
SYBL: an Extensible Language for Controlling Elasticity in Cloud Applications

Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

E-mail: {e.copil, d.moldovan, truong, dustdar}@dsg.tuwien.ac.at

Abstract—Elasticity in cloud computing is a complex prob-
lem, regarding not only resource elasticity but also quality
and cost elasticity, and most importantly, the relations among
the three. Therefore, existing support for controlling elasticity
in complex applications, focusing solely on resource scaling,
is not adequate. In this paper we present SYBL – a novel
language for controlling elasticity in cloud applications – and
its runtime system. SYBL allows specifying in detail elasticity
monitoring, constraints, and strategies at different levels of
cloud applications, including the whole application, application
component, and within application component code. Based
on simple SYBL elasticity directives, our runtime system will
perform complex elasticity controls for the client, by leveraging
underlying cloud monitoring and resource management APIs.
We also present a prototype implementation and experiments
illustrating how SYBL can be used in real-world scenarios.

Keywords- elasticity, cloud computing, elasticity specification

I. INTRODUCTION

The cloud computing paradigm has increased drastically
the dynamism of resource provisioning, enabling a rapid de-
velopment of elastic cloud applications. Although elasticity
plays an important role in nowadays cloud computing infras-
tructures, it is typically regarded only from the resources
elasticity point of view [1]–[3]. For instance, Amazon [4]
provides the autoscale service, which allows the definition
of policies for automatically scaling the application. Elas-
ticHosts [5] and CloudSigma [6] are two of the providers
which have, as selling point for their infrastructures, assuring
elasticity. However, elasticity is a multi-dimensional view,
such as one can scale up/down the quality or the cost of
the applications, rather than just the resources, as shown
in recent studies [7]. Unfortunately, little focus has been
devoted to defining elasticity and controlling it from a
multi-perspective view and to allowing customers to specify
complex and changing elasticity requirements throughout
their application’s execution on a cloud infrastructure.

In our work, we consider elasticity a multi-dimensional
issue, defined by the relation between elastic properties
classified into three main dimensions namely cost, quality
and resource. In this view, the user should be able to specify
constraints and relations for the aforementioned dimensions.

This work was supported by the European Commission in terms of the
CELAR FP7 project (FP7-ICT-2011-8 #317790). We thank Yike Guo and
Benjamin Satzger for their fruitful discussion.

To this end, our approach is to develop programming elas-
ticity directives. Programming directives are well-known,
simple-to-use, and efficient means of controlling work dis-
tribution and communication at runtime. We believe that
similar directives but for controlling elasticity can also hide
the complexity of writing and executing elasticity strategies
from the user.

In this paper, we contribute the detailed design and
implementation of SYBL (Simple Yet Beautiful Language)
– a novel language for controlling elasticity in cloud appli-
cations – and its runtime system for controlling elasticity in
cloud applications. SYBL can be used for three specification
levels: application level, component level and programming
level. The elasticity specification at application level gives
a high level description of user’s preferences regarding the
application to be deployed on the cloud infrastructure. With
a higher level of granularity, component level elasticity
requirements refer to the components constituting the ap-
plication, while programming level elasticity requirements
specification deals with code-level elasticity requirements
description. The component level elasticity requirements
have been tackled by several papers so far [3], [8], [9], but
without a clear focus on cloud application elasticity. To the
author’s knowledge, programming level elasticity require-
ments specification has not been approached before, mostly
due to the complexity of elasticity in cloud computing.

SYBL can be used by application developers, software
providers, IaaS or PaaS end-users and cloud providers. This
enables a multitude of applications in which SYBL can be
used to control the elasticity. For example, a cloud customer
can try to achieve trade-offs on cost and quality, or just
try to minimize the price the customer has to pay. On the
other side, SYBL can be used by cloud providers to specify
generic elasticity strategies for the applications hosted on
their infrastructures. Therefore, SYBL enables many types
of users to specify the elasticity behavior of an application
without having to use complex cloud APIs or monitoring
tools.

