
Int. J. Big Data Intelligence, Vol. 2, No. 1, 2015 45

Copyright © 2015 Inderscience Enterprises Ltd.

MELA: elasticity analytics for cloud services

Daniel Moldovan*, Georgiana Copil,
Hong-Linh Truong, and Schahram Dustdar
Distributed Systems Group,
Vienna University of Technology,
Argentinierstrasse 8/184-1, A-1040 Vienna, Austria
Email: d.moldovan@dsg.tuwien.ac.at
Email: e.copil@dsg.tuwien.ac.at
Email: truong@dsg.tuwien.ac.at
Email: dustdar@dsg.tuwien.ac.at
*Corresponding author

Abstract: While cloud computing has enabled applications to be designed as elastic cloud
services, there is a lack of tools and techniques for monitoring and analysing their elasticity at
multiple levels, from the service level to the underlying virtual infrastructure. In this paper, we
focus on monitoring and evaluating elasticity of cloud services, crucial for supporting users and
automatic elasticity controllers, to understand the services’ behaviour, and to develop smarter
mechanisms for controlling their elasticity. We define novel concepts, namely elasticity space for
describing the elastic behaviour of cloud services, and elasticity pathway for characterising the
service’s evolution through the elasticity space. We introduce techniques for enriching
monitoring information and determining the elasticity space and pathway. Based on the above,
we introduce MELA, an elasticity analytics as a service, providing features for monitoring and
analysing the elasticity of cloud services in multi-cloud environments. To illustrate our
approach, we conduct several experiments on an elastic data-as-a-service for a cloud-based
machine-to-machine (M2M) platform.

Keywords: elastic computing; cloud service; elasticity analytics; monitoring.

Reference to this paper should be made as follows: Moldovan, D., Copil, G., Truong, H-L. and
Dustdar, S. (2015) ‘MELA: elasticity analytics for cloud services’, Int. J. Big Data Intelligence,
Vol. 2, No. 1, pp.45–62.

Biographical notes: Daniel Moldovan is a Research Assistant at the Distributed Systems Group,
Institute of Information Systems, Vienna University of Technology, where he is working towards
his PhD in the Context of Monitoring and Analysing Elastic Cloud Services since 2013. He
received his Master in Distributed Systems and Computer Networks, and Bachelor in Computer
Science at Technical University of Cluj Napoca, Romania. His research interests include
distributed, green and elastic computing.

Georgiana Copil is a University Assistant at the Distributed Systems Group, Institute of
Information Systems, Vienna University of Technology, where she is working towards her PhD
in the context of controlling elastic cloud services since 2013. She received her Master in
Computer Vision and Artificial Intelligence, and Bachelor in Computer Science at Technical
University of Cluj Napoca, Romania. Her research interests include artificial intelligence,
distributed and cloud computing.

Hong-Linh Truong is an Assistant Professor for Service Engineering Analytics at the Distributed
Systems Group, Institute of Information Systems, Vienna University of Technology. He received
his Habilitation in Practical Computer Science, from Vienna University of Technology, and a
PhD in Computer Science from the same university. His research interests focus on
understanding of performance, context, and data quality metrics associated with distributed and
parallel applications, services and systems through monitoring and analysis, and on utilising
these metrics for the design, adaptation and optimisation of these applications, services and
systems.

Schahram Dustdar is a Full Professor of Computer Science and Head of the Distributed Systems
Group, Institute of Information Systems, at the Vienna University of Technology. He is an ACM
Distinguished Scientist and IBM Faculty Award recipient. He received his Habilitation degree in
Computer Science at Vienna University of Technology, and received his MSc and PhD in
Business Informatics from the University of Linz, Austria. His research interests include
service-oriented architectures and computing, cloud and elastic computing, and complex and
adaptive systems.

46 D. Moldovan et al.

This paper is a revised and expanded version of a paper entitled ‘MELA: monitoring and
analyzing elasticity of cloud services’ presented at 5th International Conference on Cloud
Computing, CloudCom, Bristol, UK, 2–5 December 2013.

1 Introduction

With the rising cloud popularity, the number of applications
and systems born in or migrated to cloud environments has
substantially increased. In this context, effort has been paid
for the development of emerging elastic cloud services,
which scale up/out when the workload is high, and scale
back in/down when possible, reducing cost while
maintaining performance and quality. Going beyond the
traditional ‘elastic scalability’, which concentrates on
scaling in/out resources to achieve performance, such as in
Mao and Humphrey (2013) or Han et al. (2012), in general,
elasticity has three main dimensions: ‘resource elasticity’,
‘cost elasticity’, and ‘quality elasticity’, described in
Dustdar et al. (2011). Thus, an elastic service can cope with
changing external factors by providing means of
reconfiguring its cost, quality and resources.

Supporting such multi-dimensional elasticity is
challenging, especially how to monitor and evaluate cloud
service’s elastic behaviour, determine the proper cost and
quality indicators and their boundaries, and utilise them for
optimising and controlling the services’ elasticity. While
existing monitoring and analysis tools can present metrics
related to performance, cost, or resource usage of the whole
cloud service as in Singh et al. (2010), or Trihinas et al.
(2014), or from the underlying virtual infrastructure as in
Wang et al. (2011) and Meng et al. (2012), they do not
provide a cross-layered, multi-level service elasticity
behaviour picture, thus hindering the discovery of the cause
for service requirements violations. Moreover, currently,
deciding cost and quality indicators and their boundaries is a
difficult task. Managing elasticity of cloud services would
benefit from a multi-level monitoring and analysis view,
which connects the service level behaviour with the virtual
infrastructure behaviour and provides means for reasoning
about the service behaviour at multiple levels. In particular,
we argue that in order to understand elastic cloud services,
we need to investigate new concepts that can be used to
characterise the cloud service’s elastic behaviour based on
multi-dimensional monitoring data.

