept of elasticity space and elasticity pathway
for analyzing elastic behavior of cloud services at

multiple levels.

• customizable mechanisms for extracting runtime bound-

aries of cloud service’s elasticity that fulfill user-defined

elasticity requirements.

• techniques for evaluating multi-level user-defined elas-

ticity requirements over service’s cost, quality, and re-

sources, analyzing the elastic behavior of cloud services.

The rest of this paper is structured as follows. Section II

presents the motivation and research problems. Section III

presents our techniques for monitoring and analyzing elasticity

of cloud services using the elasticity space and pathway. In

Section IV we describe the MELA framework. Section V

presents our prototype and experiments. We discuss related

work in Section VI. Section VII concludes the paper and

outlines the future work.

II. MOTIVATION & RESEARCH PROBLEMS

Let us consider a realistic data-as-a-service (DaaS) applica-

tion for an M2M cloud platform-as-a-service, for which we

have user-defined elasticity requirements1 w.r.t service run-

time performance and cost.

1In this paper “users” refer to the users of our framework: cloud service
provider, developer and elasticity controllers.

2013 IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-5095-4/13 $31.00 © 2013 IEEE

DOI 10.1109/CloudCom.2013.18

80

Fig. 1: Elastic Cloud Service Views

In general, we have three main views from which cloud ser-

vices are described (Fig. 1): (i) design-time view, where we see

the whole service dependency model (Cloud Service, Service

Topology, Service Unit) and user-defined service requirements,

(ii) run-time view, where instances of several Service Units

are deployed and executed in virtual machines, and (iii) the

virtual infrastructure, where several virtual machines, possibly

grouped in virtual clusters, are used. From the design-time

point of view, in this case the DaaS has two service topologies,

Data End and Event Processing, supporting horizon-

tal scaling by addition and removal of VMs. The Data End
service topology includes two service units, a Data Node
holding data, and a Data Controller managing it. The

Event Processing service topology also contains two

service units: Load Balancer, distributing client requests,

and Event Processing interacting with the Data End.

At run-time, the Data End units uses Cassandra2 for its ser-

vice units, and the Event Processing uses HAProxy3 for

its Load Balancer service unit. Moreover, at run-time, due

to user-defined elasticity requirements, service unit instances

are added/removed dynamically, triggering allocation and deal-

location of virtual machines at the virtual infrastructure level.

Thus, Cassandra was chosen as it supports adding/removing of

data nodes without restarting the cluster controller (any such

data store would have sufficed), and HAProxy is used as it also

supports transparent addition/removal of web servers hosting

Event Processing service units.

User-defined service requirements can be viewed as elas-

ticity requirements, as they restrict the elastic behavior of the

2http://cassandra.apache.org/
3http://haproxy.1wt.eu/

DaaS. To enforce such restrictions at the virtual infrastructure

level, i.e. when to add/remove a VM, of what type, under

which pricing scheme, the restrictions need to be linked

and mapped to the run-time view. Monitoring data from the

run-time view must also be linked back to the user-defined

elasticity requirements. This enables the discovery of service

units belonging to service topologies that cause requirements

violations. For example, using MELA, one should be able to

determine that a high service cost is caused by too few clients

served at the Event Processing service topology level

because of overloaded Event Processing service unit

instances, or high communication latency between the Event
Processing instances and the Data Controller.

While using various monitoring techniques, such as [4] or

[5], we can capture monitoring data from the whole service

level or virtual infrastructure level, such data typically does

not answer the following crucial questions:

• what should be the behavior of the service topologies and

units when fulfilling user-defined elasticity requirements.

• when is the service behavior elastic, i.e. adapting and

fulfilling user-defined elasticity requirements.

• what is the cause of an elasticity requirement violation,

traced from the design-time view to the underlying virtual

infrastructure.

• how does the service’s elastic behavior evolve in time,

i.e. what are the correlations and patterns in its behavior.

