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Abstract: While cloud computing has enabled applications to be designed as elastic cloud 
services, there is a lack of tools and techniques for monitoring and analysing their elasticity at 
multiple levels, from the service level to the underlying virtual infrastructure. In this paper, we 
focus on monitoring and evaluating elasticity of cloud services, crucial for supporting users and 
automatic elasticity controllers, to understand the services’ behaviour, and to develop smarter 
mechanisms for controlling their elasticity. We define novel concepts, namely elasticity space for 
describing the elastic behaviour of cloud services, and elasticity pathway for characterising the 
service’s evolution through the elasticity space. We introduce techniques for enriching 
monitoring information and determining the elasticity space and pathway. Based on the above, 
we introduce MELA, an elasticity analytics as a service, providing features for monitoring and 
analysing the elasticity of cloud services in multi-cloud environments. To illustrate our  
approach, we conduct several experiments on an elastic data-as-a-service for a cloud-based 
machine-to-machine (M2M) platform. 
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This paper is a revised and expanded version of a paper entitled ‘MELA: monitoring and 
analyzing elasticity of cloud services’ presented at 5th International Conference on Cloud 
Computing, CloudCom, Bristol, UK, 2–5 December 2013. 

 

1 Introduction 

With the rising cloud popularity, the number of applications 
and systems born in or migrated to cloud environments has 
substantially increased. In this context, effort has been paid 
for the development of emerging elastic cloud services, 
which scale up/out when the workload is high, and scale 
back in/down when possible, reducing cost while 
maintaining performance and quality. Going beyond the 
traditional ‘elastic scalability’, which concentrates on 
scaling in/out resources to achieve performance, such as in 
Mao and Humphrey (2013) or Han et al. (2012), in general, 
elasticity has three main dimensions: ‘resource elasticity’, 
‘cost elasticity’, and ‘quality elasticity’, described in 
Dustdar et al. (2011). Thus, an elastic service can cope with 
changing external factors by providing means of 
reconfiguring its cost, quality and resources. 

Supporting such multi-dimensional elasticity is 
challenging, especially how to monitor and evaluate cloud 
service’s elastic behaviour, determine the proper cost and 
quality indicators and their boundaries, and utilise them for 
optimising and controlling the services’ elasticity. While 
existing monitoring and analysis tools can present metrics 
related to performance, cost, or resource usage of the whole 
cloud service as in Singh et al. (2010), or Trihinas et al. 
(2014), or from the underlying virtual infrastructure as in 
Wang et al. (2011) and Meng et al. (2012), they do not 
provide a cross-layered, multi-level service elasticity 
behaviour picture, thus hindering the discovery of the cause 
for service requirements violations. Moreover, currently, 
deciding cost and quality indicators and their boundaries is a 
difficult task. Managing elasticity of cloud services would 
benefit from a multi-level monitoring and analysis view, 
which connects the service level behaviour with the virtual 
infrastructure behaviour and provides means for reasoning 
about the service behaviour at multiple levels. In particular, 
we argue that in order to understand elastic cloud services, 
we need to investigate new concepts that can be used to 
characterise the cloud service’s elastic behaviour based on 
multi-dimensional monitoring data. 

In this paper, we introduce the concepts of elasticity 
space and elasticity pathway, and apply them in evaluating 
elasticity of cloud services. First, the elasticity space is used 
in capturing the elastic behaviour of cloud services. Second, 
the elasticity pathway characterises the service’s evolution 
through the elasticity space, and can be used to predict the 
service’s behaviour. We further introduce a mechanism for 
constructing multi-level service monitoring snapshots, over 
which we apply our techniques for determining the 
elasticity space and pathway. The introduced concepts and 
techniques are implemented in MELA, an ‘elasticity 
analytics as a service’. MELA allows cloud service 
developers, providers and automatic controllers to analyse 

their service behaviour from the whole service level to the 
underlying virtual infrastructure, extracting characteristics 
and providing crucial insights in their elasticity. The main 
contributions of our paper are: 

• A model, domain-specific language and customisable 
mechanism for constructing multi-level monitoring 
snapshots for elastic services. 

• Novel concepts of elasticity space and elasticity 
pathway for analysing elasticity of cloud services at 
multiple levels. 

• Customisable mechanisms for extracting runtime 
boundaries of cloud service’s elasticity that fulfil  
user-defined elasticity requirements. 

This paper has substantially revised and expanded our initial 
work in Moldovan et al. (2013). We have extended the 
paper with a discussion on elastic cloud services  
(Section 2). We have substantially revised our concept of 
elasticity space and pathway (Section 3), improved the 
service representation model, and introduced an XML 
format for representing elastic cloud services. We have 
further added an XML format for our metric composition 
language, and defined the processes of creating new metrics 
and composing cost. Moreover, while the initial paper 
contained a single more abstract algorithm, new algorithms 
have been introduced, for cross-layer metric composition, 
and evaluating the elasticity space and pathway. We 
extended the description of MELA’s components and its 
RESTful API (Section 5), and expanded our experiments to 
cover the analysis of elasticity space and pathway for all 
major units of an elastic cloud service (Section 6). 

The rest of this paper is structured as follows. Section 2 
presents the motivation and research problems. Section 3 
presents our concepts of elasticity space and pathway for 
describing elasticity of cloud services. Section 4 presents 
our approach to monitoring and analysing elasticity of cloud 
services. In Section 5, we describe the MELA framework. 
Section 6 presents our prototype and experiments. We 
discuss related work in Section 7. Section 8 concludes this 
paper and outlines the future work. 

2 Motivation and research problems 

Let us consider a realistic data-as-a-service (DaaS) for an 
machine-to-machine (M2M) cloud platform, for which we 
have elasticity requirements defined by the cloud service 
provider, developer, and elasticity controller, w.r.t service 
run-time performance and cost. The DaaS provides data 
storage and exchange services for M2M platforms, such as 
smart cities or vehicle fleets, which use their M2M 
gateways for sending data to the DaaS. The DaaS is 
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composed of a message-oriented middleware, a data storage 
for gathering/storing M2M data, and event processing 
services which interact with the stored data. 

Considering a non-elastic implementation of the DaaS, 
it would contain a powerful Event Processing instance 
interacting with a Data Node. Let is assume that the 
service could process up to 1,000 clients per second, after 
which its performance decreases. Thus, when the number of 
clients is low, the service’s virtual cloud resources would be 
underutilised, but still paid in full, leading to unnecessary 
high cost. On the other hand, when the number of clients’ 
increases beyond 1,000, the DaaS performance would 
decrease, and even if the service owner might want to pay 
more to increase performance, the only solution would be to 
instantiate the service on larger virtual resources. 

