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Abstract—Elastic controllers autonomically adjust the alloca-
tion of resources in cloud computing systems. Usually such con-
trollers assume that control actions will take immediate effect. In
clouds, however, actuation times may be long, and the controllers
can hardly guarantee acceptable levels of service if they neglect
these actuation delays. Therefore, the ability to correctly estimate
the time that control actions take effect on the systems is crucial.
However, detecting actuation delays in elastic computing systems
is challenging because cloud systems provide only inaccurate and
incomplete data about reconfigurations timing.

In this paper, we tackle the problem of estimating the delay
of control actions in elastic systems. We identify recurring
types of changes in the monitored metrics and requirements to
properly carry out the estimation. Based on that, we develop
a novel framework for the actuation delays estimation that
utilizes change point detection techniques. We conduct several
experiments with real-world systems to illustrate the feasibility
and applicability of our framework.

Index Terms—Elasticity, cloud, system identification, change
point detection

I. INTRODUCTION

In order to be aligned with the fluctuations of the incoming
workload elastic cloud systems acquire fresh computational
resources when the load increases and release them when the
load decreases. By dynamically optimizing the total amount
of acquired resources, elastic cloud systems can provide con-
sistent quality of service while minimizing costs.

This paper targets elastic systems that are implemented by
coupling a dynamically adaptive system (DAS) with a con-
troller in a closed-loop style to provide self-* properties, like
self-optimization of resources [4]. The controller implements
the so called MAPE-K loop [14] by repeatedly performing the
following activities: monitor the main variables of the DAS,
like the incoming load, the average usage of resources, and the
system performance; analyze the monitoring data to identify
trends or risky situations that may lead to unacceptable system
behaviors, for example, degraded end-to-end performance;
plan a control strategy to provide the required level of service;
and eventually, implement the control actions by means of the
actuators.

In particular, we examine the case where the DAS is a
virtualized system that runs in a cloud and contains all the
required logic to manage resource acquisition and release.
The controller uses the available cloud APIs for monitoring
the virtualized system and implementing the control actions,

i.e., adding or removing virtual machines (VMs) at runtime.
Examples of such systems can be found in [19], [22], [28].

A. Motivation

Currently, the above-mentioned elastic systems are designed
under the following assumptions: (i) they can compute a con-
trol strategy within their control loop; (ii) the implementation
of the control actions is immediate; and (iii) the effects of the
control actions on the system behavior appear with no delay.
Ideally, the controller analyzes the monitoring data, determines
a suitable control strategy, and triggers the proper actions in
every and all control cycles. In turn, control actions complete
and take effect before the next cycle begins.

To date, existing research has focused on optimizing con-
trollers to make the first assumption hold, i.e., find an optimal
solution fast enough, while the other two assumptions are
satisfied “by design”: Either controllers are slowed down
such that control actions appear to be immediate, or they
are inhibited between consecutive control actions by means
of hystereses [3]. This approach becomes critical in elastic
systems where actuation times may be longer than expected.
In fact, cloud platforms may take a relatively long time to
deploy virtual machines [18]. And after that, virtual machines
may need additional time to boot, configure their application
components, and eventually, join the elastic systems [23].

In this situation it is very difficult, or even impossible,
for traditional elastic controllers to maintain the expected
quality of service at the expected costs. In fact, when the
input workload changes at a faster pace than the system,
control actions will be late and this may lead to unstable
behaviors and resource thrashing [8]. For example, consider
the case that the incoming load increases and the elastic system
asks for additional resources. While resources are provisioned
the incoming load may vary: If it increases further, in the
next control cycle the system will be under-provisioned, and
the controller will add even more resources. Instead if the
incoming load decreases, in the next control cycle the system
will be over-provisioned, and the resources just added will be
soon removed.

One can improve controllers by letting them work at a
faster pace and by explicitly taking into account the time
each control action takes to complete, i.e., its actuation delay.
Two questions arise in this case: i) How can controllers and
their designers exploit this knowledge to improve the quality
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of control?, and, ii) How can actuation delays be properly
measured, estimated and modeled?

Several researchers investigated the first question. For exam-
ple, Ramirez et al. [24] propose the use of Genetic Algorithm
to generate control strategies that account for actuation delay
of the different control actions; Fritsch et al. [10], [11] propose
a time-bounded scheduling algorithm for control actions in the
automotive domain; and Gambi et al. [12] propose a novel
technique based on model predictive control that accounts for
delayed effects of scaling actions in the cloud. Consistently, all
of these researchers acknowledge the importance of actuation
delays, but assume that their values are known and constant.
To our best knowledge however there is a lack of solutions for
building accurate models to predict actuation delays that con-
trollers, especially in elastic systems, can seamlessly integrate
in their control loops.