Capturing, describing and analyzing elastic behavior of

cloud service is crucial not only for developers who build and

optimize cloud services, but also for software controllers that

change the topology of such services at run-time, enforcing

user-defined elasticity requirements. Such controllers need a

monitoring and analysis mechanism that extracts elasticity

characteristics, which can be used to refine user-defined elas-

ticity requirements or predict the service behavior, leading to

better service control and quality.

This motivates us to investigate the following issues:

• Which concepts can be used to capture the elastic behav-

ior of cloud services?

• How to extract characteristics that describe the service’s

elastic behavior to support both reactive and predictive

control of elastic services?

• How to analyze the cloud service’s behavior, detecting the

source of user-defined elasticity requirements violations?

This paper focuses on capturing the properties of elastic

services at multiple levels, providing support for analyzing

their behavior from multiple views, and characterizing the

elastic behavior of each cloud service based on user-defined

elasticity requirements.

III. MONITORING AND ANALYZING ELASTIC CLOUD

SERVICES

A. Runtime Properties of Elasticity of Cloud Services

In order to support multi-dimensional analysis of elastic

services behavior [1], we categorize monitoring data in three

dimensions: Cost, Quality, and Resource. Each dimension

81

Fig. 2: Elasticity Dimensions

has a set of metrics, shown in Figure 2. These categories are

sufficient for capturing low-level data about any monitored

element (e.q., service topology or service unit) within a

cloud service that can be used for understanding the elastic

behavior of that service. Conceptually, to capture monitoring

data associated with a monitored element at a specific time t,
we define the monitoring snapshot, ms:

ms = (〈ci〉, 〈qj〉, 〈rk〉, t) (1)

where ci ∈ Cost, qj ∈ Quality, and rk ∈ Resource.

Monitoring snapshots capture metrics, but do not provide

information about boundaries over the metric’s values in which

user-defined elasticity requirements are fulfilled. Therefore, in

order to analyze the elastic behavior of a monitored element,

we represent metric boundaries extracted from user-defined

elasticity requirements as well as boundaries detected/evalu-

ated by our techniques using the elasticity boundary:

Definition 1. An elasticity boundary describes the upper and
lower bound over a set of metrics for a monitored element.

Conceptually, an elasticity boundary elBoundary is:

elBoundary = (〈cui , cli)〉, 〈quj , qlj)〉, 〈ruk , rlk)〉) (2)

where cui and cli denote the upper bound and the lower bound

of metric ci, respectively, quj and qlj for qj , and ruk and rlk for

ri. All metrics ci, gj , rk are specified in elasticity requirements

indicating the parameters under which the cloud service is

elastic. In the rest of this paper, user-defined elasticity bound-
ary and evaluated elasticity boundary are used to indicate

the boundary extracted from user-defined requirements and

determined from elasticity monitoring, respectively.

B. Elasticity Space and Pathway

Given a set of monitoring snapshots and a user-defined

elasticity boundary, we need to understand when a monitored

element is in elastic behavior, if its behavior violates the elas-

ticity boundary and if we can characterize the service behavior

using some specific ”pathways”. Naturally, we expect that the

meaning of “elasticity” will be dependent on the types of

monitored elements, their runtime settings and requirements.

To this end, we define the concept of elasticity space to

determine if a monitored element is in elastic behavior:

Definition 2. An elasticity space captures all runtime metrics
described in the user-defined elasticity boundary when a
monitored element is in elastic behavior, which is determined
via an elasticity space function.

Formally, let felSpace be an elasticity space function, MS =
{msi} be the set of monitoring snapshots, then an elasticity

space elSpace can be defined as: elSpace = felSpace(MS).
A felSpace has to perform two steps: detect when an elastic

behavior starts and stops, and extract only monitoring data

describing the service behavior while respecting the user-

defined elasticity boundaries. In principle, there could be

several elasticity space functions, which can be developed for

and applied to different types of monitored elements, such as

specific types of service units, service topologies, or the whole

cloud service. Furthermore, these functions are also dependent

on the metrics in user-defined elasticity boundaries.