In contrast, an elastic DaaS (Figure 1) would be 
designed with elasticity capabilities, i.e., run-time 
reconfiguration options such as ability to add/remove 
service units behind a load balancer. Thus, the DaaS has 
two service topologies (logical groupings of service units), 
Data End and Event Processing, having as elasticity 
capabilities addition and removal of service unit instances 
running on VMs. For designing such capabilities, the DaaS 
has a Load Balancer enabling addition/removal of 
Event Processing instances. Similarly, the Data End 
is distributed, having a Data Controller acting as data 
access load balancer, enabling addition/removal of Data 
Node instances. 

Thus, the above-mentioned elastic DaaS can start with a 
lighter initial configuration, and lower cost. When the 
number of clients increases at T1, another Event 
Processing instance can be added to cope with the load, 
and thus, increase the cost of running the DaaS. At time T2, 
after the number of clients decreases, the additional Event 

Processing instance can be terminated, reducing cost. If 
required, at T3, due to rising number of clients, multiple 
Event Processing and Data Node instances can be 
added/removed. 

In general, we have three main views from which cloud 
services are described (Figure 2): 

1 design-time, where we see the whole service 
dependency model (cloud service, service topology, 
and service unit) and user-defined requirements 

2 run-time, where instances of service units are deployed 
and executed in virtual machines 

3 the virtual infrastructure, where several virtual 
machines, possibly grouped in virtual clusters, are used. 

While using various monitoring techniques, such as 
Trihinas et al. (2014) or Katsaros et al. (2012), we can 
capture monitoring data from the whole service level or the 
VM level, however, they do not answer the following 
crucial questions: 

• What should be the behaviour of the service topologies 
and units when fulfilling user-defined elasticity 
requirements? 

• When is the service’s behaviour elastic, i.e., adapting 
and fulfilling user-defined elasticity 

requirements? 

• How does the service’s elastic behaviour evolve in 
time, i.e., what are the correlations and patterns in its 
behaviour? 

Figure 1 Elastic cloud service control (see online version for colours) 
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Figure 2 Elastic cloud service views 

 

 
Capturing, describing and analysing the elastic behaviour of 
cloud services are crucial not only for developers who build 
and optimise them, but also for software controllers that 
change the services’ topology at run-time, enforcing  
user-defined elasticity requirements. Thus, elasticity 
controllers, such as Copil et al. (2013) or Mao and 
Humphrey (2013), need a mechanism for extracting 
elasticity characteristics, used to refine user-defined 
elasticity requirements or predict the service behaviour, 
leading to better service control and quality. 

To analyse the behaviour of elastic cloud services, we 
must first collect monitoring information, map it to the 
service structure, and extract from it higher level 
information used to characterise the service’s elasticity. 
While determining elasticity of a monitored element (e.g., 
load balancer and data node) is already challenging, we 
cannot just deal with single instances. We also need to 
analyse the elasticity of the whole cloud service by 
examining dependencies among different monitored 
elements and the virtual infrastructure hosting them. 
Furthermore, we need to map the service’s elasticity 
behaviour to user-defined elasticity requirements, to analyse 
how and when the requirements are fulfilled. 

This motivates us to investigate the following issues: 

• Which concepts can be used to capture the elastic 
behaviour of cloud services? 

• How to extract characteristics that describe the 
service’s elastic behaviour to support both reactive and 
predictive control of elastic services? 

•  How to analyse the cloud service’s behaviour, 
detecting the source of user-defined elasticity 
requirements violations? 

This paper focuses on capturing the properties of elastic 
services at multiple levels, providing support for analysing 
their behaviour from multiple views, and characterising the 
elastic behaviour of each cloud service based on  
user-defined elasticity requirements. 

Figure 3 Elasticity dimensions (see online version for colours) 

 

3 Elasticity space and pathway of cloud services 

In this section, we introduce the concepts of elasticity space 
and elasticity pathway for analysing and characterising the 
elastic behaviour of cloud services. 
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3.1 Multi-dimensional elasticity 

In order to support and analyse the multi-dimensional 
elasticity of cloud services defined in Dustdar et al. (2011), 
we categorise monitoring data in three dimensions: cost, 
quality, and resource (Figure 3). These categories are 
sufficient for capturing data about any monitored element 
(e.g., service topology or service unit) within a cloud 
service, and can be used for understanding the elasticity of 
that service. For an elastic cloud service, the quality 
dimension would capture metrics characterising the 
service’s quality, such as response time or throughput. The 
cost dimension would in turn capture all metrics influencing 
cost, such as cost of using the virtual machine (e.g., hourly 
or monthly cost), cost of data transferred over the network, 
or separate cost of using storage (e.g., cost per each 10 GB 
of stored data). The resource dimension would capture 
resource usage and allocation information, such as the 
amount of data transferred over the network. 

Conceptually, to capture monitoring data associated 
with a monitored element at a specific time t, we define the 
monitoring snapshot, ms, containing monitoring data  
about cost, quality and resource elasticity dimensions 
[equation (1)]. 
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3.2 Elasticity boundary 

Monitoring snapshots capture metrics, but do not provide 
information about boundaries over the metric’s values in 
which user-defined elasticity requirements are fulfilled. 
Therefore, in order to analyse the elastic behaviour of a 
monitored element, we represent metric boundaries using 
the elasticity boundary concept: 

Definition 1: An elasticity boundary describes the upper and 
lower bound over a set of metrics for a monitored element. 

Conceptually, an elasticity boundary, elBoundary, is defined 
as follows: 

( ), , , , ,u l u l u l
i i j j k kelBoundary c c q q r r=  (2) 

where u
ic  and l

ic  denote the upper bound and the lower 
bound of metric ci ∈ Cost, respectively, u

jq  and l
jq  for  

qj ∈ Quality, and u
kr  and l

kr  for ri ∈ Resource. 
We use the elasticity boundary to capture both  

user-defined elasticity requirements (user-defined elasticity 
boundary), and detected/evaluated elasticity requirements 
(evaluated elasticity boundary). Using the user-defined 
elasticity boundary we represent requirements over the 
user’s elastic service’s cost, quality and resources. From the 
user-defined requirements expressed as user-defined 
elasticity boundaries indicating parameters ci, gj, rk under 
which the cloud service should behave, we evaluate 
collected monitoring information and determine elasticity 

boundaries for all monitored elements of a cloud service. 
Thus, from a set of supplied requirements for a particular 
monitored element (e.g., cloud service and service unit), we 
determine the requirements for all cloud service monitored 
elements, providing information to control the elasticity of 
each element of the cloud service. 