B. Research Problems and Contributions

In this paper, we focus primarily on the problem of estimat-
ing the actuation delays for elastic systems, as accurate estima-
tions are the foundation for building the reliable models that
controllers need to improve their effectiveness. The estimation
of actuation delays in elastic systems is challenging for several
reasons. First, there is no single, reliable and easily measurable
metric that can be used to estimate the time that changes
in elastic systems take to complete. Cloud systems provide
users with information about the current system configuration
in terms of the number of virtual machine deployed, their
status, and their type. But such data may be incomplete and
inaccurate: They are inaccurate because cloud systems notify
changes in the system configuration when physical resources
are allocated to the VM, even before the OS starts. They
are incomplete because cloud systems are not aware of the
application components inside the VMs, therefore they cannot
tell when and if those components are ready to process any
request.

Second, the effects of adapting an elastic system may appear
with a variable delay on its behavior depending on the type of
adaptation and the current state of the system. For example,
when an elastic database system scales out its persistence tier,
the delay may depend on the actual distribution of the data
among the databases and the number of databases running.

Third, the same adaptation may result in different effects
across system properties and each of them may be observed
with a different delay. For example, when a new server is
added to the Web tier the effects on the system performance
can be quickly observed, while the effect on system availability
may be visible only later. As a result, it is difficult to select
a proper metric (or a limited set of metrics) that must be
monitored to understand when the action starts and when it is
over.

Finally, clouds are shared between several users, and this
may result in subtle interferences that create transitory, yet
abnormal, deviations from the normal behavior. These can
be misinterpreted as effects of system changes, and make the

estimation difficult. They require a proper treatment, otherwise
the overall accuracy of the estimation may degrade.

In our approach, we observe the behavior of the controlled
systems through the available monitoring infrastructure, as
designers would do during system identification or controllers
do at runtime. We estimate the actuation delays by analyzing
how system reconfigurations affect the evolution of the system
behavior, and we focus on finding the precise moment when
reconfigurations are over, i.e., when all their effects appear on
the observed metrics.

This is in fact the information that a controller needs in
order to decide when it is safe to schedule the next control
action such that it will not interfere with the ones already
submitted, and vice versa. To this end, this paper makes the
following contributions:

• We provide a detailed analysis of the problem of esti-
mating the delay of control actions in elastic systems,
covering recurring types of changes in the monitored
metrics and requirements to properly carry out the delay
estimation.

• We develop a novel framework for the estimation of
actuation delays and a prototype implementation.

• We conduct an empirical evaluation about the feasibility
and applicability of the proposed framework with two
real-world case studies.

The remainder of the paper is organized as follows: Sec-
tion II presents a detailed analysis on the problem of delay
estimation in elastic cloud systems. Section III describes the
design and implementation of our delay detection framework.
Section IV evaluates our techniques with real case studies.
Section V discusses the relate work. Finally, Section VI
concludes the paper and presents the future work.

II. ANALYSIS OF ACTUATION DELAYS IN ELASTIC
SYSTEMS

A. Reference Model for Delay Estimation

To ease the analysis of problems and requirements for
the estimation of actuation delays, we introduce the relevant
concepts related to actuation delays:

• Action. In the context of the considered elastic systems
the concept of control action, or reconfiguration action,
identifies the controller’s ability to change the system
resources allocation by starting or terminating instances
of virtual machines.

• Actuation time. Actuation time measures the time that
actuators need to implement a reconfiguration action, that
is, the time that the cloud needs to deploy or terminate
VMs. Actuation time accounts only for the time to
reconfigure the system at the infrastructure layer, hence it
does not account for the time to boot or shutdown virtual
machines and to configure the system at the application
layer.

• Action effect. Action effects are modifications in the
operation parameters of the system that derive from the
application of a control action.
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Fig. 1. Analysis of changes in system metric for delay estimation

• Metric. Metrics are measurable properties of a system.
Action effects can be observed through metrics, therefore
we study these changes to characterize them.

• Actuation delay. The focus of this work is to analyze
the actuation delays, i.e., the amounts of time needed for
control actions to show their effects on the system behav-
ior. Actuation delays account for the time to implement
changes at the infrastructure level, i.e., the actuation time,
for the additional time to reconfigure the elastic system at
the application level, and the time to observe the changes
of the monitored metrics. Changes at the infrastructure
level depend on the control action and on the cloud
platform, observation delays depend on the monitoring
framework and observed metric, while application-level
reconfigurations may depend on the actual operational
point of the application itself, especially if they entail data
replication and distribution. In this work, we assume that
reconfigurations introduce a disturbance in the system
metrics that has limited time-span; in other words, we
assume that the system eventually reaches a stable state.