An elasticity space function is designed to extract useful

information about the overall behavior of the cloud service

when elasticity requirements are fulfilled. A space would

contain, for example, only the throughput and cost/VM/h
metrics from which the serviceCost/client/h targeted by

requirements can be determined, not including metrics that

have no impact on it. One can analyze the behavior of an

elastic cloud service by checking if its elasticity space is within

the user-defined elasticity boundaries.

While the elasticity space enables cloud service elasticity

analysis, it does not provide insight into relationships be-

tween metrics influencing the elastic behavior over time, e.g.,

throughput and cost/VM/h might or might not follow a

linear relationship. In order to characterize the elastic behavior

from specific views/perspectives over a cloud service, we

define the concept of elasticity pathway.

Definition 3. Given a specific view on metrics V =
{m1,m2, · · · ,mn}, an elasticity pathway for V characterizes
the elasticity relationship among mi over the time.

Formally, an elasticity pathway elP tw is determined by

a function felP tw which takes as input an elasticity space

elSpace and a view V over the space’s metrics, and returns

another function describing behavioral patterns or character-

istics of the the monitored element: elP tw = g(V) =
felP tw(elSpace, V). Various elasticity pathway functions can

be defined over the elasticity space, enabling space analysis

from multiple perspectives. An elasticity pathway function

is designed to perform a complex evaluation of the cloud

service behavior, determining characteristics that can be used

to predict the service’s behavior. Such a function could

extract metric correlations, e.g., between throughput and

cost/VM/h for a service unit, determining the influence of

throughput on the cost. As the elasticity pathway function is

applied over a elasticity space, the quality of the determined

elasticity pathway being heavily influenced by the size and

data in the elasticity space.

82

Fig. 3: Association between Elasticity Space/Pathway and

Monitored Elements

C. Multi-Level Elasticity Space of Cloud Services

In order to monitor and evaluate the elasticity space and

pathways of a cloud service, we need to (i) build the cloud

service dependency model, (ii) build the monitoring snapshot

for all monitored elements, and (iii) apply particular elasticity

space and pathway functions over the monitoring snapshots.

1) Elastic Cloud Service Dependency Model: For describ-

ing elastic services from the whole service level to the under-

lying virtual infrastructure, we need an abstract representation

model that enables the decomposition of user-defined elasticity

requirements in lower level requirements which can be mapped

to the virtual infrastructure. To support analysis of service

behavior at different levels, we represent a cloud service

composed of service topologies, each topology containing

several service units, which are deployed on one virtual

machines belonging to virtual clusters (Figure 3). Based on the

dependency model, we build composite monitoring snapshots

which aggregate metrics bottom-up, creating based on lower

level metrics higher level ones which can be targeted by user-

defined elasticity requirements. At different levels we allow the

association of different elasticity space and pathway functions,

enabling multi-level custom analysis of cloud service behav-

ior. Using the dependency model we combine monitoring

snapshots, elasticity spaces and pathways from one level and

propagate them to the other levels, obtaining a complete view

over the cloud service behavior.

Listing 1: Example of M2M DaaS Dependency Model

<CloudService id =”S” name=”M2MDaaS”>
<Serv iceTopology id =”ST1” name=” E v e n t P r o c e s s i n g ”>

<S e r v i c e U n i t id =”ST1 SU1” name=” LoadBa lance r ” />
<S e r v i c e U n i t id =”ST1 SU2” name=” E v e n t P r o c e s s i n g ” />

</ Serv iceTopology>
<Serv iceTopology id =”ST2” name=” DataEnd ”>

<S e r v i c e U n i t id =”ST2 SU1” name=” D a t a C o n t r o l l e r ” />
<S e r v i c e U n i t id =”ST2 SU2” name=” DataNode ” />

</ Serv iceTopology>
</ CloudService>

To build the elasticity space, the dependency model of the

cloud service is extracted or defined by users/tools, and used

for analyzing the service behavior. For easy integration with

other tools, we use an XML-based representation. Listing 1

shows the M2M DaaS containing two service topologies and

their service units.