3.3 Elasticity space 

Given a set of monitoring snapshots and user-defined 
elasticity boundaries, for supporting run-time control of 
service’s elasticity, we need to understand when a 
monitored element is in elastic behaviour, if its behaviour 
violates the user-defined elasticity boundaries, and if we can 
characterise the service behaviour using some specific 
‘pathways’. Naturally, we expect that the meaning of 
‘elasticity’ will depend on the types of monitored elements, 
their runtime settings and requirements. To this end, we 
define the concept of elasticity space to determine and 
evaluate when a monitored element is in elastic behaviour: 

Definition 2: An elasticity space captures all runtime 
metrics described in the user-defined elasticity boundary 
and all other metrics influencing the user-defined elasticity 
boundary, when a monitored element is in elastic behaviour, 
which is determined via an elasticity space function. 

To respect its elasticity boundaries, an elastic service must 
scale out/in its cost, quality and resources at run-time, by 
allocating/deallocating cloud services, to cope with 
variations in pricing, quality and load. We refer to the 
behaviour of a service which is dynamically reconfigured at 
run-time by software controllers as elastic behaviour. 
Formally, let felSpace be an elasticity space function,  
MS = {msi} be the set of monitoring snapshots, then an 
elasticity space elSpace can be defined as: elSpace = 
felSpace(MS). A felSpace has to perform two steps: 

1 detect when an elastic behaviour starts and stops 

2 extract monitoring data describing the service 
behaviour while respecting the user-defined elasticity 
boundaries. 

In principle, there could be several elasticity space 
functions, which can be developed for and applied to 
different types of monitored elements, such as specific types 
of service units, topologies, or the whole service. 
Furthermore, these functions are applied on the metrics 
from user-defined elasticity boundaries. 

An elasticity space function is designed to extract useful 
information about the overall behaviour of the cloud service 
when elasticity requirements are fulfilled. For example, 
given a user-defined elasticity requirement over 
serviceCost/client/h, an elasticity space might contain only 
the throughput and cost/VM/h metrics from which the 
serviceCost/client/h targeted by requirements can be 
determined, not including metrics that have no impact on it. 
Thus, using the elasticity space, one can determine the 
elasticity boundaries to be enforced on the metrics that 
influence the user-defined elasticity requirements. 
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Moreover, one can analyse if the behaviour of an elastic 
cloud service is within expected user-defined elasticity 
boundaries by checking the elasticity boundaries of its 
elasticity space. For example, the upper elasticity boundary 
of the serviceCost/client/h from the determined elasticity 
space could have a different value than expected by the 
user. 

3.4 Elasticity pathway 

While the elasticity space enables cloud service elasticity 
analysis, it does not provide insight into relationships and 
dependencies between metrics influencing the elastic 
behaviour over time, e.g., throughput and cost/VM/h might 
or might not follow a linear relationship. In order to 
characterise the elastic behaviour from specific 
views/perspectives over a cloud service, we define the 
concept of elasticity pathway. 

Definition 3: Given a specific view on metrics V = {m1, m2, 
···, mn}, an elasticity pathway for V characterises the 
elasticity relationship among mi over the time. 

A view over a set of metrics is a subset of metrics chosen 
for analysis, which potentially influence the user-defined 
requirements. For example, given a user-defined elasticity 
requirement over serviceCost/client/h, a view could contain 
the throughput and cost/VM/h metrics from which the 
serviceCost/client/h can be derived. An elasticity pathway 
function is designed to perform a complex evaluation of the 
cloud service behaviour, determining characteristics that can 
be used to predict the service’s behaviour. 

Formally, an elasticity pathway elPtw is determined by a 
function felPtw which takes as input an elasticity space 
elSpace and a view V over the space’s metrics, and returns 
another function describing behavioural patterns or 
characteristics of the monitored element: elPtw = g(V) = 
felPtw(elSpace, V). Various elasticity pathway functions can 
be defined over the elasticity space, enabling space analysis 
from multiple perspectives. As the elasticity pathway 
function is applied over an elasticity space, the quality of 
the determined elasticity pathway is heavily influenced by 
the data in the elasticity space. 

4 Monitoring and analysing elasticity of cloud 
services 

In order to monitor and evaluate the elasticity space and 
pathways of a cloud service, we need to: 

1 build the cloud service dependency model 

2 build the monitoring snapshot for all monitored 
elements 

3 apply particular elasticity space and pathway functions 
over the monitoring snapshots. 

4.1 Elastic cloud service dependency model 

For describing elastic services from the whole service level 
to the underlying virtual infrastructure, we need an abstract 
representation model that enables the description of cloud 
services and their elasticity requirements at multiple levels. 
To support multi-level analysis of service behaviour, we 
represent a cloud service composed of service topologies, 
each topology containing service units, deployed on virtual 
machines belonging to virtual clusters (Figure 4). A service 
unit is a functional element of a cloud service that runs 
inside a virtual machine, either standalone or along other 
service units. A service topology does not have an 
equivalent in the virtual cloud infrastructure, instead it 
logically groups related service units, e.g., a Data End. 
Instances of units run on virtual machines belonging to 
virtual clusters (e.g., network clusters, or different cloud 
providers). Thus, our model can represent cloud services 
which are composed of other services (service topologies), 
deployed in federated cloud environments or in different 
availability zones (virtual clusters). 

The dependency model of the cloud service is extracted 
or defined by users/controllers, and used for structuring 
monitoring information and analysing the service’s 
behaviour. For easy integration with other tools, we  
use an XML-based representation (Listing 1). In  
general, each monitored element is defined with the 
MonitoredElement tag, and contains two mandatory 
properties, id, and level, and an optional name  
property. The level indicates if the monitored element is 
one of VM, VIRTUAL_CLUSTER, SERVICE_UNIT, 
SERVICE_TOPOLOGY, or SERVICE, and each monitored 
element can contain zero or more monitored elements with a 
lower level. For the VM level, the id is the IP of each virtual 
machine. At run-time, this description would be managed 
by a controller, and updated with the virtual machines that 
run service units instances, after each scaling action. 