The rest of this paper is organized as follows: Section
2 presents our view on elasticity requirements, Section 3
gives a semantic and syntactic description of SYBL, Section
4 describes the experimental work achieved using SYBL.
Section 5 presents related work, while Section 6 presents
the concluding remarks and future work.

Figure 1: Illustrative application structure and its deployment

II. ELASTICITY REQUIREMENTS

Elasticity is usually referred-to just in terms of resources,
without considering implications from the point of view
of other properties an application may have [1], [3], [9].
When talking about elasticity we refer to the capacity of
an application to change or to be changed according to
the context in which it resides. Elasticity targets not just
resources and their capacity to scale, but also their relations
with the different types of costs and quality, and the capacity
of an application to oscillate between different states (each
state being described by resources, cost, quality and their
attributes) for obtaining best quality at best price possible.

For describing what types of elasticity controls could
be required and the complexity of elasticity requirements,
we examine elasticity requirements from different types
of clients. Let us consider a generic application model of
which the structure is given in Figure 1. The application has
different components, including a front-end, a computation
engine, and a data engine. Such an application is quite popu-
lar, e.g., for large-scale data analytics, in which the front-end
accepts requests from clients, the computation engine can be
implemented as parallel applications, and the data engine
may have an extensive, varying amount of calls to different
data sources from HBase [10] to Cassandra [11] or user-
defined repositories. As a result, each component consists
of multiple processes, which at runtime may need to scale
depending on user requirements which are parametrized by
the number of users, the difficulty of the computations and
the type of processes. Each process of the component has
certain elasticity requirements at deployment. Depending
on the user-defined elasticity specifications, the processes
can be scaled individually either by creating more process
instances in the same or different virtual machines, or by
allocating more or less computing resources.

The elasticity requirements are demands formulated by
users that they consider necessary and that contain necessary
conditions for the application to be an elastic one. Elasticity

can be a subjective notion and depends on the type of
the user and the granularity at which he/she wants to
specify the application’s elasticity. On one hand, the purpose
of elasticity requirements varies from controlling costs to
achieving higher quality or even specifying demands on the
relation between cost, resources and quality, for example:

• Cost-related elasticity requirements: A cloud customer
may specify that when the total cost is higher than 800
Euro, there should be a scale-in action for keeping costs
in acceptable limits.

• Quality-related elasticity requirements: A cloud user
may need to monitor different quality parameters,
which should be in acceptable limits. For instance,
a software provider can specify constraints on the
response time depending on the number of users cur-
rently accessing the provided software. A developer
could specify that the result from a data analytics
algorithm must reach a certain data accuracy under
a cost constraint without caring how many resources
should be used for executing the code of that algorithm.

• Elasticity requirements on the relation between cost
and quality: A cloud provider could specify its pricing
schema or price computation policies, for example that
when availability is higher than 99% the cost should
increase by 10%.

On the other hand, the user needs different granularities at
which he/she can specify elasticity requirements, therefore,
having specifications enforced at different levels, as opposed
to usual approaches in resource allocation and reallocation
such as to control the resource only at the whole application
or component level [3], [9], [12]. To this end, the following
elasticity controls at different levels should be supported:

• Application level elasticity requirements: elasticity re-
quirements can be applied on the overall availability
of the whole application, imposing aggregating data
about the different components of the application and
the communication between them. The cost for the
application at a defined level, refers to the cost of com-
ponents usage, communication between components
and storage.

• Component level elasticity requirements: the user could
specify different requirements based on the component
type, i.e. the nature of requirements for the computation
engine that are different from the requirements for the
front-end component. The user can control the cost
associated with a component, which means aggregat-
ing the cost of processes, storage and communication
associated to the component but residing on different
virtual machines.

• Programming level elasticity requirements: the user
could need to specify that for some specific code the
CPU size and memory should be really high, when the
cost is high. In this case, when specifying requirements

about the cost, the developer refers to the cost for
running the specific portion of code.