2) Cross-layered Metric Composition: Monitoring snap-

shots capture (low-level) metrics, but not necessary the same

as elasticity requirements defined by the user. For exam-

ple, a monitoring snapshot for the Event Processing service

unit might only include responseT ime, throughput and

cost/VM/h while the elasticity requirements might target

serviceCost/client/h and numberOfClients. Therefore,

to obtain a complete view over the cloud service behavior,

from low level metrics to higher ones, we develop tech-

niques for cross-layer composition of monitoring snapshots,

elasticity spaces and elasticity pathways, following the cloud

service structure. This composition introduces the problem

of combining/aggregating metrics. Depending on the type of

metrics, a valid composition of two metrics might involve

different operations. We define an XML-based domain-specific

language for describing such metric composition rules as a

cascading sequence of operations which apply one or more

operators over one or more operands. Defining the composition

rules requires domain specific knowledge, e.g., in determining

that the cost of a service unit is computed from the hourly

cost per VM instance and the network data transfer.

Based on the metric composition, we provide an analysis

mechanism for determining the elasticity space and pathway at

different dependency model levels, providing a multi-level

decomposition of the cloud service behavior. Such a decom-

position is beneficial to service controllers, which can use

our approach to detect which monitored element from which

service dependency model level violates service requirements,

and reason in terms of metrics located at that particular level.

Providing a complete view over the behavior of cloud services

enables service provider/developer and software controllers to

reason on the same service using separate perspectives.

In Listing 2 we show a composition rule obtaining the

cost of data transfered per client per hour for the Data
End service topology. The metric is obtained by summing up

the values of the dataOut metric from all service topology

children having level service unit, and dividing the result with

Listing 2: Example of Metric Composition

<Composit ionRules TargetLeve l =” S e r v i c e T o p o l o g y ” >
<Composit ionRule T a r g e t I D =”ST1”>

<SourceMetric name=” d a t a O u t ” u n i t =”GB/ s ”
l e v e l =” S e r v i c e U n i t ” />

<Operat ions>
<Operation name=”SUM” />
<Operation name=”DIV” u n i t =” no / s ”

sourceMetr ic =” n u m b e r O f C l i e n t s ”
l e v e l =” S e r v i c e T o p o l o g y ” />

</ Operat ions>
<R e s u l t i n g M e t r i c name=” d a t a C o s t P e r C l i e n t ” u n i t =” $ ”

type =”COST” />
</ Composit ionRule>

</ Composit ionRules>

83

Algorithm 1 Multi-Level Elasticity Space/Pathway Analysis

FUNCTION a n a l y z e (e l e m e n t)
e lPa thways , s u b S n a p s h o t s := []
e lSpace , monSnapshot := NULL

FOR EACH c h i l d IN e l e m e n t . c h i l d r e n DO
s u b S n a p s h o t s . push (a n a l y z e (c h i l d))

END FOR

FOR EACH r u l e IN e l e m e n t . c o m p o s i t i o n R u l e s DO
v a l u e s := []
FOR EACH ope rand IN r u l e . o p e r a n d s DO

IF ope rand . type IS ” m e t r i c ” THEN
v a l u e s . push (

g e t V a l u e (operand , s ubS na psh o t s , monSnapshot))
ELSE

v a l u e s . push (ope rand)
END IF

END FOR

FOR EACH o p e r a t o r IN r u l e . o p e r a t o r s DO
v a l u e s := o p e r a t o r (v a l u e s)

END FOR
monSnapshot . push (v a l u e s)

END FOR

e l S p a c e := e l e m e n t . e l S p a c e F u n c t i o n (monSnapshot)

FOR EACH e lP twFunc IN e l e m e n t . e l P t w F u n c t i o n s DO
e l P a t h w a y s . push (e lP twFunc (e l S p a c e))

END FOR

the value of the numberOfClients metric retrieved from the

target service topology.