4.2 Cross-layered metric composition 

Existing tools for monitoring cloud services such as Ganglia 
(http://ganglia.sourceforge.net/) or Trihinas et al. (2014) are 
agnostic of the service’s logical structure and associate 
monitoring information with the individual virtual machines 
running service units’ instances. As one unit can have 
multiple instances distributed among different VMs, 
associating information with VMs does not give any 
indicator about the overall behaviour of the service units, 
information crucial for elasticity controllers. Therefore, to 
obtain a complete view over the cloud service behaviour, 
from low level metrics to higher ones, we develop 
techniques for cross-layer composition of monitoring 
snapshots, elasticity spaces and elasticity pathways, 
following the previously presented cloud service model 
(Figure 4). 
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Figure 4 Associations between elasticity space/pathway and monitored elements (see online version for colours) 

 

 
Listing 1 XML-based dependency model 

1 <MonitoredElement id = ““level=“SERVICE”> 
2  <MonitoredElement id = 

““level=“SERVICE_TOPOLOGY”> 
3   <MonitoredElement id = 

““level=“SERVICE_UNIT”> 
4    <MonitoredElement id = “10.x.x.x” level = 

“VM” /> 
5  </MonitoredElement> 
6 … 

Table 1 Metric composition operations 

Operation Description 

+, – Adds/Subtracts a value (metric or static) to 
another value (from another operation or metric) 

*, / Multiplies/Divides a value (from another 
operation or metric) with another value (metric 
or static) 

AVG Computes the average value of a sequence of 
metric values 

SUM Computes the sum of a sequence of metric 
values 

MAX, MIN Extracts the maximum/minimum value from a 
sequence of metric values 

SET Assigns a static value to a metric 
KEEP Returns unchanged a metric value or the result of 

another operation 

4.2.1 Metric composition language 

Monitoring snapshot composition introduces the problem of 
combining/aggregating metrics. Depending on the type of 
metrics, a valid composition of two metrics might  

involve different operations. We define an XML-based 
domain-specific language for describing metric composition 
rules as a cascading sequence of operations which apply one 
or more operators over one or more operands. An operand 
can be a static value or a metric reference, and the set of 
available operations is presented in Table 1. The language 
grammar is shown in Listing 2, and the XML format for 
specifying rules is shown in Listing 3. For each rule there 
are at least one reference metric, one resulting metric, and 
several operations. The reference metric is used as a base 
for computing the composite metric, and it is searched in the 
metrics of the target monitored element children having the 
TargetMonitoredElementLevel. The resulting metric defines 
the name and unit of the composite metric being created. 
Defining the composition rules requires domain specific 
knowledge, such as knowing which operation is appropriate 
for which metric (e.g., SUM for cost, AVG for response 
time). 

4.2.2 Monitoring information structuring and 
enrichment 

Monitoring snapshots capture metrics, but not the same as 
elasticity requirements defined by the user, or at the same 
level. For example, a monitoring snapshot might include 
throughput per VM, while the elasticity requirements 
might target numberOfClients over the whole service. 
Using the above metric composition language, metrics 
collected from the VM level can be associated to the upper 
service levels, and new metrics can be created, according to 
individual service requirements, applying composition 
operations, as follows. First, the service level for  
which the new metric is created should be specified using 
the TargetMonitoredElementLevel, and can be  
one of VM, VIRTUAL_CLUSTER, SERVICE_UNIT, 
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SERVICE_TOPOLOGY, or SERVICE, according to the 
service dependency model. Optionally, if the rule should be 
applied on a specific monitored element, (a unit, a topology 
or the whole service), its ID can be specified with the 
TargetMonitoredElementID tag. Information about 
the new metric to be created must be specified using the 
ResultingMetric tag, including name, measurement 
unit, and type (one of elasticity dimensions). Then, a 

cascading list of operations can be defined, each  
operation having a type, defined in Table 1,  
and a ReferenceMetric, indicating the metric  
over which the operation should be applied. If the  
operation should be applied over metrics from a specific 
monitored element, its ID can be specified with the 
SourceMonitoredElementID tag. 

 

Listing 2 Metric composition rules grammar 

rule := operation “=>“ metric 
operation := operator “(“operand {“,” operand}”)” 
operator := “+”|”–”|”∗“|”/”|”AVG”|”SUM”|”MAX”|”MIN”|”SET”|”KEEP” 
operand := metric | number | string 
metric := name, measurementUnit, [monitoredElementID], monitoredElementLevel 

Listing 3 XML-based metric composition rule format 

1 <CompositionRule TargetMonitoredElementLevel = “LEVEL”> 
2  <TargetMonitoredElementID>id</TargetMonitoredElementID> 
3  <ResultingMetric type = “METRIC_TYPE” measurementUnit = “text” name = “text” /> 
4  <Operation MetricSourceMonitoredElementLevel = “LEVEL” type = “OPERATION”> 
5   <ReferenceMetric type = “METRIC_TYPE” measurementUnit = “ text “ name = “ text “ /> 
6   <SourceMonitoredElementID>ID</SourceMonitoredElementID> 
7  </Operation> 
8 </CompositionRule> 

Listing 4 Example of cost composition 

1 <CompositionRule TargetMonitoredElementLevel = “VM”> 
2  <ResultingMetric type = “RESOURCE” name = “numberOfVMs” measurementUnit = “count” /> 
3  <Operation value = “1” type = “SET_VALUE” /> 
4 </CompositionRule> 
5  
6 <CompositionRule TargetMonitoredElementLevel = “SERVICE_TOPOLOGY”> 
7  <ResultingMetric type = “COST” measurementUnit = “$/ client /h” name = “cost/client/h” /> 
8  <TargetMonitoredElementID>TOPOLGY_ID</TargetMonitoredElementID> 
9  <Operation type = “DIV”> 
10   <Operation type = “MUL” value = “VM_COST”> 
11    <Operation MetricSourceMonitoredElementLevel = “VM” type = “SUM”> 
12     <ReferenceMetric type = “RESOURCE” name = “numberOfVMs” /> 
13    </Operation> 
14   </Operation> 
15  
16   <Operation MetricSourceMonitoredElementLevel = “SERVICE_UNIT” type = “KEEP”> 
17    <ReferenceMetric type = “RESOURCE” measurementUnit = “clients/s” name = “ clients “ /> 
18    <SourceMonitoredElementID>LoadBalancer</SourceMonitoredElementID> 
19   </Operation> 
20  </Operation> 
21 </CompositionRule> 
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Algorithm 1 Cross-layered metric composition algorithm 

Input: service, compositionRules, monitoringData 
Output: snapshot – multi layer monitoring snapshot 
1: function BuildMonitoringSnapshot(service, compositionRules, monitoringData) 
2:  snapshot = createInitialSnapshot(monitoringData) 
3:  for all elementLevel in [VM,ServiceUnit, ServiceTopology, Service] do 
4:   levelElements = service.getElementsOnLevel(elementLevel) 
5:   levelRules = compositionRules.getRulesOnLevel(elementLevel) 
6:   for all rule in levelRules do 
7:    targetElements = getRuleTargets(rule, levelElements) 
8:    for all element in targetElements do 
9:     compositionValue= ApplyCompositionRule(rule, element, snapshot) 
10:     snapshot.addNewMetric(rule.metric,compositionValue, element) 
11:    end for 
12:   end for 
13:  end for 
14: return snapshot 
15: end function 
16:  
17: function ApplyCompositionRule(rule, monitoredElement, snapshot) 
18:  sourceElements = getSourceElements(rule.metric, monitoredElement) 
19:  values = [] 
20:  for all element in sourceElements do 
21:   values.add(snapshot.getMetricValue(element,rule.metric)) 
22:  end for 
23:  for all operation in rule.operations do 
24:   values = operation.apply(values) 
25:  end for 
  return values 
26: end function 