In this paper, we introduce the concepts of elasticity
space and elasticity pathway, and apply them in evaluating
elasticity of cloud services. First, the elasticity space is used
in capturing the elastic behaviour of cloud services. Second,
the elasticity pathway characterises the service’s evolution
through the elasticity space, and can be used to predict the
service’s behaviour. We further introduce a mechanism for
constructing multi-level service monitoring snapshots, over
which we apply our techniques for determining the
elasticity space and pathway. The introduced concepts and
techniques are implemented in MELA, an ‘elasticity
analytics as a service’. MELA allows cloud service
developers, providers and automatic controllers to analyse

their service behaviour from the whole service level to the
underlying virtual infrastructure, extracting characteristics
and providing crucial insights in their elasticity. The main
contributions of our paper are:

• A model, domain-specific language and customisable
mechanism for constructing multi-level monitoring
snapshots for elastic services.

• Novel concepts of elasticity space and elasticity
pathway for analysing elasticity of cloud services at
multiple levels.

• Customisable mechanisms for extracting runtime
boundaries of cloud service’s elasticity that fulfil
user-defined elasticity requirements.

This paper has substantially revised and expanded our initial
work in Moldovan et al. (2013). We have extended the
paper with a discussion on elastic cloud services
(Section 2). We have substantially revised our concept of
elasticity space and pathway (Section 3), improved the
service representation model, and introduced an XML
format for representing elastic cloud services. We have
further added an XML format for our metric composition
language, and defined the processes of creating new metrics
and composing cost. Moreover, while the initial paper
contained a single more abstract algorithm, new algorithms
have been introduced, for cross-layer metric composition,
and evaluating the elasticity space and pathway. We
extended the description of MELA’s components and its
RESTful API (Section 5), and expanded our experiments to
cover the analysis of elasticity space and pathway for all
major units of an elastic cloud service (Section 6).

The rest of this paper is structured as follows. Section 2
presents the motivation and research problems. Section 3
presents our concepts of elasticity space and pathway for
describing elasticity of cloud services. Section 4 presents
our approach to monitoring and analysing elasticity of cloud
services. In Section 5, we describe the MELA framework.
Section 6 presents our prototype and experiments. We
discuss related work in Section 7. Section 8 concludes this
paper and outlines the future work.

2 Motivation and research problems

Let us consider a realistic data-as-a-service (DaaS) for an
machine-to-machine (M2M) cloud platform, for which we
have elasticity requirements defined by the cloud service
provider, developer, and elasticity controller, w.r.t service
run-time performance and cost. The DaaS provides data
storage and exchange services for M2M platforms, such as
smart cities or vehicle fleets, which use their M2M
gateways for sending data to the DaaS. The DaaS is

 MELA: elasticity analytics for cloud services 47

composed of a message-oriented middleware, a data storage
for gathering/storing M2M data, and event processing
services which interact with the stored data.

Considering a non-elastic implementation of the DaaS,
it would contain a powerful Event Processing instance
interacting with a Data Node. Let is assume that the
service could process up to 1,000 clients per second, after
which its performance decreases. Thus, when the number of
clients is low, the service’s virtual cloud resources would be
underutilised, but still paid in full, leading to unnecessary
high cost. On the other hand, when the number of clients’
increases beyond 1,000, the DaaS performance would
decrease, and even if the service owner might want to pay
more to increase performance, the only solution would be to
instantiate the service on larger virtual resources.

In contrast, an elastic DaaS (Figure 1) would be
designed with elasticity capabilities, i.e., run-time
reconfiguration options such as ability to add/remove
service units behind a load balancer. Thus, the DaaS has
two service topologies (logical groupings of service units),
Data End and Event Processing, having as elasticity
capabilities addition and removal of service unit instances
running on VMs. For designing such capabilities, the DaaS
has a Load Balancer enabling addition/removal of
Event Processing instances. Similarly, the Data End
is distributed, having a Data Controller acting as data
access load balancer, enabling addition/removal of Data
Node instances.

Thus, the above-mentioned elastic DaaS can start with a
lighter initial configuration, and lower cost. When the
number of clients increases at T1, another Event
Processing instance can be added to cope with the load,
and thus, increase the cost of running the DaaS. At time T2,
after the number of clients decreases, the additional Event

Processing instance can be terminated, reducing cost. If
required, at T3, due to rising number of clients, multiple
Event Processing and Data Node instances can be
added/removed.

In general, we have three main views from which cloud
services are described (Figure 2):

1 design-time, where we see the whole service
dependency model (cloud service, service topology,
and service unit) and user-defined requirements

2 run-time, where instances of service units are deployed
and executed in virtual machines

3 the virtual infrastructure, where several virtual
machines, possibly grouped in virtual clusters, are used.