To support the above-mentioned requirements, we char-
acterize elasticity properties into a ”resources-cost-quality”
representation in Figure 2 where each axis contains sub-
dimensions of cloud application requirements specification.
The user should be given the opportunity of specifying the
application’s behavior, most specifically in what direction
it should automatically scale in different cases in the space
defined by the three axes (resource, cost and quality). Many
properties from each of the elasticity dimensions are strongly
interdependent, an elasticity property belonging to one axis
being a multi-dimensional function of properties belonging
to the other two axes.

Figure 2: Common dimensions for application elasticity

We, therefore, need a novel approach towards elasticity
control specifications. Our approach is to use programming
directives that can be used to monitor and specify different
elasticity constraints and strategies. Programming directives
for controlling elasticity should be easy to use. However,
they should be generic and extensible.

III. SYBL SYNTAX AND SEMANTICS

A. SYBL overview

The initial idea of using elasticity directives for cloud
computing is first described in [13], targeting programming
level directives in elastic computing. The directive-based
elasticity specification can substantially reduce the overhead
by delegating the control to underlying elasticity middle-
ware. SYBL is designed for that purpose in order to meet
requirements mentioned in Section II. Before describing in
detail how we design and implement directives for elasticity
controls, we will overview the concepts of elasticity pro-
gramming directives in this section.

SYBL enables elastic specifications at different granu-
larities, depending on the user’s demands and perspective:
application, component and programming (see Figure 1).
As opposed to usual mechanisms of reallocations, where
rules (mostly SLAs) are specified at a per-application level,
SYBL provides greater elasticity granularity. At the highest

level, the application level, certain global application char-
acteristics can be described. At the component level we can
express a lower level description for black-box components
or elasticity requirements focusing at a level lower than
application but higher than code, while the programming
level enables the user to specify elasticity requirements
at code level. One may argue on the need of application
level specifications, when the user can specify broadly all
the requirements at programming and at component level.
This application level meets cloud users who may want to
deploy their application as a black-box, or cloud providers
who receive the application as a black box without having
any permissions to access it. By providing these finer-
grained specification levels, we enable the user to decide
where elasticity specifications could or should be placed,
considering application’s elasticity requirements.

The SYBL language, being a directive-based one, is easy
to understand and use, while aiming of high expressiveness.
The elasticity specification described in the previous sec-
tion would be a strategy ”averageCost > 300 Euro:
scaleIn”. This would simplify the complexity of using the
cloud API and multiple monitoring tools calls to implement
elasticity controls as well as enable the multi-dimensional
elasticity controls, which are not well supported currently.
Using programming level elasticity directives, the user can
focus on defining the strategy and on the appropriate mea-
sures he/she should take.

SYBL empowers the user to design elasticity specifica-
tions which reference other elasticity specifications. After
defining a complex constraint, the user can simply specify
strategies about its violation or fulfillment, without having
to re-describe it as a condition for the new strategies. It also
enables a hierarchical description of elasticity specifications,
for cases of overlapping constraints or strategies or unclear
elasticity descriptions.

B. Language constructs

1) Predefined functions: SYBL includes several prede-
fined functions which regard two different kinds of informa-
tion: information on the current environment and informa-
tion on the elasticity specifications. The environment com-
prises different types of static and dynamic cloud informa-
tion. When we refer to the environment, we have to consider
the level at which each of these predefined functions or vari-
ables appear. As described before, the information differs in
the different levels of elasticity requirements, and therefore
the environment which comprises all the information at a
given moment in time will also differ based on these levels.
Accessing information on the current environment enables
the user to be aware of capabilities of the underlying cloud
computing infrastructure and the current application state.

SYBL contains several predefined functions like GetEnv
which can be used to obtain the current environment (tak-
ing also into account the level from which it is called),

Function Description
GetEnv Current cloud infrastructure environment
Violated Checks whether the constraint sent as parameter

is violated
Enabled Checks whether an elasticity specification is en-

abled or not
Priority Returns the priority of an elasticity specification

Table I: Example of predefined functions

V iolated/Fulfilled returns true or false, depending on
whether or not the constraint received as a parameter is
fulfilled, the Priority function associates to each elas-
ticity specification a priority (see Table I). The environ-
ment variables refer to general information like the cur-
rently considered compute bid, the cost spent, etc. (see
Table II). The environment variables depend on the level
at which they appear in elasticity specifications. The en-
vironment variables have at their source more complex
function calls which are used frequently. For example,
optimal_cloud_provider variable hides a call to
GetEnv().findOptimalCloudProvider().