For the sake of explanation, we illustrate the above-
mentioned concepts over a realistic example. Figure 1 shows
the evolution of a system metric (solid line) in time, while
the system is subjected to input disturbance (not showed in
the figure) and changes in the system configuration (white
arrows). We highlight important changes of the output metric
by means of (red) circles. They reflect on the metric changes
in the system behavior that may be caused by background
operations, interferences, environmental variability, changes in
the inputs, and the application of reconfiguration actions. To
estimate the delay of reconfiguration actions, we are interested
in finding only those changes that are caused by the actions
and that we highlight with (black) crosses in Figure 1.

B. Classifying Action-Effect Types

Depending on the system under investigation, the observed
metric and the applied action, we can see different effects,
i.e., the metric shows a different form after the application of
the action. During our analysis of elastic systems, we noticed
that when similar actions are applied to the system under a
constant workload the output metrics change in similar ways,
even if the system had configurations before the control action
changed it. We use these recurring patterns to compile an
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Fig. 2. Examples of changes in system metrics after reconfigurations.

initial classification of changes that is exemplified in Figure 2,
and that we briefly discuss in this section1.

In Figure 2, we group reconfiguration actions into
Scale Out and Scale In actions where Scale Out
identifies the addition of new resources, and Scale In
indicates the removal of resources. We then group patterns
by metrics and types of elastic systems. At the time of
writing, we considered two types of elastic systems widely
used in clouds, Batch Systems and NoSQL Databases; and
three metrics that are commonly used to characterize their per-
formance: Throughput, average response time (Avg RT), and
CPU usage. For batch job processing systems, throughput and
average RT define the end-to-end qualities that elastic systems
need to provide by acting upon their configuration [12]. For
NoSQL databases instead, CPU usage is the reference metric
considered by elastic controllers it being the one that impacts
the most the system behavior [17].

Figure 2 shows how these metrics evolve after the applica-
tion of scaling actions:

• Batch system throughput: When more resources are added
to the system (Scale Out) the throughput increases and
stabilizes, while when resources are removed it decreases
and stabilizes.

• Batch system average response time: For the
Scale Out action, we see that when the system

1We provide supplement materials at http://www.infosys.tuwien.ac.at/
prototypes/elasticTesting/index.html for additional details about the classifi-
cation and experiments.
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is under-provisioned, i.e., the average response time is
constantly increasing for a constant load, adding more
resources may end up in two cases: The response time
starts decreasing constantly; this happens if enough
resources are added to the system. Otherwise, the
response time keeps increasing with a slower pace. For
the Scale In action we have the opposite situations.

• NoSQL DB CPU Usage: After a Scale Out we see
that the CPU usage has a spike, and after a transitory
period, it stabilizes. While after a Scale In instead it
initially drops almost to zero, and then slowly recovers
to its new value.

This classification captures the expected system response
to different stimuli and is important because it reduces the
complexity of identifying what changes can be observed in
the output metrics by clustering the effect of different actions
in predefined classes. Currently, our classification contains a
total of fifteen patterns. We use this knowledge to improve
the estimation process by parameterizing it with respect to
the expected change class: By knowing what is the expected
type of change we may select a particular algorithm that is
proven to be more accurate for detecting that particular type of
change. For example the throughput shows strong oscillations
around a constant mean, hence we may favor an algorithm
that is capable of detecting changes by checking variations of
the mean.

C. Requirements for Accurate Delay Estimation

To perform an accurate estimation of the actuation delays
we need to capture the important changes in the system
metrics. This requires having a way to analyze every single
metric to detect when and if a change happens. This also
requires that we apply the analysis to the right set of metrics
because different metrics may be impacted differently, and
some of them may show no impact at all. Therefore it is critical
to discriminate when a metric is impacted in a important way
by a reconfiguration action. Overall, we have identified the
following important requirements:

Ability to deal with noise. Metrics can be corrupted with
noise and the analysis of these metrics may identify several
changes, many of which are just an effect of the noise. To
improve the quality of the analysis, on the one hand, we
need to understand when we should reject the analysis due
to unfavorable ratio of system metrics to noise, and when we
should pre-process metrics by filtering or smoothing them.

In case the system runs in a dynamic environment, this
analysis also needs to adapt to the current working conditions
and evolving context.