While using various monitoring techniques, such as
Trihinas et al. (2014) or Katsaros et al. (2012), we can
capture monitoring data from the whole service level or the
VM level, however, they do not answer the following
crucial questions:

• What should be the behaviour of the service topologies
and units when fulfilling user-defined elasticity
requirements?

• When is the service’s behaviour elastic, i.e., adapting
and fulfilling user-defined elasticity

requirements?

• How does the service’s elastic behaviour evolve in
time, i.e., what are the correlations and patterns in its
behaviour?

Figure 1 Elastic cloud service control (see online version for colours)

48 D. Moldovan et al.

Figure 2 Elastic cloud service views

Capturing, describing and analysing the elastic behaviour of
cloud services are crucial not only for developers who build
and optimise them, but also for software controllers that
change the services’ topology at run-time, enforcing
user-defined elasticity requirements. Thus, elasticity
controllers, such as Copil et al. (2013) or Mao and
Humphrey (2013), need a mechanism for extracting
elasticity characteristics, used to refine user-defined
elasticity requirements or predict the service behaviour,
leading to better service control and quality.

To analyse the behaviour of elastic cloud services, we
must first collect monitoring information, map it to the
service structure, and extract from it higher level
information used to characterise the service’s elasticity.
While determining elasticity of a monitored element (e.g.,
load balancer and data node) is already challenging, we
cannot just deal with single instances. We also need to
analyse the elasticity of the whole cloud service by
examining dependencies among different monitored
elements and the virtual infrastructure hosting them.
Furthermore, we need to map the service’s elasticity
behaviour to user-defined elasticity requirements, to analyse
how and when the requirements are fulfilled.

This motivates us to investigate the following issues:

• Which concepts can be used to capture the elastic
behaviour of cloud services?

• How to extract characteristics that describe the
service’s elastic behaviour to support both reactive and
predictive control of elastic services?

• How to analyse the cloud service’s behaviour,
detecting the source of user-defined elasticity
requirements violations?

This paper focuses on capturing the properties of elastic
services at multiple levels, providing support for analysing
their behaviour from multiple views, and characterising the
elastic behaviour of each cloud service based on
user-defined elasticity requirements.

Figure 3 Elasticity dimensions (see online version for colours)

3 Elasticity space and pathway of cloud services

In this section, we introduce the concepts of elasticity space
and elasticity pathway for analysing and characterising the
elastic behaviour of cloud services.

 MELA: elasticity analytics for cloud services 49

3.1 Multi-dimensional elasticity

In order to support and analyse the multi-dimensional
elasticity of cloud services defined in Dustdar et al. (2011),
we categorise monitoring data in three dimensions: cost,
quality, and resource (Figure 3). These categories are
sufficient for capturing data about any monitored element
(e.g., service topology or service unit) within a cloud
service, and can be used for understanding the elasticity of
that service. For an elastic cloud service, the quality
dimension would capture metrics characterising the
service’s quality, such as response time or throughput. The
cost dimension would in turn capture all metrics influencing
cost, such as cost of using the virtual machine (e.g., hourly
or monthly cost), cost of data transferred over the network,
or separate cost of using storage (e.g., cost per each 10 GB
of stored data). The resource dimension would capture
resource usage and allocation information, such as the
amount of data transferred over the network.

Conceptually, to capture monitoring data associated
with a monitored element at a specific time t, we define the
monitoring snapshot, ms, containing monitoring data
about cost, quality and resource elasticity dimensions
[equation (1)].

(){
}

, , , ,

,

i j k i

j k

ms c q r t c Cost

q Quality r Resource

= ∈

∈ ∈
 (1)

3.2 Elasticity boundary

Monitoring snapshots capture metrics, but do not provide
information about boundaries over the metric’s values in
which user-defined elasticity requirements are fulfilled.
Therefore, in order to analyse the elastic behaviour of a
monitored element, we represent metric boundaries using
the elasticity boundary concept:

Definition 1: An elasticity boundary describes the upper and
lower bound over a set of metrics for a monitored element.

Conceptually, an elasticity boundary, elBoundary, is defined
as follows:

(), , , , ,u l u l u l
i i j j k kelBoundary c c q q r r= (2)

where u
ic and l

ic denote the upper bound and the lower
bound of metric ci ∈ Cost, respectively, u

jq and l
jq for

qj ∈ Quality, and u
kr and l

kr for ri ∈ Resource.
We use the elasticity boundary to capture both

user-defined elasticity requirements (user-defined elasticity
boundary), and detected/evaluated elasticity requirements
(evaluated elasticity boundary). Using the user-defined
elasticity boundary we represent requirements over the
user’s elastic service’s cost, quality and resources. From the
user-defined requirements expressed as user-defined
elasticity boundaries indicating parameters ci, gj, rk under
which the cloud service should behave, we evaluate
collected monitoring information and determine elasticity

boundaries for all monitored elements of a cloud service.
Thus, from a set of supplied requirements for a particular
monitored element (e.g., cloud service and service unit), we
determine the requirements for all cloud service monitored
elements, providing information to control the elasticity of
each element of the cloud service.