3) Multi-level Elasticity Space/Pathway Analysis:
Algorithm 1 traverses the the service dependency model

in a depth-first manner and carries out runtime analysis.

For every element at each level, its metric composition

rules are applied, building a multi-level monitoring

snapshot. Each composition rule contains a set of

operands (metrics or values) and a set of operations from

{sum,max,min, avg, div, add, sub,mul, concat, union, set,
keep}. Over the space we apply the elasticity

pathway functions, analyzing the cloud service behavior.

IV. ELASTICITY MONITORING AS A SERVICE

A. MELA Overview

Based on our concepts in Section III, we develop MELA,

elasticity monitoring and analysis as a service (Fig. 4).

MELA contains a core MELA Service, and Data Collector
nodes. A Data Collector node is a customizable compo-

nent that gathers from existing monitoring solutions data

associated with a dependency model level or monitored el-

ement (e.g., responseT ime or throughput for the Event
Processing service topology), and sends it for processing

and analysis to the MELA Service.

Monitoring data from existing monitoring systems is usually

associated with a single level, e.g., virtual infrastructure,

service topology or service unit. An important MELA feature

is the linking of these levels, which implies a configuration

step using the Elasticity Functions Management API, defining

for the monitored elements at each level the composition

operations to be applied. This step feeds data into the Elasticity
Pathway & Elasticity Space Functions repository which also

Fig. 4: MELA Overview

contains the composition rules for building the monitoring

snapshot. As the elasticity space is determined from moni-

toring snapshots, the Elasticity Space Management unit also

handles the monitoring snapshot construction and stores them

in the Monitoring & Elasticity Space Snapshots database.

MELA exposes its functionality through REST services

and Java API, providing methods for configuring MELA and

analyzing elastic service behavior.

B. Elasticity Space and Pathway Function Prototypes

In the current MELA prototype, we implement an elasticity
space function which, starting from user-defined elasticity

requirements for the whole cloud service, determines as space

boundaries for all service topology and service unit instances,

their maximum and minimum encountered metric values when

the user-defined elasticity requirements are respected.

Based on the elasticity space, custom elasticity pathway
functions can be defined as MELA plug-ins, enabling cus-

tom analysis of service behavior. For the prototype elasticity
pathway function, we adapt an unsupervised behavior learning

technique using self organizing maps (SOMs)[6], and classify

monitoring snapshots by encountering rate in DOMINANT,

NON-DOMINANT, and RARE. Such a pathway is important

for understanding if the regular behavior of the service respects

user-defined elasticity requirements.

As SOMs are unsupervised neural networks that map multi-

dimensional spaces into low dimensional ones, we use them

for grouping monitoring snapshots. Each SOM’s neuron value

is derived from its snapshots. Each monitoring snapshot is

mapped to the group from which it has the smallest distance.

With each new snapshot, the group and its SOM neighbors are

updated using the function Vnew(group) = Vold(group) +
A ∗ N(group)(V (snapshot) − Vold(group)), where A is a

discount factor, and N(group) is a neighborhood function

84

Fig. 5: MELA Visualization of Multi-Level Monitoring Data

determining the degree with which a group value is updated.

We initialize the SOM with snapshot groups having all metrics

equal to 0, and rely on its self-adaptive nature to map the input

data. We use a neighborhood function of 1 for the directly

targeted group and of 1/neighbourLevel/neighboursCount
for the group neighbors. Updating the neighbors creates and

update new groups, mapping the input data better. The dis-

count learning factor is 1/neighbourLevel, the neighborhood

is 2 and the map size is 10×10 . A filtering step merges groups

with same value, consolidating the monitored snapshots.

V. EXPERIMENTS

We apply MELA4 to monitor and analyze the realistic

data-as-a-service application for an M2M cloud mentioned in

Section II. From real sensor data, we simulated a Gaussian

distribution of M2M sensors – the clients connected to our

system, starting from 50 sensors per hour, increasing up to

350, and then decreasing again. Each request from a sensor

will require between 1 and 10 operations on the data service.