Environment variable Description
optimal cloud provider The cloud provider that the decision compo-

nents finds to be best suited
compute bid The current bid for the current cloud provider
total cost The cost - depends on the level at which

variables are being referenced

Table II: Examples of predefined environment variables

Equations 1 and 2 formally describe the set of variable
and functions predefined in SYBL, which will be later used
for the description of monitoring, constraints, and strategies.

DefFunctions := {GetEnv,Balance, V iolated,

Enabled, Priority} (1)

EnvV ariables := {compute bid, total cost,

optimal cloud provider} (2)

2) Monitoring directives: The monitoring directives start
with the MONITORING keyword and assign to a new vari-
able some types of cloud information to be monitored (see
Equation 3). The monitoring variable is assigned existing
information or formulas constructed for combining several
types of cloud information.

Mi := MONITORING varName = xj |
MONITORING varName = formula(x1...xn)

where

xj ∈ c, c ∈ ApplicationDescriptionInfo (3)

3) Constraints directives: A constraint describes the lim-
its in which the current application’s description can oscil-
late. As shown in Equation 4 a constraint directive starts with

the keyword CONSTRAINT, and uses mathematical signs
(<,>,>=, <=, ! =,==) for reflecting which values are ad-
missible. Constraints can be established on a simple type of
cloud information or on a complex type of cloud information
determined by formulas (formulai or formulaj).

Ci := CONSTRAINT p ∈ formulai(x) rel formulaj(y)

where

x, y ∈ ApplicationDescriptionInfo

rel ∈ {≤,≥, 6=,=} (4)

4) Strategies directives: A strategy describes a recipe
to be followed in case the triggering condition becomes
true. A strategy starts with the keyword STRATEGY and
usually has the form Condition:Action or WAIT Condition
(see Equation 5). The first pattern triggers the execution
control action (e.g., deploy, migrate, delete, scale) specified
in case the condition is true, while the second pattern waits
for the condition to be true. The condition can also refer
to fulfillment or violation of constraints, and actions to be
taken in those cases.

Si := STRATEGY CASE [Condition : Action]|
WAIT Condition | STOP | RESUME|

EXECUTE strategyName parameter1...n

where

Condition : DefFunctions→ {true, false} (5)

C. SYBL Runtime

The SYBL runtime takes elasticity specifications and
carries out elasticity controls at runtime. In the SYBL run-
time, elasticity requirements expressed through SYBL will
be interpreted, processed by the Control Service and then
enforced by the use of cloud APIs. The Control Service is
the central part of the runtime system, being the component
which handles the actual coordination between the specified
state of the application from user’s perspective, and the
current application elasticity state.

The deployment of SYBL runtime system from Figure 3
mainly concerns the SYBL programming directives, which
are more difficult to be enforced since they need to be caught
with higher precision, but also applies to component and
application level directives. The SYBL Local Interpreter is
instantiated within each process containing SYBL directives.
The SYBL Local Interpreter catches the SYBL directives,
interprets them and forwards the requests to the Local
Service. The latter is a part of the Control Service, is
deployed and resides on the VM and enforces the differ-
ent elasticity requirements coming from processes of the
same application. The main Control Service communicates
with Local Services and correlates received information for
enabling the enforcement of requirements at component

level and application level, even when the component or
application processes do not reside on the same VM. The
Control Service also communicates with cloud APIs and
monitoring tools for having an up-to-date knowledge about
the application elasticity state.

Figure 3: SYBL based control at runtime

The Control Service uses monitoring tools and cloud APIs
for providing the necessary functionality. The multitude of
cloud APIs and monitoring tools that elasticity requirements
depend on can seem overwhelming. The need for more
than one tool with which the SYBL runtime interacts is
obvious, since a single tool could not provide a complete de-
scription of the cloud infrastructure capabilities and generic
mechanisms of monitoring and interacting with the cloud
infrastructure. For instance, Nagios [14] and Ganglia [15]
are many times used together due to the fact that they
compensate each-other in the information provided and the
mechanism of collecting data.