3.3 Elasticity space

Given a set of monitoring snapshots and user-defined
elasticity boundaries, for supporting run-time control of
service’s elasticity, we need to understand when a
monitored element is in elastic behaviour, if its behaviour
violates the user-defined elasticity boundaries, and if we can
characterise the service behaviour using some specific
‘pathways’. Naturally, we expect that the meaning of
‘elasticity’ will depend on the types of monitored elements,
their runtime settings and requirements. To this end, we
define the concept of elasticity space to determine and
evaluate when a monitored element is in elastic behaviour:

Definition 2: An elasticity space captures all runtime
metrics described in the user-defined elasticity boundary
and all other metrics influencing the user-defined elasticity
boundary, when a monitored element is in elastic behaviour,
which is determined via an elasticity space function.

To respect its elasticity boundaries, an elastic service must
scale out/in its cost, quality and resources at run-time, by
allocating/deallocating cloud services, to cope with
variations in pricing, quality and load. We refer to the
behaviour of a service which is dynamically reconfigured at
run-time by software controllers as elastic behaviour.
Formally, let felSpace be an elasticity space function,
MS = {msi} be the set of monitoring snapshots, then an
elasticity space elSpace can be defined as: elSpace =
felSpace(MS). A felSpace has to perform two steps:

1 detect when an elastic behaviour starts and stops

2 extract monitoring data describing the service
behaviour while respecting the user-defined elasticity
boundaries.

In principle, there could be several elasticity space
functions, which can be developed for and applied to
different types of monitored elements, such as specific types
of service units, topologies, or the whole service.
Furthermore, these functions are applied on the metrics
from user-defined elasticity boundaries.

An elasticity space function is designed to extract useful
information about the overall behaviour of the cloud service
when elasticity requirements are fulfilled. For example,
given a user-defined elasticity requirement over
serviceCost/client/h, an elasticity space might contain only
the throughput and cost/VM/h metrics from which the
serviceCost/client/h targeted by requirements can be
determined, not including metrics that have no impact on it.
Thus, using the elasticity space, one can determine the
elasticity boundaries to be enforced on the metrics that
influence the user-defined elasticity requirements.

50 D. Moldovan et al.

Moreover, one can analyse if the behaviour of an elastic
cloud service is within expected user-defined elasticity
boundaries by checking the elasticity boundaries of its
elasticity space. For example, the upper elasticity boundary
of the serviceCost/client/h from the determined elasticity
space could have a different value than expected by the
user.

3.4 Elasticity pathway

While the elasticity space enables cloud service elasticity
analysis, it does not provide insight into relationships and
dependencies between metrics influencing the elastic
behaviour over time, e.g., throughput and cost/VM/h might
or might not follow a linear relationship. In order to
characterise the elastic behaviour from specific
views/perspectives over a cloud service, we define the
concept of elasticity pathway.

Definition 3: Given a specific view on metrics V = {m1, m2,
···, mn}, an elasticity pathway for V characterises the
elasticity relationship among mi over the time.

A view over a set of metrics is a subset of metrics chosen
for analysis, which potentially influence the user-defined
requirements. For example, given a user-defined elasticity
requirement over serviceCost/client/h, a view could contain
the throughput and cost/VM/h metrics from which the
serviceCost/client/h can be derived. An elasticity pathway
function is designed to perform a complex evaluation of the
cloud service behaviour, determining characteristics that can
be used to predict the service’s behaviour.

Formally, an elasticity pathway elPtw is determined by a
function felPtw which takes as input an elasticity space
elSpace and a view V over the space’s metrics, and returns
another function describing behavioural patterns or
characteristics of the monitored element: elPtw = g(V) =
felPtw(elSpace, V). Various elasticity pathway functions can
be defined over the elasticity space, enabling space analysis
from multiple perspectives. As the elasticity pathway
function is applied over an elasticity space, the quality of
the determined elasticity pathway is heavily influenced by
the data in the elasticity space.

4 Monitoring and analysing elasticity of cloud
services

In order to monitor and evaluate the elasticity space and
pathways of a cloud service, we need to:

1 build the cloud service dependency model

2 build the monitoring snapshot for all monitored
elements

3 apply particular elasticity space and pathway functions
over the monitoring snapshots.

4.1 Elastic cloud service dependency model

For describing elastic services from the whole service level
to the underlying virtual infrastructure, we need an abstract
representation model that enables the description of cloud
services and their elasticity requirements at multiple levels.
To support multi-level analysis of service behaviour, we
represent a cloud service composed of service topologies,
each topology containing service units, deployed on virtual
machines belonging to virtual clusters (Figure 4). A service
unit is a functional element of a cloud service that runs
inside a virtual machine, either standalone or along other
service units. A service topology does not have an
equivalent in the virtual cloud infrastructure, instead it
logically groups related service units, e.g., a Data End.
Instances of units run on virtual machines belonging to
virtual clusters (e.g., network clusters, or different cloud
providers). Thus, our model can represent cloud services
which are composed of other services (service topologies),
deployed in federated cloud environments or in different
availability zones (virtual clusters).

The dependency model of the cloud service is extracted
or defined by users/controllers, and used for structuring
monitoring information and analysing the service’s
behaviour. For easy integration with other tools, we
use an XML-based representation (Listing 1). In
general, each monitored element is defined with the
MonitoredElement tag, and contains two mandatory
properties, id, and level, and an optional name
property. The level indicates if the monitored element is
one of VM, VIRTUAL_CLUSTER, SERVICE_UNIT,
SERVICE_TOPOLOGY, or SERVICE, and each monitored
element can contain zero or more monitored elements with a
lower level. For the VM level, the id is the IP of each virtual
machine. At run-time, this description would be managed
by a controller, and updated with the virtual machines that
run service units instances, after each scaling action.