 
4.2.3 Cost composition 

Monitoring and analysing cost is crucial in enabling  
run-time monitoring, analysis and control of service cost by 
elasticity controllers. Cost usually cannot be monitored 
directly, due to a lack of cloud provider APIs providing  
run-time fine-grained cost monitoring. Instead, using metric 
composition rules, we can associate cost information 
usually collected statically from cloud providers, with 
monitoring information collected by monitoring tools, 
obtaining real-time cost monitoring. Using our composition 
language, in Listing 4, we show a template for composing 
the cost/client/h (line 7) for a certain topology  
(line 8), by enriching monitoring information with cost 
information and new metrics. For computing the virtual 
infrastructure cost, a new numberOfVMs metric is created 
with value 1 for each VM belonging to this topology  
(lines 1–4). Then, the values of clients metric obtained 
from all topology’s VMs are summed up (lines 11–13), and 
multiplied (lines 10–14) with the cost per VM, VM_COST. 
Lines 16–19 define an operation retrieving the clients 

metric from a specific LoadBalancer unit, used to divide 
(lines 9–20) the cost of running the virtual infrastructure 
obtained above. Starting from this template, other composite 
cost metrics can be defined according to specific service 
requirements. 

4.2.4 Metric composition process 

Algorithm 1 describes our process of constructing  
multi-level monitoring snapshots by applying custom  
metric composition rules which structure monitoring 
information, compute cost, or enrich monitoring 
information depending on service specific requirements. 
The BuildMonitoringSnapshot function applies metric 
composition rules bottom-up on the service’s monitored 
elements, first at the virtual machine level, then at service 
unit, service topology and service levels, creating the  
cross-layer monitored snapshot. Each composition rule is 
applied over its target monitored elements belonging to that 
specific level (lines 6–12). The ApplyCompositionRule 
function handles the application of metric composition 
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rules. First, if a rule specifies a specific monitored element 
from which the metric values are to be collected, it is 
considered as a single monitored values data source. 
Otherwise, monitored values are extracted from the element 
itself, or from all children of the element which belong to 
the rule’s metric source level (line 19). From all monitored 
element data sources, the source metric is searched, and its 
values collected (lines 20–22). Over the collected values, 
the rule’s composition operations are applied sequentially, 
the output of a previous operation acting as input for the 
next (lines 24–26). The output of the last operation is 
returned as result of the metric composition process. 

4.3 Multi-dimensional elasticity space and pathway 
analysis 

Based on the metric composition, we provide an analysis 
mechanism for determining the elasticity space and pathway 
at different dependency model levels, providing a  
multi-level decomposition of the cloud service behaviour. 
Such a decomposition is beneficial to elasticity controllers, 
which can use our approach to detect which monitored 
element from which service dependency model level 
violates service requirements, and reason in terms of metrics 
located at that particular level. Providing a complete view 
over the behaviour of cloud services enables service 
providers/developers and software controllers to reason on 
the same service using separate perspectives. 

4.3.1 Elasticity space analysis 

Algorithm 2 describes the process of evaluating the 
elasticity space, in which custom elasticity space functions 
can be used to update the elasticity boundaries 
(updateElasticityBoundaries function). The 
service structure, elasticity requirements, metric 

composition rules, and collected monitoring data are 
received as input. For each new collected monitoring 
snapshot, the cross-layered enriched monitoring snapshot is 
computed by applying metric composition rules in line 2. 
For each service monitored element, the elasticity space is 
evaluated by updating the elasticity boundaries. Lines 7–11 
check if all elasticity requirements are fulfilled, and if yes, 
the upper and lower elasticity boundaries are updated. If 
not, the monitoring snapshot is stored for future reference. 

We understand that analysing and controlling elasticity 
of cloud services can be a continuous process in which 
elasticity requirements or even the service structure are 
refined during run-time. We define the following changes 
that have impact on the process of determining the elasticity 
space and boundaries: 

1 metric composition rules 

2 elasticity requirements 

3 service structure. 

In the first case, we support addition and removal of metrics 
by altering the supplied composition rules, the elasticity 
space evaluation continuing by enriching the space 
determined so far using the metrics available in each new 
monitoring snapshot. In the latter 2 cases, the whole 
elasticity space is recomputed based on historical 
monitoring information, updating all elasticity boundaries. 

In the current prototype, we implement an elasticity 
space function which, starting from user-defined elasticity 
requirements for the whole cloud service, determines as 
space boundaries for all service topology and service unit 
instances, their maximum and minimum encountered metric 
values when the user-defined elasticity requirements are 
respected. 

Algorithm 2 Evaluating elasticity space 

Input: service, requirements, metricCompositionRules, monitoringData 
1: function EvaluateElasticitySpace(service, requirements, metricCompositionRules, monitoringData) 
2:  snapshot = BuildMonitoringSnapshot(service, metricCompositionRules, monitoringData) 
3:  elasticitySpace = getElasticitySpaceLearnedSoFar() 
4:  for all snapshot in monSnapshot.elements do 
5:   elementElSpace = elasticitySpace.get(snapshot.element) 
6:   elementRequirements = serviceRequirements.get(snapshot.element) 
7:   if snapshot.fulfillsAll(elementRequirements) then 
8:    elementElSpace = elementElSpace.updateElasticityBoundaries(snapshot) 
9:   else 
10:    elementElSpace = elementElSpace.store(snapshot) 
11:   end if 
12:  end for 
13: return elasticitySpace 
14: end function 
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Algorithm 3 Evaluating elasticity pathway 

Input: elasticitySpace, serviceElement 
1: function EvaluateElasticityPathways(elasticitySpace, serviceElement) 
2:  elPathwayFunctions = getPathwayFunctionsFor(serviceElement) 
3:  elPathways = [] 
4:  for all elPathwayFunction in elPathwayFunctions do 
5:  elPathways.push(elPathwayFunction(elasticitySpace)) 
6:  end for 
7: return elPathways 
8: end function 

 
4.3.2 Elasticity pathway analysis 

Based on an elasticity space, elasticity pathway functions 
can be defined for each service unit, topology, or whole 
service, enabling custom analysis of service behaviour. 
Based on the determined elasticity space, for the supplied 
monitored element (service element), we apply its 
elasticity pathway functions, analysing its behaviour and 
extracting behavioural characteristics (Algorithm 3). 