Improvement of estimation confidence by combining differ-
ent data. It may happen that too many changes are still present
in the metric. In this case, we need a way to combine the data
about the delays among several metrics to gain confidence
on the time of beginning and ending of the actions. This
involves the definition of correlation analysis to capture the
delays across the metrics as well as the definition of aggre-

gation functions to combine the observations across several
measurements of the same metric, system and action.

Use of contextual information. Contextual information about
the environment and the disturbance on the system, i.e., its
input workload, should be considered when analyzing the
identified changes. This may highlight correlations among
changes in the input metrics (or environment) and changes in
the output metrics of the system that enable the identification
of the changes caused by the reconfigurations and the ones
caused by the input variability.

III. DELAY ESTIMATION FRAMEWORK

A. Using Change Point Detection for Delay Estimation

Broadly speaking, change point detection (CPD) can be
considered as the process of identifying points within a
data set where the statistical properties change [25]. It arose
as a mechanism for addressing shortcoming in time series
analysis techniques that assume stationarity, i.e., parameters
that describe the properties of the dataset do not depend on
time [2]. CPD is proven to be successful in many practical
problems such as anomaly and fault detection [27], black-
box Web service reliability monitoring [9], and detection of
security attacks [30].

In this work, we argue that CPD can be also used to estimate
actuation delays in the context of elastic systems. By analyzing
the system metrics after a reconfiguration, CPD can produce a
list of potential changes that are related to it. In other words,
under the assumption that the available output metrics define
the system behavior, we argue that a reconfiguration changes
the behavior of the system and that we can identify the precise
moment when this happens by capturing the changes in such
output metrics. Consequently we can estimate the time it took
to complete the reconfiguration and to reach the next stable
state.

By adopting CPD we can fulfill the requirements on de-
tecting changes in the system metrics and discriminate which
metrics are impacted by any given control action.

B. Estimation Process

The estimation of the actuation delays can be seen as an
activity belonging to system identification [21]. Therefore
we instantiate the standard system identification process for
our specific case. We design a gray-box system identification
process where we can observe both inputs and outputs of the
system, as well as its current configuration. Furthermore, we
can control the inputs of the system, including the ones that
generate the disturbance by injecting loads.

We depict the main activities of the estimation process
for actuation delays and their organization in Figure 3. The
process is articulated in the following points: 1) Setup the
environment and prepare the experiment; 2) Deploy the system
in the cloud; 3) Put the system under stress and wait until it
enters a stable state; 4) Actuate the system reconfiguration and
wait; 5) Tear down the environment; 6) Store the monitoring
data; and, 7) Analyze the monitored data to estimate the
actuation delay.
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Fig. 3. Main activities of the delay estimation process

By iterating this process several times, we can collect
additional data and gain confidence about the obtained results,
thus addressing the relative requirement. For the analysis we
input into the estimation framework the collected metrics about
the system within the data about its initial configuration, the
acted reconfiguration, and the expected outcome in terms of
the number of change points. The framework then runs the
CPD algorithms on the main metrics and may use additional
information to filter out the spurious change points. When
multiple runs are available, we can combine their results to
provide the final actuation delay estimation.

C. Estimation Framework

We design a framework that leverages experiment automa-
tion to reduce the burden of conducting the estimation process
and to speed up its execution. We depict the conceptual
architecture of the framework in the left-side of Figure 4. In the
figure blocks identify the main components and arrows model
the flow of data. The system under investigation exposes a
control interface to change its configuration and (if available)
a user interface. The control interface is where a controller
would bind at runtime, while the user interface is where final
users of the elastic system place the workload. The framework
provides two components that use these interfaces to stimulate
the system under investigation: The action enforcer is the
driver for the estimation process and is in charge of triggering
system reconfigurations by invoking the control interface. The
stress generator represents the environment and controls the
disturbance on the system by interacting with the final user
interface. While performing an experiment the framework
records the triggered reconfigurations and the disturbance,
as well as the system metrics. It reports everything to the
actuation delay estimator that carries out the analysis to
correlate monitoring data and estimate the actuation delay.

The right side of Figure 4 details the actuation delay
estimator and shows the flow of activities and data inside
it. The evolution of the system metrics over the experiment
is analyzed by the change point detection block, and a list
of potential change points for each of them is produced. We
represent change points in the plots as (red) circles. The CPD
block may run different change point detection algorithms or
the same algorithm with different parametrization to produce

the list of change points. The choice of the algorithm depends
on the type of actions under study and the effects that are
expected to be captured by the action-effect classification. We
discuss issues about choosing the proper algorithms and their
configurations in the next section.