4.2 Cross-layered metric composition

Existing tools for monitoring cloud services such as Ganglia
(http://ganglia.sourceforge.net/) or Trihinas et al. (2014) are
agnostic of the service’s logical structure and associate
monitoring information with the individual virtual machines
running service units’ instances. As one unit can have
multiple instances distributed among different VMs,
associating information with VMs does not give any
indicator about the overall behaviour of the service units,
information crucial for elasticity controllers. Therefore, to
obtain a complete view over the cloud service behaviour,
from low level metrics to higher ones, we develop
techniques for cross-layer composition of monitoring
snapshots, elasticity spaces and elasticity pathways,
following the previously presented cloud service model
(Figure 4).

 MELA: elasticity analytics for cloud services 51

Figure 4 Associations between elasticity space/pathway and monitored elements (see online version for colours)

Listing 1 XML-based dependency model

1 <MonitoredElement id = ““level=“SERVICE”>
2 <MonitoredElement id =

““level=“SERVICE_TOPOLOGY”>
3 <MonitoredElement id =

““level=“SERVICE_UNIT”>
4 <MonitoredElement id = “10.x.x.x” level =

“VM” />
5 </MonitoredElement>
6 …

Table 1 Metric composition operations

Operation Description

+, – Adds/Subtracts a value (metric or static) to
another value (from another operation or metric)

*, / Multiplies/Divides a value (from another
operation or metric) with another value (metric
or static)

AVG Computes the average value of a sequence of
metric values

SUM Computes the sum of a sequence of metric
values

MAX, MIN Extracts the maximum/minimum value from a
sequence of metric values

SET Assigns a static value to a metric
KEEP Returns unchanged a metric value or the result of

another operation

4.2.1 Metric composition language

Monitoring snapshot composition introduces the problem of
combining/aggregating metrics. Depending on the type of
metrics, a valid composition of two metrics might

involve different operations. We define an XML-based
domain-specific language for describing metric composition
rules as a cascading sequence of operations which apply one
or more operators over one or more operands. An operand
can be a static value or a metric reference, and the set of
available operations is presented in Table 1. The language
grammar is shown in Listing 2, and the XML format for
specifying rules is shown in Listing 3. For each rule there
are at least one reference metric, one resulting metric, and
several operations. The reference metric is used as a base
for computing the composite metric, and it is searched in the
metrics of the target monitored element children having the
TargetMonitoredElementLevel. The resulting metric defines
the name and unit of the composite metric being created.
Defining the composition rules requires domain specific
knowledge, such as knowing which operation is appropriate
for which metric (e.g., SUM for cost, AVG for response
time).

4.2.2 Monitoring information structuring and
enrichment

Monitoring snapshots capture metrics, but not the same as
elasticity requirements defined by the user, or at the same
level. For example, a monitoring snapshot might include
throughput per VM, while the elasticity requirements
might target numberOfClients over the whole service.
Using the above metric composition language, metrics
collected from the VM level can be associated to the upper
service levels, and new metrics can be created, according to
individual service requirements, applying composition
operations, as follows. First, the service level for
which the new metric is created should be specified using
the TargetMonitoredElementLevel, and can be
one of VM, VIRTUAL_CLUSTER, SERVICE_UNIT,

52 D. Moldovan et al.

SERVICE_TOPOLOGY, or SERVICE, according to the
service dependency model. Optionally, if the rule should be
applied on a specific monitored element, (a unit, a topology
or the whole service), its ID can be specified with the
TargetMonitoredElementID tag. Information about
the new metric to be created must be specified using the
ResultingMetric tag, including name, measurement
unit, and type (one of elasticity dimensions). Then, a

cascading list of operations can be defined, each
operation having a type, defined in Table 1,
and a ReferenceMetric, indicating the metric
over which the operation should be applied. If the
operation should be applied over metrics from a specific
monitored element, its ID can be specified with the
SourceMonitoredElementID tag.

Listing 2 Metric composition rules grammar

rule := operation “=>“ metric
operation := operator “(“operand {“,” operand}”)”
operator := “+”|”–”|”∗“|”/”|”AVG”|”SUM”|”MAX”|”MIN”|”SET”|”KEEP”
operand := metric | number | string
metric := name, measurementUnit, [monitoredElementID], monitoredElementLevel

Listing 3 XML-based metric composition rule format

1 <CompositionRule TargetMonitoredElementLevel = “LEVEL”>
2 <TargetMonitoredElementID>id</TargetMonitoredElementID>
3 <ResultingMetric type = “METRIC_TYPE” measurementUnit = “text” name = “text” />
4 <Operation MetricSourceMonitoredElementLevel = “LEVEL” type = “OPERATION”>
5 <ReferenceMetric type = “METRIC_TYPE” measurementUnit = “ text “ name = “ text “ />
6 <SourceMonitoredElementID>ID</SourceMonitoredElementID>
7 </Operation>
8 </CompositionRule>