For the current prototype, we adapt as elasticity pathway 
function an unsupervised behaviour learning technique 
using self-organising maps (SOMs) presented by Dean et al. 
(2012), and classify monitoring snapshots by their 
encounter rate in DOMINANT, NON-DOMINANT, and 
RARE. Such a pathway is important for understanding if the 
regular behaviour of the service respects user-defined 
elasticity requirements. As SOMs are unsupervised neural 
networks that map multi-dimensional spaces into low 
dimensional ones, they are suitable for classifying 
monitored snapshots, as snapshots can contain many 
different metrics. Each SOM’s neuron value is derived from 
its snapshots. Each monitoring snapshot to be classified is 
mapped to the group from which it has the smallest 
distance. With each new snapshot, the group and its SOM 
neighbours are updated using the function Vnew(group) = 
Vold(group) + A ∗ N(group)(V(snapshot) – Vold(group)), 
where A is a discount factor, and N(group) is a 
neighbourhood function determining the degree with which 
a group value is updated. In unsupervised learning the 
initialisation of the system is important. As we classify 
groups after the number of snapshots mapped to them, we 
do not initialise the SOM with random values, as it might 
generate groups which are close together in value but far 
away in terms of location in the SOM. In such a case  
similar snapshots might be assigned to separate groups, 
diluting the number of snapshot mapped to a SOM entry. 
Thus, we initialise the SOM with snapshot groups  
having all metrics equal to 0, and rely on its self-adaptive 
nature to map the input data. We use a neighbourhood 
function of 1 for the directly targeted group and of 
1/neighbourLevel/neighboursCount for its neighbours. 
Updating the neighbours creates and update new groups, 
mapping the input data better. The discount learning factor 
is 1/neighbourLevel, the neighbourhood is 2 and the map 
size is 10 × 10. A filtering step merges groups with same 

value, consolidating the monitored snapshots, and the 
average absolute deviation (AAD) (the average of the 
absolute deviations) of the number of snapshots mapped per 
group is computed. Using the AAD, a group is RARE if its 
deviation is negative and its absolute higher than the AAD, 
DOMINANT if its deviation is higher than the AAD, and 
NON-DOMINANT otherwise. While finer grained classes 
can be defined, we argue that these are enough to give 
insight in the elastic behaviour of cloud services. 

5 MELA: elasticity analytics as a service 

Based on our concepts in Section 3, we develop MELA, an 
elasticity analytics as a service (Figure 5). MELA contains a 
core MELA Service, and Data Collector nodes. A Data 
Collector node is a customisable component that gathers, 
from existing monitoring solutions, data associated with a 
dependency model level or monitored element (e.g., 
responseTime or throughput for the Event 
Processing service topology), and sends it for 
processing and analysis to the MELA Service. 

Monitoring data from existing monitoring systems is 
usually associated with a single level, e.g., virtual 
infrastructure, service topology or service unit. An 
important MELA feature is the linking of these levels, 
implying a configuration step using the configuration API, 
defining the service structure, the metrics composition rules 
to be applied for the monitored elements at each level, and 
the service requirements. The multilevel monitoring 
snapshot construction component uses the service specific 
configuration to provide composite monitoring snapshots 
from data collected from the data collector nodes. Elasticity 
space and pathway functions are tailored trough the 
elasticity functions management API and used to determine 
the elasticity space by the elasticity space analysis MELA 
component, from which the elasticity pathway is determined 
by the elasticity pathway analysis MELA component. 
Composite monitoring snapshots together with determined 
elasticity space are stored in a Monitoring and elasticity 
space snapshots repository. Using the elasticity analysis 
API, the MELA user can retrieve the elasticity space and 
pathway for the whole service, or specific monitored 
elements. 
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Table 2 MELA RESTful API 

URI Operation Functionality 

/servicedescription PUT Submitting the service structure 
/servicedescription POST Updating the service structure with added or removed virtual machines 
/metricscompositionrules PUT Submitting metric composition rules 
/servicerequirements PUT Submitting service’s elasticity requirements 
/metrics GET Retrieving the metrics that can be collected from the service 
/metriccompositionrules GET Retrieving the metric composition rules in JSON format 
/monitoringdataJSON GET Retrieving the service’s composite multi-level monitoring snapshot in JSON format 
/monitoringdataXML GET Retrieving the service’s composite multi-level monitoring snapshot in XML format 
/elasticityspace POST Retrieving the elasticity space in JSON format of a supplied monitored element 
/elasticitypathway POST Retrieving the elasticity pathway in JSON format of a supplied monitored element 

 
As MELA is designed to analyse elastic services which can 
allocate/deallocate virtual machines depending on elasticity 
requirements, it provides two mechanisms for managing this 
volatile service structure. The default mechanism is to 
delegate this responsibility to the MELA user (cloud service 
developer/provider or controller), which, in this, case uses 
the MELA API to update the service structure after a new 
virtual machine running service units has been added or 
removed. The second behaviour is to let MELA detect 
automatically when a new virtual machine has been added 
or removed to which service units the machines belong. 
This behaviour is achieved by reporting the service  
units’ ids hosted by a virtual machine using a virtual 
machine metric, and configuring MELA to  
use the metric to automatically update the service  
structure. MELA is released as an open-source project 
(http://tuwiendsg.github.io/MELA/), and MELA exposes its 
functionality through RESTful services, providing methods 
for configuring MELA and retrieving multi-level 
monitoring information and elastic service behaviour 
analysis (Table 2). 

Figure 5 MELA overview (see online version for colours) 

 

6 Experiments 

We evaluate MELA in the context of COMOT, a  
platform-as-a-service for elasticity in the cloud (Truong  
et al., 2014), containing tools for describing, deploying,  
and controlling elastic cloud services. The realistic  
DaaS application for an M2M cloud mentioned in Section 2 
is used as pilot service, were the DaaS uses Cassandra 
(http://cassandra.apache.org/) for its Data End units, and 
HAProxy (http://haproxy.1wt.eu/) for its Load Balancer 
unit. In this scenario, the M2M DaaS provider wants to 
implement a 2.5$ monthly subscription for each service 
client (sensor). UsingCOMOT, the provider describes the 
DaaS and its elasticity requirements, and deploys the 
service, which is then automatically controlled at run-time. 