The list of change points and the data about the reconfig-
uration action are then passed to the filtering and correlation
block that removes spurious change points and estimates
the actuation delay. This block, for example, removes all
the change points that are identified before the application
of the reconfiguration, and can filter the change points that
appear while the system is reconfiguring. Furthermore, it may
correlate change points detected across different metrics to
understand when the system reaches a stable state.

D. Estimation Algorithms

As mentioned, we apply change point detection algorithms
for detecting actuation delays. CPD algorithms can be clas-
sified in offline and online algorithms: Offline algorithms
consider whole time series at once to find the possible change
points. Online algorithms consider data incrementally and
discover change points as they appear.

We have evaluated the use of CPD algorithms in a process
where data analysis is performed in batch and offline. Based
on the capability of evaluated algorithms, we select two state-
of-the-art algorithms, one for each family, for our framework:

• Pruned Exact Linear Time (PELT) [16]: PELT belongs
to the family of offline change point detection algorithms
and works by splitting the data in homogeneous parti-
tions. Among all the possible splits, the algorithm chooses
the one that minimizes a given cost metric by exploiting
dynamic programming to carry out the optimization.
PELT can be applied to identify variations in the mean
of a metric, in its variance, or in both.

• Bayesian Online Change Point Detection
(BOCPD) [29]: BOCPD can be used for online,
adaptive change point detection. The algorithm exploits
the Bayesian theory to estimate the probability of having
a change in the next sample, given the sequence of
observations collected so far. In particular, the algorithm
uses a prediction model based on Gaussian processes
that is combined with an hazard function to compute the

37



Conceptual architecture of the framework

Stress 
generator

Action 
enforcer

System under investigation

Monitoring

Adaptive system
(controlled system)

Actuation delay estimator

actuation delay actuation delay

2nd system
metric

current
configuration

t

system
input

1st system
metric

t

t

t

tt

type and time
 of reconfiguration

action under
study

tt1 t
t1

change points
filtering and correlation

CPs
system metrics

CPs current
configuration

CPs
system input

Detailed view on actuation delay estimator

tt

t

t

t

t

t t

action-effect
classification

CPD 
control

interface

user 
interface

system
inputs

action
under study

current
configuration

system
metrics

Fig. 4. Conceptual architecture of the delay estimation framework

probability of the change. The model is retrained after
the identification of a change point to adapt to the new
conditions.

We use PELT to find changes when the system switches
between steady states, that is, where the mean of the metric
is constant before and after the reconfiguration. Otherwise,
if the system reaches stable states where the mean value of
the metrics is not steady, then the algorithm will identify
many more change points. Instead, BOCPD is not tied to
any particular statistical moment of the analyzed metric and
is more generally applicable. For example, it can be suitably
used when the system moves between stable states, either that
they show constant mean or not. However, BOCPD is sensitive
to frequent oscillations and noise in the metric, therefore it is
difficult to use under these conditions as the algorithm may
detect too many changes.

IV. EVALUATION

We have implemented Java components for controlling the
experiments and we have integrated existing libraries for
generating the load and monitoring the system metrics. We
experimented our prototype with two different cloud platforms,
namely OpenStack2 and Reservoir3. We analyzed monitoring
data using the available implementations of PELT, written in
R4, and BOCPD, written in Matlab5.

We conducted several experiments to answer the following
questions: Can CPD algorithms identify the changes that are
caused by reconfiguration actions? What types of changes each
of the selected CPD algorithms can identify? Is the proposed
approach able to estimate actuation delays?

2http://www.openstack.org/
3http://www.reservoir-fp7.eu/
4http://www.r-project.org/
5http://www.mathworks.ch/products/matlab/

A. Case Studies

To evaluate our framework we ran several experiments
against two real elastic systems that are commonly run
in clouds: Cassandra6, a NoSQL distributed database, and
Sun Grid Engine (SGE)7, a grid middleware. We used
SYBL [7] for controlling elasticity (i.e. scaling in/out con-
sidering time and loads).

1) The Cassandra NoSQL Database: Cassandra is an adap-
tive distributed data store that can accommodate the addition
and the removal of processing nodes at runtime. In our setup,
we deploy a Cassandra cluster with a single Cassandra seed
node that acts both as system access point and cluster con-
troller. The Cassandra seed distributes the incoming workload
across the processing nodes. When a processing node joins
or leaves the cluster, the Cassandra seed updates the load
distribution and if necessary it copies or moves data across
the remaining processing nodes. In this evaluation, we use the
default logic of Cassandra for the load distribution and data
management