Listing 4 Example of cost composition

1 <CompositionRule TargetMonitoredElementLevel = “VM”>
2 <ResultingMetric type = “RESOURCE” name = “numberOfVMs” measurementUnit = “count” />
3 <Operation value = “1” type = “SET_VALUE” />
4 </CompositionRule>
5
6 <CompositionRule TargetMonitoredElementLevel = “SERVICE_TOPOLOGY”>
7 <ResultingMetric type = “COST” measurementUnit = “$/ client /h” name = “cost/client/h” />
8 <TargetMonitoredElementID>TOPOLGY_ID</TargetMonitoredElementID>
9 <Operation type = “DIV”>
10 <Operation type = “MUL” value = “VM_COST”>
11 <Operation MetricSourceMonitoredElementLevel = “VM” type = “SUM”>
12 <ReferenceMetric type = “RESOURCE” name = “numberOfVMs” />
13 </Operation>
14 </Operation>
15
16 <Operation MetricSourceMonitoredElementLevel = “SERVICE_UNIT” type = “KEEP”>
17 <ReferenceMetric type = “RESOURCE” measurementUnit = “clients/s” name = “ clients “ />
18 <SourceMonitoredElementID>LoadBalancer</SourceMonitoredElementID>
19 </Operation>
20 </Operation>
21 </CompositionRule>

 MELA: elasticity analytics for cloud services 53

Algorithm 1 Cross-layered metric composition algorithm

Input: service, compositionRules, monitoringData
Output: snapshot – multi layer monitoring snapshot
1: function BuildMonitoringSnapshot(service, compositionRules, monitoringData)
2: snapshot = createInitialSnapshot(monitoringData)
3: for all elementLevel in [VM,ServiceUnit, ServiceTopology, Service] do
4: levelElements = service.getElementsOnLevel(elementLevel)
5: levelRules = compositionRules.getRulesOnLevel(elementLevel)
6: for all rule in levelRules do
7: targetElements = getRuleTargets(rule, levelElements)
8: for all element in targetElements do
9: compositionValue= ApplyCompositionRule(rule, element, snapshot)
10: snapshot.addNewMetric(rule.metric,compositionValue, element)
11: end for
12: end for
13: end for
14: return snapshot
15: end function
16:
17: function ApplyCompositionRule(rule, monitoredElement, snapshot)
18: sourceElements = getSourceElements(rule.metric, monitoredElement)
19: values = []
20: for all element in sourceElements do
21: values.add(snapshot.getMetricValue(element,rule.metric))
22: end for
23: for all operation in rule.operations do
24: values = operation.apply(values)
25: end for
 return values
26: end function

4.2.3 Cost composition

Monitoring and analysing cost is crucial in enabling
run-time monitoring, analysis and control of service cost by
elasticity controllers. Cost usually cannot be monitored
directly, due to a lack of cloud provider APIs providing
run-time fine-grained cost monitoring. Instead, using metric
composition rules, we can associate cost information
usually collected statically from cloud providers, with
monitoring information collected by monitoring tools,
obtaining real-time cost monitoring. Using our composition
language, in Listing 4, we show a template for composing
the cost/client/h (line 7) for a certain topology
(line 8), by enriching monitoring information with cost
information and new metrics. For computing the virtual
infrastructure cost, a new numberOfVMs metric is created
with value 1 for each VM belonging to this topology
(lines 1–4). Then, the values of clients metric obtained
from all topology’s VMs are summed up (lines 11–13), and
multiplied (lines 10–14) with the cost per VM, VM_COST.
Lines 16–19 define an operation retrieving the clients

metric from a specific LoadBalancer unit, used to divide
(lines 9–20) the cost of running the virtual infrastructure
obtained above. Starting from this template, other composite
cost metrics can be defined according to specific service
requirements.

4.2.4 Metric composition process

Algorithm 1 describes our process of constructing
multi-level monitoring snapshots by applying custom
metric composition rules which structure monitoring
information, compute cost, or enrich monitoring
information depending on service specific requirements.
The BuildMonitoringSnapshot function applies metric
composition rules bottom-up on the service’s monitored
elements, first at the virtual machine level, then at service
unit, service topology and service levels, creating the
cross-layer monitored snapshot. Each composition rule is
applied over its target monitored elements belonging to that
specific level (lines 6–12). The ApplyCompositionRule
function handles the application of metric composition

54 D. Moldovan et al.

rules. First, if a rule specifies a specific monitored element
from which the metric values are to be collected, it is
considered as a single monitored values data source.
Otherwise, monitored values are extracted from the element
itself, or from all children of the element which belong to
the rule’s metric source level (line 19). From all monitored
element data sources, the source metric is searched, and its
values collected (lines 20–22). Over the collected values,
the rule’s composition operations are applied sequentially,
the output of a previous operation acting as input for the
next (lines 24–26). The output of the last operation is
returned as result of the metric composition process.

4.3 Multi-dimensional elasticity space and pathway
analysis

Based on the metric composition, we provide an analysis
mechanism for determining the elasticity space and pathway
at different dependency model levels, providing a
multi-level decomposition of the cloud service behaviour.
Such a decomposition is beneficial to elasticity controllers,
which can use our approach to detect which monitored
element from which service dependency model level
violates service requirements, and reason in terms of metrics
located at that particular level. Providing a complete view
over the behaviour of cloud services enables service
providers/developers and software controllers to reason on
the same service using separate perspectives.