These tools are in a continuous change and this is why
the language should not be bound to a specific cloud API.
However, the Control Service should be able to interface to
the tools specific to different cloud providers (e.g. via plug-in
mechanisms). SYBL is designed to be extensible: that is, to
have the capacity of enveloping new concepts without much
difficulty. SYBL users can easily add metrics and concepts
they need to focus on, the extensibility property being one
of the strong points of SYBL language.

D. Examples of elasticity controls

The following SYBL examples do not refer to a specific
language implementation, the intention being simply to show
that short and simple SYBL elasticity requirements hide the
actual complex implementation and enforcement layers.

Listing 1 shows how a cloud provider can actualize the
price perceived for the current application depending on

application’s availability so far. The strategy Str1 specifies
the price for the case in which the availability is greater than
98%. The strategy Str2 overrides the previous specification,
stating that an availability larger than 99% should set the
price at 300 Euro.

Listing 1: SYBL elasticity requirements - cloud provider
#SYBL.ApplicationLevel
Str1: STRATEGY CASE availability>98% setPrice(100)
Str2: STRATEGY CASE availability>99% setPrice(300)
Priority(Str1)<Priority(Str2)

Listing 2 shows possible elasticity requirements from the
application developer side. Constraint Component2.Cons5
specifies that the CPU usage in the computation engine
should be less than 80% for avoiding performance degrada-
tion due to high CPU load. Constraints Cons3 and Cons4
overlap in the sense that both refer to the costs, but at
different levels: Cons4 specifies that the cost of hosting the
data engine should be less than 600 Euro, while Cons3
refers to the cost of hosting the entire application. The
programming level elasticity requirement encompasses the
sequence of code, which for this case can be a data analysis
algorithm, setting constraints about data accuracy and costs,
without having specific resource-related requirements.

Listing 2: SYBL elasticity requirements - developer
#SYBL.ApplicationLevel
Mon1: MONITORING rt = Quality.responseTime
Cons1: CONSTRAINT rt < 2 ms. when nbOfUsers < 1000
Cons2: CONSTRAINT rt < 4 ms. when nbOfUsers <

10000
Cons3: CONSTRAINT totalCost < 800 Euro
Str1: STRATEGY CASE Violated(Cons1) OR Violated(

Cons2): ScaleOut
Priority(Cons1)=3, Priority(Cons2)=5
#SYBL.ComponentLevel
ComponentID = Component3; ComponentName= Data

Engine
Cons4: CONSTRAINT totalCost < 600 Euro
#SYBL.ComponentLevel
ComponentID = Component2 ComponentName= Computing

Engine
Cons5: CONSTRAINT cpuUsage < 80%
#SYBL.ProgrammingLevel
Cons6: CONSTRAINT dataAccuracy>90% AND cost<400

These examples show the ease of specifying elasticity re-
quirements with SYBL and the power that lays underneath
the simple description. All these elasticity requirements are
enforced with no effort from the user side, and transformed
into calls to different APIs and tools that help at enforcing
these elasticity requirements.

For cases where users (software providers and cloud
providers) have a black box application/component for
which they need to specify elasticity requirements, elasticity
specifications can be annotated inside the XML-based de-
scriptions of the application/component (e.g. OVF). Listing
3 shows how a specific elasticity specification can be inte-
grated into the already existing sections of the OVF format.

The resource ranges can be integrated into the already
existing OVF structure, e.g. the specification bellow states
that the minimum amount for memory (OFV resource type
with value 4) should be greater than 384 MB. The elasticity
requirements for quality and cost are added as an XML
structure in the additional section of OVF.