For practical reasons we simulated a hour of experiment each

second. The service VMs were deployed on our OpenStack5

cloud. For these experiments MELA utilizes Ganglia6 as base

for the Data Collector nodes, retrieving generic OS level and

service specific monitoring data (e.g., clients/h, throughput,

response time) from custom Ganglia plug-ins.

A. Monitoring Elasticity Space

We start from the scenario in which the cloud service

provider wants to monitor and define elasticity requirements

for the service cost and performance. Using our cross-layered

metric composition mechanism, we derive service level met-

rics from low level ones. We start at the Service Topology

level defining the cost based on vmCount (number of service

4Detailed MELA API, prototype implementation, and experiments can be
found at http://dsg.tuwien.ac.at/research/viecom/mela/

5http://www.openstack.org/
6http://ganglia.sourceforge.net/

unit instances) and the cost per virtual machine (assumed

0.12 EUR per machine per hour). Summing up at the Service

Level the cost obtained from the Service Topology level, we

obtain estimated hourly service cost. To monitor the service

performance, we define multiple metrics, averaging the num-

ber of service clients/h (active connections), responseTime and

throughput at every Service Unit level and propagating them

to the upper service dependency model levels. For monitoring

the service cost efficiency, a metric is defined at service level,

dividing the cost by the value of the clients/h metric, obtaining

the estimated cost/client/h. Figure 5 presents the MELA cross-

layer metric monitoring snapshot obtained from composing

and propagating low level metrics. Obtaining higher-level

composite metrics, the service controller can define user-

defined elasticity requirements on them, analyze if they are

fulfilled, and, if not, enforce them by adding/removing VMs

to/from service unit instances.

B. Elasticity Space Analysis

MELA’s second feature is elasticity space analysis, which

determines what are the behavioral boundaries in which the

service fulfills supplied requirements. Continuing with the pre-

vious scenario, the cloud service provider wants to implement

a 2.5$ monthly subscription for each service client (sensor).

Using MELA, the provider can monitor the service elasticity

behavior (via metrics) at each service level, to guarantee he/she

does not end up paying more than 2.5$ per month per client to

the cloud provider. Assuming a month of 30 days each with 24

hours, the elasticity requirement is a cost of at most 0.0034$

per served client per hour. Using our elasticity space function

prototype, we determined the elasticity space, including the

maximum and minimum encountered values for the service

metrics in which the service requirements are fulfilled, for

each service level and monitored element.

From the snapshot of the elasticity space for the Event

Processing Service Topology (Fig. 6a), one can examine

how individual metrics evolve over the time. For example,

85

(a) Elasticity Space Snapshot

(b) Elasticity Space ”clients/h” Dimension

(c) Elasticity Space ”responseTime” Dimension

Fig. 6: Elasticity Space for Event Processing Service Topology

we analyze the elasticity space clients/h dimension, marking

with flat lines the minimum and maximum acceptable values

(Fig. 6b). The clients/h minimum is 172, which multiplied by

0.0034, gives a 0.48$ per hour, indicating that the service uses

at least 4 VMs at 0.12$ per hour. From this evaluated elasticity

boundary we can deduce that given the current service control

strategy, there should be at least 172 clients per hour to justify

the cost of running in cloud. To learn more about the service

behavior and the boundaries the service controller should

enforce on different levels, boundaries are also extracted for

the responseTime describing the time to process a request,

and throughput which describes the number of operations

performed by the service per second (a client can perform

many operations). Focusing on responseTime (Fig. 6c), MELA

extracts a minimum boundary, which might seem weird at first,

as we would expect to always want minimum response time. In

Fig. 7: Elasticity Pathway of CloudService cost/client/h

Fig. 8: Dominant Elasticity Pathway of Event Processing

Service Topology

this case, this evaluated elasticity boundary tells us that a too

low response time means that the service has underused virtual

machines, which is not cost effective. This conclusion can be

reached by further investigating the elasticity boundaries for

the rest of the service levels, which we do not expand here

due to lack of space.