4.3.1 Elasticity space analysis

Algorithm 2 describes the process of evaluating the
elasticity space, in which custom elasticity space functions
can be used to update the elasticity boundaries
(updateElasticityBoundaries function). The
service structure, elasticity requirements, metric

composition rules, and collected monitoring data are
received as input. For each new collected monitoring
snapshot, the cross-layered enriched monitoring snapshot is
computed by applying metric composition rules in line 2.
For each service monitored element, the elasticity space is
evaluated by updating the elasticity boundaries. Lines 7–11
check if all elasticity requirements are fulfilled, and if yes,
the upper and lower elasticity boundaries are updated. If
not, the monitoring snapshot is stored for future reference.

We understand that analysing and controlling elasticity
of cloud services can be a continuous process in which
elasticity requirements or even the service structure are
refined during run-time. We define the following changes
that have impact on the process of determining the elasticity
space and boundaries:

1 metric composition rules

2 elasticity requirements

3 service structure.

In the first case, we support addition and removal of metrics
by altering the supplied composition rules, the elasticity
space evaluation continuing by enriching the space
determined so far using the metrics available in each new
monitoring snapshot. In the latter 2 cases, the whole
elasticity space is recomputed based on historical
monitoring information, updating all elasticity boundaries.

In the current prototype, we implement an elasticity
space function which, starting from user-defined elasticity
requirements for the whole cloud service, determines as
space boundaries for all service topology and service unit
instances, their maximum and minimum encountered metric
values when the user-defined elasticity requirements are
respected.

Algorithm 2 Evaluating elasticity space

Input: service, requirements, metricCompositionRules, monitoringData
1: function EvaluateElasticitySpace(service, requirements, metricCompositionRules, monitoringData)
2: snapshot = BuildMonitoringSnapshot(service, metricCompositionRules, monitoringData)
3: elasticitySpace = getElasticitySpaceLearnedSoFar()
4: for all snapshot in monSnapshot.elements do
5: elementElSpace = elasticitySpace.get(snapshot.element)
6: elementRequirements = serviceRequirements.get(snapshot.element)
7: if snapshot.fulfillsAll(elementRequirements) then
8: elementElSpace = elementElSpace.updateElasticityBoundaries(snapshot)
9: else
10: elementElSpace = elementElSpace.store(snapshot)
11: end if
12: end for
13: return elasticitySpace
14: end function

 MELA: elasticity analytics for cloud services 55

Algorithm 3 Evaluating elasticity pathway

Input: elasticitySpace, serviceElement
1: function EvaluateElasticityPathways(elasticitySpace, serviceElement)
2: elPathwayFunctions = getPathwayFunctionsFor(serviceElement)
3: elPathways = []
4: for all elPathwayFunction in elPathwayFunctions do
5: elPathways.push(elPathwayFunction(elasticitySpace))
6: end for
7: return elPathways
8: end function

4.3.2 Elasticity pathway analysis

Based on an elasticity space, elasticity pathway functions
can be defined for each service unit, topology, or whole
service, enabling custom analysis of service behaviour.
Based on the determined elasticity space, for the supplied
monitored element (service element), we apply its
elasticity pathway functions, analysing its behaviour and
extracting behavioural characteristics (Algorithm 3).

For the current prototype, we adapt as elasticity pathway
function an unsupervised behaviour learning technique
using self-organising maps (SOMs) presented by Dean et al.
(2012), and classify monitoring snapshots by their
encounter rate in DOMINANT, NON-DOMINANT, and
RARE. Such a pathway is important for understanding if the
regular behaviour of the service respects user-defined
elasticity requirements. As SOMs are unsupervised neural
networks that map multi-dimensional spaces into low
dimensional ones, they are suitable for classifying
monitored snapshots, as snapshots can contain many
different metrics. Each SOM’s neuron value is derived from
its snapshots. Each monitoring snapshot to be classified is
mapped to the group from which it has the smallest
distance. With each new snapshot, the group and its SOM
neighbours are updated using the function Vnew(group) =
Vold(group) + A ∗ N(group)(V(snapshot) – Vold(group)),
where A is a discount factor, and N(group) is a
neighbourhood function determining the degree with which
a group value is updated. In unsupervised learning the
initialisation of the system is important. As we classify
groups after the number of snapshots mapped to them, we
do not initialise the SOM with random values, as it might
generate groups which are close together in value but far
away in terms of location in the SOM. In such a case
similar snapshots might be assigned to separate groups,
diluting the number of snapshot mapped to a SOM entry.
Thus, we initialise the SOM with snapshot groups
having all metrics equal to 0, and rely on its self-adaptive
nature to map the input data. We use a neighbourhood
function of 1 for the directly targeted group and of
1/neighbourLevel/neighboursCount for its neighbours.
Updating the neighbours creates and update new groups,
mapping the input data better. The discount learning factor
is 1/neighbourLevel, the neighbourhood is 2 and the map
size is 10 × 10. A filtering step merges groups with same

value, consolidating the monitored snapshots, and the
average absolute deviation (AAD) (the average of the
absolute deviations) of the number of snapshots mapped per
group is computed. Using the AAD, a group is RARE if its
deviation is negative and its absolute higher than the AAD,
DOMINANT if its deviation is higher than the AAD, and
NON-DOMINANT otherwise. While finer grained classes
can be defined, we argue that these are enough to give
insight in the elastic behaviour of cloud services.