Listing 3: Example of elasticity constraints in OVF
<VirtualHardwareSection><Item ovf:bound="min">

<rasd:InstanceID>0</rasd:InstanceID>
<rasd:Reservation>384</rasd:Reservation>
<rasd:ResourceType>4</rasd:ResourceType>

</Item> </VirtualHardwareSection>

IV. EXPERIMENTS

We have developed a prototype of SYBL1 containing a
partial implementation of its runtime system. We currently
support the SYBL elasticity specifications for processes
residing inside the same VM, the implementation of the
Control Service (Figure 3) being in our focus as future
work. We support SYBL elasticity specifications as Java
annotations processed at runtime by AspectJ or as SYBL
enriched XML descriptions, which are interpreted and then
enforced through the Local Service. We tested the current
prototype on our local cloud running OpenStack [16]. In the
current implementation, Ganglia [15] provides information
on computing resources allocated to virtual machines and
their usage, the number of packets sent and received by each
virtual machine, etc. JClouds [17] is used mainly for scaling
the current instances and for controlling them.

A. Experimental application

The structure of our experimental application is shown in
Figure 4 and described in Section II. In our experiments we
focus on illustrating the feasibility of SYBL specifications.

Figure 4: Application structure used for experiment

For this experimental application we focus on the data
engine and its ability to be dynamically controlled by the

1Detailed prototype implementation and further experiments can be found
at http://dsg.tuwien.ac.at/prototypes/SYBL/index.html.

SYBL user. As data engine we use Cassandra - a NoSQL
distributed database system, while at the business side we
use the YCSB [18] benchmark for simulating different types
of workload. The application is mainly composed of a
virtual machine hosting the business end of the application
and a cluster of virtual machines hosting Cassandra nodes.
The workloads used represent a combination of read, write,
scan and update operations, actually characterizing real-life
applications. For example, a read-oriented workload can be
related to an application focused on photo-tagging, where the
largest part of the operations is reading tags. The user of this
application may have the following elasticity requirements:

• Application level elasticity requirement: the user may
need for the overall cost of his application being hosted
for this experiment to be less than 200 Euro

• Component level elasticity requirement: the user could
specify strategies for the case in which the average
number of IOs is too small, this way generating one
more component business component and therefore
more workload

• Programming level elasticity requirement: the user may
want for his application data-end to scale dynamically
when running the workload, for keeping the CPU usage
in admissible values.

B. SYBL annotations-based elasticity requirements

The SYBL annotation (see Listing 4) states at component
level that in case the average number of IOs is less than 50
application should scale out (strategy St1) for introducing a
higher workload. Strategies St2 and St3 of the component
level annotation enforce the two constraints specified, for
keeping resource utilization in acceptable ranges.

Listing 4: Component-level SYBL annotation
@SYBL_ComponentContext(constraints=
"Co1:CONSTRAINT memory.usage<80% AND cpu.usage

<80%;
Co2:CONSTRAINT memory.usage>20% AND cpu.usage>20%"
,strategies=
"St1:STRATEGY CASE IO.averageNb<50:ScaleOut;
St2:STRATEGY CASE Violated(Co1): ScaleOut;
St3:STRATEGY CASE Violated(Co2): ScaleIn")

The programming level SYBL specification from Listing
5 annotates a method executing workload that generates
database operations. The user specifies an elasticity require-
ment that the data source should automatically scale and
keep the CPU usage on the data engine at predefined levels.
From the three specified constraints just two are always
enabled. This is due to the higher priority of constraint
Co3 next to the constraint Co1. The strategies refer to the
constraints giving scaling advises with respect to the data
source for the two mentioned cases. As a result of producing
the workload referred by this method, the database will scale
dynamically as we will see in the next subsection.

Figure 5: (a) Evolution of application in elasticity space (b) CPU usage correlation with the number of VMs used

Listing 5: Programming-level SYBL annotation
@SYBL_ProgrammingContext(type=AnnotType.DURING,
constraints="Co1:CONSTRAINT cpuUsageData < 65;
Co2:CONSTRAINT cpuUsageData > 30;

Co3:CONSTRAINT cpuUsageData < 85 WHEN cost > 70",
monitoring ="Mo1:MONITORING cost = cost.instant;
Mo2:MONITORING dataThroughput = throughput.

datasource;
Mo3:MONITORING cpuAllocatedData = cpu.size.