Continuing with the scenario, knowing the boundaries for

different service levels and monitored elements, the cloud

service provider wants to extract service characteristics that

indicate if the usual service behavior is within the deter-

mined space boundaries. Towards this we apply our elasticity

pathway function prototype which groups combination of

different metric values as DOMINANT, NON-DOMINANT,

and RARE, according to the rate at which they are encountered

in the monitored data. Such a classification highlights the

usual behavior of the service and the correlations between the

analyzed metrics. Applying the pathway on the cost/client/h
cloud service level metric (Fig. 7), from the encounter rates

and the metric values, it is visible that the cost/client/h is

less than 0.0034$ only in approximate 76% of the encoun-

tered situations, leading to the conclusion that a pricing

scheme of 2.5$ per month per client is not fully sustainable.

To find out why, the provider uses the MELA multi-level

analysis feature to focus on the Event Processing Service

Topology. The elasticity pathway is applied on the clients/h,

responseTime, and throughput (operations) metrics, the metrics

influencing the service performance, and thus, the number

of served clients and the service cost efficiency. From the

DOMINANT behavior (Fig. 8), it is visible that by summing

86

up the encounter rates, in approximate 35% of the encountered

situations, the service had less than the required 172 clients.

Analyzing further, only in 8% of these situations we detect

few clients with low throughput, while in the rest 27% we

detect few clients but high response times and throughput,

indicating a potential performance bottleneck. To determine

the correct cause of the high cost per client, the cloud service

provider needs to further investigate the elasticity space and

pathways of the other monitored elements, from topology

level information such as latency or cost for the Data Service

Topology, to the service units, and low level performance

(CPU usage, memory usage, latency) of associated VMs.

This section has showcased the MELA features of multi-

level metric composition and service behavior analysis, and

highlighted the importance to monitor and analyze the behav-

ior of elastic services at multiple levels.

VI. RELATED WORK

A scalable framework for data collection and aggregation

is introduced in [3]. Our tool differs as it links service level

to virtual infrastructure level monitoring data, providing a

complete view over the monitored cloud service behavior.

An architecture for dynamically controlling the behavior of

cloud services using a set of high-level rules is introduces in

[7]. Combining such rule-based systems with MELA would

enable the specification of more powerful rules, that target

higher level metrics (at the service unit, topology or whole

service level), providing multi-level service control. The cost

of Amazon EC2 spot instances is analyzed in [8], and [9]

discusses cost-effective strategies for using such instances. We

differ as we provide a mechanism for extracting cost elasticity

boundaries, understanding limits for the cost behavior of

elastic cloud services.

The authors of [10] improve existing monitoring systems

using custom metric aggregation scripts and service model

information, while we provide a customizable mechanism for

mapping metrics to the service model and deriving higher level

information. A mechanism for adapting cloud allocation is pre-

sented in [2], using an aggregator that monitors the workload at

each service tier, while we employ a generic approach that can

analyze a wide array of services. In [11] the authors monitor

cloud resource usage for the infrastructure owner, while we

adopt the cloud infrastructure user perspective. In [5] and

[12] the authors comprehensive monitoring systems collecting

both virtual infrastructure and service level information, while

we structure and focus on understanding the dependencies

between the monitored metrics. Monitoring performance and

data delivery is also the focus of [13], presenting a solution

tailored for a specific virtualization framework. An elastic

monitoring framework for cloud infrastructures is presented

in [14], providing a powerful query mechanism for retrieving

service level information. In our approach we also enrich

monitoring data with derived metrics, and perform service

behavior analysis towards extracting elasticity characteristics.

VII. CONCLUSIONS AND FUTURE WORK

To support the monitoring and analysis of elasticity of cloud

services, this paper introduced elasticity space and elasticity

pathway as novel concepts characterizing behavior of elastic

cloud services. We have presented MELA which supports real-

time multi-level analysis of elastic cloud services. MELA also

provides several features for customizing and integrating dif-

ferent elasticity analysis functions to support the analysis of

other complex elastic behaviors.