We installed the controller and the processing nodes in
separate virtual machines that we deployed in our private
OpenStack cloud. All the virtual machines contain the logic
to automatically join and leave the system. Hence we act only
at the infrastructure level to reconfigure the elastic system:
We start new instances of the processing node to scale out
the system, and we terminate them to scale the system in.
New instances of the processing node are placed by the
cloud middleware on physical servers, and, after the VMs
boot, processing nodes register to the controller that, in turn,
reconfigures the load distribution and the data placement. Only
after all these operations complete, the new processing nodes
can start to serve requests. When we terminate instances of the

6http://cassandra.apache.org/
7Now called Oracle Grid Engine and available at http://www.oracle.com/

us/products/tools/oracle-grid-engine-075549.html
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processing node, the cloud middleware stops abruptly their
virtual machines without notifying the Cassandra controller.
The controller notices that processing nodes are down because
they do not respond anymore, and only after that, it adapts the
load distribution and the placement of data. While doing this
operation Cassandra will stop servicing new requests until it
determines where to forward the requests that address the just
removed processing nodes.

To monitor the virtual infrastructure we use Ganglia8 that
gathers several low level metrics at fine grained intervals.
We use our prototype to aggregate data across the virtual
machines. We stress the elastic system with the Yahoo! Cloud
Serving Benchmark (YCSB) [6].

2) The Sun Grid Engine: SGE is a grid middleware for
the distributed processing of jobs submitted by final users. It
follows a standard architecture with a singleton master node
and a set of executor nodes: The master receives jobs from
clients and dispatches them to the executor nodes to be run.
We use the implementation of SGE that was delivered in the
Reservoir EU project that implements elasticity at the level of
executor nodes.

We installed the master and executor nodes into two types
of virtual machines that we deployed in the Reservoir cloud.
As before, we control the system at the infrastructure level
by acting on the instances of virtual machines. New instances
of the executor register with the master after their virtual ma-
chines boot, and deregister from it when capture the shutdown
OS-level signals that the hypervisor triggers to terminate them.

To monitor the virtual infrastructure we use the Lattice
framework [5]. We stress the application using the Apache
JMeter 9 load generator.

B. Experiment Design

We ran several experiments according to the estimation
process presented in the previous section, and we analyzed
system metrics with CPD algorithms to produce the list of
change points. We then elaborated this list to estimate the
actuation delays.

Experiments that investigated Cassandra started with an
initial interval of 30 minutes to let the system stabilize against
the input workload. Next, either a single Scale Out or
Scale In operation was triggered. After this, we kept the
system running for another thirty-minute period to stabilize
before ending the experiment run. For the change point detec-
tion, we selected the CPU usage metric. We made this choice
because Cassandra’s operations are in general CPU bound
and this metric provides a good indicator about the system
workload. Before running the CPD analyses we aggregated
the collected data over 30 second-long non-overlapping time-
frames by computing the average value of the metric over each
time-frame.

Experiments that investigated SGE started with an initial
interval of 10 minutes where the system was subjected to a

8http://ganglia.sourceforge.net/
9http://jmeter.apache.org/

stable input workload. Then we applied the reconfiguration
action and kept the system running for another ten-minute
period before ending the experiment run. For the analysis, we
selected the throughput and response time metrics as provided
by the monitoring sub-system, that is, without performing any
pre-processing on them.

C. Experiment Results

Here we provide a detailed description only of a fraction
of the results that we obtained in both the case studies. The
entire dataset is available in our companion Web site.10

We start by analyzing a Scale Out operation that de-
ployed a new processing node to Cassandra. Figure 5 shows
the evolution of the average CPU usage and CPU usage
while performing disk I/O. The vertical line identifies the
instant of action triggering, the circles identify the change
points detected by PELT and the crosses the ones identified
by BOCPD. PELT detected two change points: The first
corresponded to a steep increase in the CPU usage and the
second marked when the system reached the steady state. We
associated the spike in the CPU to the start of Scale Out
operation while the steady state with its end. As expected, the
average CPU usage after the operation decreased as the load
is distributed across an increased number of processing nodes.

We cross-compared the CPU usage and CPU usage while
performing disk I/O operations collected during the experi-
ment to verify this: We can see that both metrics increased and
decreased consistently, an effect that we explain by knowing
that Cassandra is copying data to the new node. We computed
the time difference between these two instants to obtain an
estimation of the actuation delay of circa 180 seconds. For
the same dataset BOCPD detected more change points. This
happened because we ran BOCPD with no training points to
leverage its ability to adapt to the current system behavior.
Some spurious change points were detected while the algo-
rithm had limited knowledge of the dataset. Once the algorithm
learned the model, no more change points were identified
until the reconfiguration occurred. We discuss this point in the
next section. After the reconfiguration, BOCPD was able to
detect the two critical changes. To identify the critical change
points, we filtered out the spurious ones because they appeared
before the reconfiguration was triggered. The estimation of the
actuation delay was consistent with the one provided by PELT.