MELA has two important roles in this evaluation. First, 
it provides the human service provider the ability to monitor 
and analyse the service’s elasticity behaviour (via metrics) 
at each service level, to understand the elasticity of the 
service, and verify if such a pricing scheme is sustainable. 
Secondly, it provides structured and enriched monitoring 
information used by COMOT’s elasticity controller during 
service’s run-time. 

As elasticity is triggered by performance/cost 
requirements, we simulate a load from real sensor data, 
following a Gaussian distribution of M2M sensors 
connecting to the DaaS, starting from 50 sensors per second, 
increasing to 350, and then decreasing again, each request 
requiring between 1 and 10 operations. The service VMs 
were deployed on our OpenStack 
(http://www.openstack.org/) cloud. For these experiments 
MELA utilises Ganglia (http://ganglia.sourceforge.net/) for 
the MELA data collector node, retrieving generic OS level, 
and service specific monitoring data (e.g., clients/h, 
throughput, and response time) from custom Ganglia plug-
ins we have developed. 

6.1 Monitoring elastic cloud services 

The first feature of MELA is multi-level elasticity 
monitoring. Using the cross-layered metric composition 
mechanism, the MELA user (service developer/provider) 
starts by defining a composition rule for extracting the cost 
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of running the service in cloud, customising the template 
provided in Section 3, assuming service cost to consist only 
of the cost of running each virtual machine, assumed 0.12$ 
per VM per hour. As the service provider is interested in the 
overall cost per client, additional metric composition rules 
are defined to first propagate the activeConnections 
metric from the virtual machines running the LoadBalancer 
service unit to the service unit level as a renamed 
numberOfClients metric, and then further propagate 
the numberOfClients to the service unit’s parent 
EventProcessing service topology. Obtaining the 
cost/client/h, a CloudService level rule sums the  
cost of the children service topology instances, and 
divides it by the numberOfClients metric from the 
EventProcessing topology. Figure 6 shows with thick lines 
how, using MELA, such a complex cost/client/h 
metric is composed and evaluated by combining available 
metrics with additional cost information. 

To monitor the performance of the DaaS, the MELA 
user extracts for the DataController service unit its 
writeLatency by averaging the write_latency  
reported by all its instances running in virtual machines.  
For the EventProcessing service unit the average 
responseTime and total throughput are extracted 
from its virtual machines, and propagated to the 
EventProcessing service topology. Additionally, a metric 
composition rule is defined to extract the average 
cpuUsage for all service unit instances. Figure 6 shows a 
snapshot of the DaaS, containing the simple and composite 
metrics deemed important for analysing the service’s 
behaviour. 

Providing higher-level composite metrics such as 
cost/client/h, structured after the service structure in 
topologies and units, MELA facilitates service behaviour 
analysis by the service controller, focusing on simple or 
composed metrics that are of interest. 

Figure 6 MELA visualisation of multi-level monitoring data with complex cost composition (see online version for colours) 
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Figure 7 Cloud service elasticity pathway (see online version for colours) 

 

 
6.2 Analysing elastic cloud services using elasticity 

space and pathway 

MELA’s second feature is elasticity analysis. The elasticity 
space is used to determine what are the behavioural 
boundaries in which the service fulfils supplied 
requirements. The elasticity pathway function prototype 
groups combination of different metric values as 
DOMINANT, NON-DOMINANT, and RARE, according to 
their encounter rate in the monitoring data, determining the 
usual behaviour of the service and the correlations between 
the analysed metrics. In our scenario, assuming a month of 
30 days, the elasticity requirement for the service is a 
maximum cost of 0.0034$ per served client per hour. Using 
MELA, the user determines what are the elasticity 
boundaries for various service topologies and units in which 
the cost requirement is respected, and the correlations 
between the analysed metrics. Using this information, the 
MELA user can validate and refine the elasticity 
requirements submitted to COMOT and used to control the 
elasticity of the service. 

As the cost boundaries are set by the MELA user, the 
elasticity pathway of the service is inspected (Figure 7), 
revealing that the cost/client/h is less than 0.0034$ 
only in approximate 72% of the encountered situations, 
leading to the conclusion that a pricing scheme of 2.5$ per 
month per client is not fully sustainable. To find the reason 
for this situation, the provider uses the MELA multi-level 
analysis feature to focus on the event processing service 
topology. 

Figure 8 presents a snapshot of the elasticity space for 
the event processing service topology containing the 
numberOfClients/h, responseTime, throughput, 
and cost/h metrics. The complete space is depicted in 
Figure 9 and thick lines mark the elasticity space 
boundaries, i.e., minimum and maximum acceptable values. 
For the numberOfClients/h elasticity space dimension 
(upper left corner), the determined lower elasticity space 
boundary is approximately 150, understandable given that 
the service uses at least 4 VMs at 0.12$/h (150 multiplied 
by 0.0034, gives a 0.51$/h). To learn more about the service 
topology behaviour and its boundaries, the user focuses on 
the responseTime dimension (lower right corner), for 
which MELA determines both a minimum and maximum 

boundary. This might seem weird at first, as the user would 
expect to always want minimum response time, but, in this 
case, this might be as result of under using the virtual 
machines, which is not cost effective. Similarly, a lower 
boundary was determined for the throughout dimension 
(lower left corner), and the points of low throughput are 
consistent with those of low responseTime, thus 
strengthening the previous conclusion. By investigating the 
elasticity pathway of the event processing service topology 
(Figure 10), by summing up the behaviour situations, the 
user can determine that in approximately 20% to 30% of the 
situations, there is high response time with low number of 
clients, which might indicate a potential bottleneck 
somewhere in the service. 

Figure 8 Event processing service topology elasticity space 
snapshot (see online version for colours) 

 

Thus, the MELA user focuses next on the service units 
belonging to the DataEnd topology, and examines the 
elasticity space of the DataController service unit by 
capturing its writeLatency and cpuUsage (Figure 11). 
For the writeLatency elasticity space dimension (left 
side), MELA determined a higher elasticity space boundary, 
indicating the maximum latency recorded in which the 
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service respected the cost requirement. For the cpuUsage 
dimension there is only a lower elasticity boundary. 
Investigating the elasticity pathway of the DataController 
service unit (Figure 12), the MELA user can determine that 
in approximately 30% of the encountered situations the 
cpuUsage was over 95%, and in around 50% over 90%, 

indicating a potential bottleneck. However, a further 
analysis is needed to understand the complete elasticity 
behaviour of the DaaS service, by investigating the 
elasticity space and pathway for the other service elements, 
selecting more metrics to be analysed, and/or refining the 
elasticity requirements for the COMOT elasticity controller. 