datasource;
Mo4:MONITORING cpuUsage = cpu.usage;
Mo5:MONITORING cpuUsageData = cpu.usage.

datasource",
strategies=
"St1:STRATEGY CASE Violated(Co2):

scaleInDataSource;
St2:STRATEGY CASE Enabled(Co1) AND Violated(Co1)

: scaleOutDataSource;
St3:STRATEGY CASE Enabled(Co3) AND Violated(Co3)

: scaleOutDataSource;",
priorities="Priority(Co3) > Priority(Co1)")

C. Results

Based on elasticity directives specified in Listing 5, the
elasticity runtime behavior of the data engine is scaled on
multiple instances hosting Cassandra nodes, considering the
CPU usage and cost metrics. Figure 5a shows the elasticity
evolution in terms of cost, quality and resources, each three-
dimensional point being a three-dimensional state of the
data source part of the application. The quality in this
case refers to the throughput, the resources refer to the
allocated CPU size while the cost is estimated based on
the resources allocated. The chart shows how based on the
SYBL elasticity annotations the application evolves in the
elasticity space, adjusting the resources, cost and quality to
the user’s elasticity requirements. Figure 5b gives a view on
the evolution of the application on the data engine in terms
of number of instances and CPU used: with the increase of
instance number, produced by the SYBL strategies, the CPU
usage decreases.

This experiment reveals SYBL’s strength, enabling users
to describe the application elasticity requirements from the

three perspectives: monitoring, strategies, and constraints.
We have shown how SYBL and its runtime system can
ensure through the business level elasticity specifications the
elastic control of data sources, the user being able to specify
his/her requirements at the desired granularity, and depend-
ing on the data that needs to be taken into consideration. The
results show that the application elasticity has accorded with
specified SYBL directives following accurately the desires
of the SYBL users.

V. RELATED WORK

Resource re-allocation and requirements specification
have been a focus usually from the SLA fulfilment or
scheduling and resource allocation perspectives. Macias et
al. [19] provide an evaluation of possible SLA administration
strategies, showing how cloud providers revenues change
when optioning for different strategies. Fard et al. [20]
approach static scheduling with a different view, defining a
multi-objective optimization algorithm and demonstrating its
usefulness on real-world applications. Han et al. describe in
[12] an approach for fine-grained scaling at resource level in
addition to the VM-level scaling, which uses a lightweight
scaling algorithm for improving resource utilization while
reducing cloud providers’ costs. Our approach differs from
these works in two main points: we support (i) multiple lev-
els of elasticity controls using (ii) multiple elastic properties.

In [1] the authors present an attempt to tackle the problem
of elasticity from the point of view of resource and elasticity
in SaaS based clouds. The authors propose relating cost
with quality: cost per performance metric (C/P) and cost
per throughput (C/T). Li et al. [21] review the existent
metrics for evaluating commercial cloud services from eco-
nomics evaluation metrics to elasticity evaluation metrics
setting the focus on the complexity of cloud computing
environments. Sharma et al. [2] propose a framework for
cost optimization, considering the fact that the resources, the
cost and the quality obtained influence each other. Therefore,
the idea of application elasticity in cloud as a complex

multi-dimensional problem is not new, and research effort
goes into providing solutions or partial solutions. However,
existing works have not developed flexible languages for
controlling multi-dimensional elastic properties.

In [8] Galan et al. propose an extension of OVF for service
specification in cloud environments describing resource as
well as business rules and enforcing them through resource
allocation/de-allocation. Chapman et al. [3] describe an
elastic service definition in computational grids. Morán et al.
[9] provide a rule-based approach for specifying application
requirements. In contrast with these two approaches, our
main focus is describing elasticity requirements and the
different granularities at which they can be specified by
developers, end-users or cloud providers.