Figure 6 shows the evolution of Cassandra CPU usage after
the application of a Scale In. The operation removed a
processing node from the initial cluster. In this case, PELT
identified five change points while BOCPD identified four
change points. We associated the drop of the CPU with the
start of the reconfiguration, therefore we considered the first
change point for the estimation. We can explain this behavior
by recalling that Cassandra stops servicing requests when
nodes are removed until it reorganizes the data. We associated
the steady state after the drop to the end of the reconfiguration,

10http://www.infosys.tuwien.ac.at/prototypes/elasticTesting/index.html
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Fig. 5. Change points of Cassandra average CPU usage after a scale out
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Fig. 6. Change points of Cassandra average CPU usage after a scale in

therefore we considered the last change point that was detected
as end of the reconfiguration. The average CPU usage had
only a little increase after the reconfiguration because in the
default settings Cassandra randomly distributed the load across
processing nodes, and in this experiment the processing node
that was removed was lightly loaded. Nevertheless, we verify
that the system throughput decreased after the Scale In by
inspecting the number of packets sent out by Cassandra. Both
of the algorithms identified the drop in the CPU usage and
detected several changes before the system entered in a steady
state. We then computed the delay that amounted to circa
420 seconds. Considering only the first and last change point
after the reconfiguration both the CPD algorithms performed
similarly.

Results for the SGE case study in terms of average response
time (top plot) and throughput (bottom plot) for both opera-
tions are reported in Figures 7 and 8.

Figure 7 shows the Scale Out that took the system from
two to four nodes. In this case, both PELT and BOCPD found
two change points in the throughput: PELT found a change
point right after the reconfiguration and one at the end of
the run, while BOCPD found one at the first sample and one
after the reconfiguration. We removed the very first change
point and the very last because they are a side-effect of the
algorithms. SGE does not require any reconfiguration but a file
update to accommodate the new nodes, therefore the effects
of the scale out were immediate, i.e., the reconfiguration took
place with no evident transitory period between the steady
state of the system. We estimated the actuation delay by
considering the only change point detected and we obtained
a value of circa 120 seconds for PELT and circa 145 seconds
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Fig. 7. Change points of SGE throughput and response time after a scale out

for BOCPD. We applied the CPD algorithms also the average
system response time. In this case PELT identified too many
change points, meaning that it was not able to correctly capture
the changes in the response time metrics. At the contrary,
BOCPD identified only three change points. For BOCPD,
we filtered out the change points that were captured before
the reconfiguration took place. We used the remaining one
to compute the actuation delay, and verify that this second
evaluation was consistent with the previous one. By combining
the evidences we were able to confirm the estimated value of
the delay of circa 145 seconds.

Figure 8 shows a similar situation after a Scale In that
took the system from two executor nodes to one. Both PELT
and BOCPD found two change points in the throughput, half
of which were spurious, and therefore, removed. According
to the remaining change points we estimated the actuation
delay of about 110 seconds using PELT and about 150 seconds
using the BOCPD. We ran PELT and BOCPD on the average
response time and we found again that PELT was not able
to detect the right change points. BOCPD instead found the
change point after the reconfiguration. Differently than before,
this second estimation was more consistent with the one by
PELT for the throughput, and we estimated the actuation delay
for the Scale In operation of about 115 seconds (the mean
value between the observations).

D. Discussion of the Results

In the investigated cases we observed that change point
detection can effectively detect changes that were introduced
by the reconfiguration actions. Hence, CPD can be used as an
effective means to estimate actuation delays in elastic systems.
We saw also that not all the considered CPD algorithms
can detect all the changes that we generated on the various
system metrics. Furthermore, the two algorithms can provide
consistent but slightly different results when they are applied
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Fig. 8. Change points of SGE after a scale in

to detect changes in the same metrics. Unfortunately, we
cannot provide yet a quantitative measure on the accuracy of
the delay estimation because the systems under investigation
lacked the necessary monitoring features to measure it. Hence
the question about which algorithm is better is still open to
debate.

In general, the algorithms that we considered detected
more points than we expected. Nevertheless, by exploiting the
action-effect classification, the knowledge about the time of
reconfiguration triggering, and the correlation among different
metrics our framework was able to filter out the spurious
changes. Thus we conclude that, at least in elastic systems that
we considered, our framework was able to properly estimate
the actuation delays.