For the future we will enhance our prototype by incorpo-

rating cloud infrastructure elasticity analysis with our elastic

cloud service analysis. We will enhance MELA with pattern

based elasticity space and pathway functions. Furthermore,

we will work on automatic extraction of elasticity dimen-

sions dependencies and automatic discovery of cloud service’s

elasticity space boundaries, as a means of learning about the

service boundaries and behavior.

REFERENCES

[1] S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles of elastic
processes,” IEEE Computing, no. 5, pp. 66–71, 2011.

[2] R. Singh, U. Sharma, E. Cecchet, and P. Shenoy, “Autonomic mix-aware
provisioning for non-stationary data center workloads,” in International
Conference on Autonomic Computing, ser. ICAC, 2010, pp. 21–30.

[3] C. Wang, K. Schwan, V. Talwar, G. Eisenhauer, L. Hu, and M. Wolf, “A
flexible architecture integrating monitoring and analytics for managing
large-scale data centers,” in International Conference on Autonomic
Computing, ser. ICAC, 2011, pp. 141–150.

[4] S. Meng, A. K. Iyengar, I. Rouvellou, L. Liu, K. Lee, B. Palanisamy,
and Y. Tang, “Reliable state monitoring in cloud datacenters,” in
International Conference on Cloud Computing Technology and Science,
ser. CLOUD. IEEE, 2012, pp. 951–958.

[5] G. Katsaros, G. Kousiouris, S. V. Gogouvitis, D. Kyriazis, A. Menychtas,
and T. Varvarigou, “A self-adaptive hierarchical monitoring mechanism
for clouds,” Journal of Systems and Software, vol. 85, no. 5, pp. 1029 –
1041, 2012. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0164121211002998

[6] D. J. Dean, H. Nguyen, and X. Gu, “Ubl: unsupervised behavior learning
for predicting performance anomalies in virtualized cloud systems,” in
International Conference on Autonomic Computing, ser. ICAC. ACM,
2012, pp. 191–200.

[7] L. M. Vaquero, D. Morán, F. Galán, and J. M. Alcaraz-Calero, “Towards
runtime reconfiguration of application control policies in the cloud,”
Journal of Network and Systems Management, vol. 20, no. 4, pp. 489–
512, Dec. 2012.

[8] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“Deconstructing amazon ec2 spot instance pricing,” in International
Conference on Cloud Computing Technology and Science, ser. Cloud-
Com, 2011.

[9] S. Yi, D. Kondo, and A. Andrzejak, “Reducing costs of spot instances
via checkpointing in the amazon elastic compute cloud,” in International
Conference on Cloud Computing, ser. CLOUD, 2010.

[10] J. Shao, H. Wei, Q. Wang, and H. Mei, “A runtime model based
monitoring approach for cloud,” in International Conference on Cloud
Computing, ser. CLOUD, 2010, pp. 313 –320.

[11] M. Dhingra, J. Lakshmi, and S. K. Nandy, “Resource usage monitoring
in clouds,” in International Conference on Grid Computing, ser. GRID,
2012, pp. 184–191.

[12] S. Clayman, A. Galis, C. Chapman, G. Toffetti, L. Rodero-Merino, L. M.
Vaquero, K. Nagin, and B. Rochwerger, “Monitoring service clouds in
the future internet,” in Future Internet Assembly, 2010, pp. 115–126.

[13] M. Kutare, G. Eisenhauer, C. Wang, K. Schwan, V. Talwar, and M. Wolf,
“Monalytics: online monitoring and analytics for managing large scale
data centers,” in Proceedings of the 7th international conference on
Autonomic computing, ser. ICAC, 2010, pp. 141–150.

[14] B. Konig, J. Alcaraz Calero, and J. Kirschnick, “Elastic monitoring
framework for cloud infrastructures,” IET Communications, vol. 6,
no. 10, pp. 1306–1315, 2012.

87