The major difference between existing work and our
approach is that our work tackles elasticity requirements
from more than one perspective (resource, quality, cost) and
at different levels of granularity, thus assigning the user the
capacity of specifying when the application should scale
throughout its execution and, most importantly how.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents SYBL and its runtime system for con-
trolling elasticity requirements in cloud applications. SYBL
enables a wide range of users, from developers to cloud
customers and cloud providers, to specify the application’s
elasticity in a simple way, while the actual complex enforce-
ment of elasticity remains transparent to the users. SYBL
features, covering different elasticity constraints, strategies
and monitoring directives, permit a wide range of flexible
ways for controlling application’s elasticity, while for cases
where some needed metrics are not yet present in SYBL,
the language can be easily extended to reflect the elastic
properties of user’s focus.

As future work, we intend to extend our implementation
of the SYBL runtime stack and utilize it in a fine-grained
elasticity module for various types of applications from
gaming to data-intensive applications, addressing elastic-
ity requirements issues which depend on application type.
Furthermore, new elasticity directives for controlling data
elasticity will be covered.

REFERENCES

[1] P. Martin, A. Brown, W. Powley, and J. L. Vazquez-Poletti,
“Autonomic management of elastic services in the cloud,” in
Proceedings of the 2011 IEEE Symposium on Computers and
Communications, ser. ISCC ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 135–140.

[2] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh, “A cost-aware
elasticity provisioning system for the cloud,” in Distributed
Computing Systems (ICDCS), 2011 31st International Con-
ference on, june 2011, pp. 559 –570.

[3] C. Chapman, W. Emmerich, F. G. Marquez, S. Clayman, and
A. Galis, “Elastic service definition in computational clouds,”
Apr. 2010, pp. 327–334.

[4] Amazon Elastic Compute Cloud (EC2).
http://aws.amazon.com/ec2/.

[5] Elastic Hosts. http://www.elastichosts.com/.

[6] Cloud Sigma. http://www.cloudsigma.com/.

[7] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles
of elastic processes,” Internet Computing, IEEE, vol. 15,
no. 5, pp. 66 –71, sept.-oct. 2011.

[8] F. Galán, A. Sampaio, L. Rodero-Merino, I. Loy, V. Gil, and
L. M. Vaquero, “Service specification in cloud environments
based on extensions to open standards,” in Proceedings of the
Fourth International ICST Conference on COMmunication
System softWAre and middlewaRE, ser. COMSWARE ’09.
New York, NY, USA: ACM, 2009, pp. 19:1–19:12.

[9] D. Morán, L. M. Vaquero, and F. Galn, “Elastically ruling the
cloud: Specifying application’s behavior in federated clouds,”
in IEEE CLOUD’11, 2011, pp. 89–96.

[10] HBase NoSQL Database. http://hbase.apache.org/.

[11] Cassandra NoSQL Database. http://cassandra.apache.org/.

[12] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight
resource scaling for cloud applications,” in Proceedings of the
2012 12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (ccgrid 2012), ser. CCGRID ’12.
Washington, DC, USA: IEEE Computer Society, 2012, pp.
644–651.

[13] S. Dustdar, Y. Guo, R. Han, B. Satzger, and H.-L. Truong,
“Programming directives for elastic computing,” Internet
Computing, IEEE, p. (to appear), 2012.

[14] Nagios. http://www.nagios.org/.

[15] Ganglia monitoring system. http://ganglia.sourceforge.net/.

[16] OpenStack EC2 API. http://api.openstack.org/.

[17] JClouds API. http://www.jclouds.org/.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,” in
Proceedings of the 1st ACM symposium on Cloud computing,
ser. SoCC ’10. New York, NY, USA: ACM, 2010, pp. 143–
154.

[19] M. Maciandas, J. Fito and, and J. Guitart, “Rule-based sla
management for revenue maximisation in cloud computing
markets,” in Network and Service Management (CNSM), 2010
International Conference on, oct. 2010, pp. 354 –357.

[20] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer,
“A multi-objective approach for workflow scheduling in het-
erogeneous environments,” in Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (ccgrid 2012), ser. CCGRID ’12. Washing-
ton, DC, USA: IEEE Computer Society, 2012, pp. 300–309.

[21] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a catalogue
of metrics for evaluating commercial cloud services,” in
Grid Computing (GRID), 2012 ACM/IEEE 13th International
Conference on, sept. 2012, pp. 164 –173.