During this study we gained experience in the use CPD
algorithms that we summarize here in the form of guidelines.
Obtaining good results with change point algorithms is a
matter of choosing how to configure and when to apply them,
i.e., under what conditions and on which system metrics. The
two algorithms that we considered in this work are different
both in how they operate and how they can be configured:

1) PELT can be used to find changes in mean, variance
or both. We noticed that for monotonically increasing or
decreasing signals, finding changes in the variance can be a
slightly better choice than the mean if signals do not change
too much. Otherwise PELT may show a behavior similar to
the one presented in the SGE case study. We also noticed that
finding changes in the mean is a good choice when signals
vary with high amplitude variations and frequent spikes.

PELT has one main configuration parameter, namely the
penalty, that guards the algorithm against over-fitting, that is,
finding too many change points. In the current implementation,
this parameter may take several values but we choose to set
it manually. For Cassandra, we have found that the penalty
should be set between 0.1-1 when PELT is applied to the

variance, while it should be set the maximum value of the
data series when it is applied to the mean. For the SGE case
we found its value empirically by comparing results across
different experimental trials.

2) BOCPD finds changes by leveraging a model that predicts
the expected behavior of the signals, therefore it is not tied to
any statistical moment. We noticed that BOCPD was able to
detect any of the inspected change but in some cases, espe-
cially if the signals present sharp and frequent variations, may
detect too many changes. This happened when the algorithm
could not retrain its internal model fast enough to keep the
pace of signal variations. For this cases we suggest to switch
to PELT.

BOCPD has one main configuration parameter, namely the
size of training set. This parameters govern the amount of
observations that the algorithm uses to train the first time
its internal model. We set the size of the training to a small
value, between zero and 10% of the observations, to force the
algorithm to adapt to the current signal as it evolves. With this
settings we noticed that the number of change points detected
were the closest to the expected one. Furthermore, by using
bigger training sets there is the risk to train the model using
data before and after the change. When this happened the
algorithm was not be able to distinguish anymore between
the situation before and after the change, completely failing
to detect the right changes.

V. RELATED WORK

Controlling elastic computing systems has gained im-
portance with technologies promoting adaptivity like cloud
computing and elastic storage. Konstantinou et al. [17] de-
scribe TIRAMOLA, a framework for monitoring and resizing
NoSQL clusters. Controlling elastic storage is also approached
by Lim et al. [20] that describe actuator delays, in this case
due to rebalancing, as one of the main challenges. Lim and co-
authors propose different rebalancing strategies for reducing
the delays. In contrast with this, we propose a generic approach
to measure actuation delays that is not limited to the case of
elastic storage. Another contribution towards actuation delay
monitoring in cloud computing is described by Ming et al. [23]
that measure the start-up time of virtual machines on different
cloud IaaS providers. They emphasize that the time of boot
the VMs that is shown by the provider differs from the actual
time to start the operating system. Similarly, our work for
detecting actuation delays captures the time that is needed for
all the software on the virtual machine to start, but it also
includes the time need before serving user requests.

Action modeling is the key in developing automatic con-
trollers, and without knowing at least the approximate effects
of an action on the system, it is impossible to plan a suitable
control policy for the elastic system. Considering a series of
observations, action modeling outputs the type of action that
could lead to these observations, with its main characteris-
tics [1], [26]. Bodik et al. [3] propose learning action effects
through the use of statistical models in the context of data
centers. The models are used to predict the effect of control
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action on performance. Estimating action effects plays a con-
siderable role also in areas such as planning, scheduling and
design of automatic controllers. Even though the time needed
for the adaptation actions to complete is emphasized as being
important [13], and algorithms considering this information
in their planning process were proposed [15], to the author
knowledge there is no approach that attempts to estimate
the actuation delays. This work proposes a framework for
control action delay estimation using change point detection
techniques, highlighting the delay estimation challenges and
validating this framework on real world scenarios.

VI. CONCLUSIONS AND FUTURE WORK

Identifying actuation delays in cloud based elastic systems
is crucial for the design of controllers that provide acceptable
performance. In this paper, we analyzed in detail issues, such
as action-effect classes and requirements, that relate to the
estimation of actuation delays. Based on that, we proposed
a novel framework that leverages state-of-the-art change point
detection algorithms to address the actuation delay estimation.
We have provided a prototype implementation and illustrated
the usefulness of our framework with two real-world elastic
systems in the cloud.

In our future work, we will conduct experiments with
other types of cloud systems to examine the accuracy of our
detection framework for other action-effect classes. We are
also working on steering the monitoring in order to improve
the accuracy of actuation delay detection.
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