Figure 9 Event processing service topology elasticity space (see online version for colours) 

 

Figure 10 Event processing service topology elasticity pathway (see online version for colours) 
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Figure 11 Data controller service unit elasticity space (see online version for colours) 

 

Figure 12 Data controller service unit elasticity pathway (see online version for colours) 

 

 
The above-mentioned experiments have highlighted the 
importance and challenges of monitoring and analysing the 
behaviour of elastic services at multiple levels. The 
elasticity space is crucial in understanding the elasticity 
boundaries of cloud services. Given a control mechanism 
and workload, in these experiments, from the elasticity 
space analysis and a single high level user requirement, the 
user can obtain insights regarding what other boundaries the 
control mechanism must enforce at different levels in the 
cloud service, e.g., that it needs at least 148 clients. 
Applying the elasticity pathway function, the user can learn 
what is the overall behaviour of the cloud service, bringing 
insight in how does the service behave and what are the 
dependencies between the service’s metrics, e.g., 
responseTime, throughput and numberOfUsers. 
With this insight, the user can refine the service’s 
requirements and resume the analysis process, iteratively 
improving the service’s elasticity. 

7 Related work 

A framework for data collection and aggregation is 
introduced by Wang et al. (2011). In Trihinas et al. (2014), 
the authors introduce JCatascopia, a tool for monitoring 

elastic applications relying on dynamic probe 
addition/removal. Leitner et al. (2012) aim to extract 
application-specific performance information from  
system-level metrics, relying on application event streams. 
Dhingra et al. (2012) monitor cloud resource usage from the 
infrastructure owner perspective. An adaptive cloud 
monitoring tool providing estimations on monitoring 
accuracy is described by Meng et al. (2012). An elastic 
monitoring framework for cloud infrastructures is presented 
by Konig et al. (2012), providing a powerful query 
mechanism for retrieving service level information, and 
Katsaros et al. (2012) present a monitoring system 
collecting both virtual infrastructure and service level 
information. He et al. (2013) propose a cloud services 
monitoring framework analysing monitoring information 
and detecting abnormal behaviour, while Venzano and 
Michiardi (2013) study traffic patterns on a private cloud, 
highlighting that relationships between metrics are 
influences by network, virtualisation layer, and VM 
collocation. Gullhav et al. (2013) apply an extended 
response time block method to monitor and approximate the 
response time of cloud services, considering the horizontal 
scalability of a single business tier, while Lloyd et al. (2012) 
correlate physical and virtual machine resource utilisation 
statistics to predict application performance across VMs. 
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Xiong et al. (2013) introduce vPerfGuard, a framework for 
service performance diagnosis in consolidated cloud 
environments, automatically discovering metrics which are 
most descriptive of service performance. In contrast, we 
adopt the cloud user perspective, and provide a 
customisable mechanism for mapping system level 
monitoring data to the running service structure, and 
enriching data obtained from various monitoring systems, 
providing a complete view over the monitored cloud service 
behaviour. 

Cloud monitoring is also the focus of many industry 
tools such as Nagios (http://www.nagios.org/), Ganglia 
(http://ganglia.sourceforge.net/), Zabbix (http://www.zabbix. 
com/), OpenNMS (http://www.opennms.org/), or Hyperic 
(http://www.hyperic.com/). Such tools mostly focus on 
gathering data from the physical and virtual infrastructure, 
and distributing it, without correlating it with the services 
running on it. Such tools can act as data sources for our 
framework, as we do not focus data collection. We differ as 
we do not focus on monitoring, and rely on data from 
existing solutions, structure and enrich it, and use it to 
analyse the elasticity of cloud services. 

Based on monitoring information, service analysis and 
control mechanisms can be built. An architecture for 
controlling cloud services using high-level rules is 
introduced by Vaquero et al. (2012). The cost of Amazon 
EC2 spot instances is analysed by Agmon Ben-Yehuda  
et al. (2011). Emeakaroha et al. (2012) present CASViD, an 
adaptive architecture for evaluating SLA violations using 
both system-level and application-level monitoring 
information. A mechanism for adapting cloud allocation is 
presented by Singh et al. (2010), using an aggregation that 
monitors the workload at each service tier. Demchenko  
et al. (2012) present a framework for multi-domain 
heterogeneous cloud services interoperability. Konstantinou 
et al. (2012) present a cloud-enabled framework for 
monitoring and adaptively resizing NoSQL clusters. 
Kolodner et al. (2011) introduce a scalable cloud 
environment for data-intensive storage services, scaling 
with respect to the resource usage cost and service 
performance. Warneke and Kao (2011) target elastic data 
processing in clouds by allocating virtual machines on 
demand, and Duong et al. (2011) introduce a framework for 
dynamic resource provisioning and adaptation in IaaS 
clouds. Sampaio and Mendonça (2011) propose Uni4Cloud, 
a framework for the deployment and management of  
multi-cloud services, while Miglierina et al. (2013) 
introduce a control theoretic approach for multi-cloud 
services, targeting resource level control. We differ as we 
provide insight in the elasticity of cloud services, and 
introduce concepts and techniques for extracting elasticity 
boundaries, with respect to the cost, quality and 
performance of cloud services, based on which control 
strategies for the service’s elasticity can be refined. 

8 Conclusions and future work 

Elasticity analytics are crucial to cloud service developers 
and providers to understand the behaviour of their services 
at multiple levels, from individual units to the whole 
service, towards developing smarter mechanisms for 
controlling their elasticity. This paper introduced concepts 
and techniques for monitoring and analysing the elasticity 
of cloud services. A cross-level metric composition 
mechanism was introduced, for linking service level with 
system level monitoring information, and deriving higher 
level information from it. For characterising the behaviour 
of elastic cloud services, the concepts of elasticity space and 
elasticity pathway were introduced. Evaluating the elasticity 
space based on the cross-level metric composition 
mechanism and user requirements, our approach determines 
elasticity boundaries for all service’s elements, bringing 
insight in the behaviour of the service, and how such a 
service should be controlled. Applying the elasticity 
pathway over the elasticity space, a mechanism for 
classifying the elasticity behaviour of cloud services was 
defined, providing insight in the service’s behaviour 
evolution and a base for predicting it. We have introduced 
MELA, elasticity analytics as a service, implementing the 
concepts and techniques defined in this paper. MELA 
provides features for real-time multi-level analysis of elastic 
cloud services, and integrates different elasticity analysis 
functions to support the analysis of other complex elastic 
behaviour. 

As future work we will investigate cloud infrastructure 
elasticity and elasticity of cloud offered services. We will 
further focus on determining patterns of elasticity behaviour 
of cloud services. Furthermore, we will work on automatic 
extraction of elasticity dependencies between elasticity 
space dimensions, providing deeper insight in cloud 
service’s elasticity. 
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