5 MELA: elasticity analytics as a service

Based on our concepts in Section 3, we develop MELA, an
elasticity analytics as a service (Figure 5). MELA contains a
core MELA Service, and Data Collector nodes. A Data
Collector node is a customisable component that gathers,
from existing monitoring solutions, data associated with a
dependency model level or monitored element (e.g.,
responseTime or throughput for the Event
Processing service topology), and sends it for
processing and analysis to the MELA Service.

Monitoring data from existing monitoring systems is
usually associated with a single level, e.g., virtual
infrastructure, service topology or service unit. An
important MELA feature is the linking of these levels,
implying a configuration step using the configuration API,
defining the service structure, the metrics composition rules
to be applied for the monitored elements at each level, and
the service requirements. The multilevel monitoring
snapshot construction component uses the service specific
configuration to provide composite monitoring snapshots
from data collected from the data collector nodes. Elasticity
space and pathway functions are tailored trough the
elasticity functions management API and used to determine
the elasticity space by the elasticity space analysis MELA
component, from which the elasticity pathway is determined
by the elasticity pathway analysis MELA component.
Composite monitoring snapshots together with determined
elasticity space are stored in a Monitoring and elasticity
space snapshots repository. Using the elasticity analysis
API, the MELA user can retrieve the elasticity space and
pathway for the whole service, or specific monitored
elements.

56 D. Moldovan et al.

Table 2 MELA RESTful API

URI Operation Functionality

/servicedescription PUT Submitting the service structure
/servicedescription POST Updating the service structure with added or removed virtual machines
/metricscompositionrules PUT Submitting metric composition rules
/servicerequirements PUT Submitting service’s elasticity requirements
/metrics GET Retrieving the metrics that can be collected from the service
/metriccompositionrules GET Retrieving the metric composition rules in JSON format
/monitoringdataJSON GET Retrieving the service’s composite multi-level monitoring snapshot in JSON format
/monitoringdataXML GET Retrieving the service’s composite multi-level monitoring snapshot in XML format
/elasticityspace POST Retrieving the elasticity space in JSON format of a supplied monitored element
/elasticitypathway POST Retrieving the elasticity pathway in JSON format of a supplied monitored element

As MELA is designed to analyse elastic services which can
allocate/deallocate virtual machines depending on elasticity
requirements, it provides two mechanisms for managing this
volatile service structure. The default mechanism is to
delegate this responsibility to the MELA user (cloud service
developer/provider or controller), which, in this, case uses
the MELA API to update the service structure after a new
virtual machine running service units has been added or
removed. The second behaviour is to let MELA detect
automatically when a new virtual machine has been added
or removed to which service units the machines belong.
This behaviour is achieved by reporting the service
units’ ids hosted by a virtual machine using a virtual
machine metric, and configuring MELA to
use the metric to automatically update the service
structure. MELA is released as an open-source project
(http://tuwiendsg.github.io/MELA/), and MELA exposes its
functionality through RESTful services, providing methods
for configuring MELA and retrieving multi-level
monitoring information and elastic service behaviour
analysis (Table 2).

Figure 5 MELA overview (see online version for colours)

6 Experiments

We evaluate MELA in the context of COMOT, a
platform-as-a-service for elasticity in the cloud (Truong
et al., 2014), containing tools for describing, deploying,
and controlling elastic cloud services. The realistic
DaaS application for an M2M cloud mentioned in Section 2
is used as pilot service, were the DaaS uses Cassandra
(http://cassandra.apache.org/) for its Data End units, and
HAProxy (http://haproxy.1wt.eu/) for its Load Balancer
unit. In this scenario, the M2M DaaS provider wants to
implement a 2.5$ monthly subscription for each service
client (sensor). UsingCOMOT, the provider describes the
DaaS and its elasticity requirements, and deploys the
service, which is then automatically controlled at run-time.

MELA has two important roles in this evaluation. First,
it provides the human service provider the ability to monitor
and analyse the service’s elasticity behaviour (via metrics)
at each service level, to understand the elasticity of the
service, and verify if such a pricing scheme is sustainable.
Secondly, it provides structured and enriched monitoring
information used by COMOT’s elasticity controller during
service’s run-time.

As elasticity is triggered by performance/cost
requirements, we simulate a load from real sensor data,
following a Gaussian distribution of M2M sensors
connecting to the DaaS, starting from 50 sensors per second,
increasing to 350, and then decreasing again, each request
requiring between 1 and 10 operations. The service VMs
were deployed on our OpenStack
(http://www.openstack.org/) cloud. For these experiments
MELA utilises Ganglia (http://ganglia.sourceforge.net/) for
the MELA data collector node, retrieving generic OS level,
and service specific monitoring data (e.g., clients/h,
throughput, and response time) from custom Ganglia plug-
ins we have developed.

6.1 Monitoring elastic cloud services

The first feature of MELA is multi-level elasticity
monitoring. Using the cross-layered metric composition
mechanism, the MELA user (service developer/provider)
starts by defining a composition rule for extracting the cost

 MELA: elasticity analytics for cloud services 57

of running the service in cloud, customising the template
provided in Section 3, assuming service cost to consist only
of the cost of running each virtual machine, assumed 0.12$
per VM per hour. As the service provider is interested in the
overall cost per client, additional metric composition rules
are defined to first propagate the activeConnections
metric from the virtual machines running the LoadBalancer
service unit to the service unit level as a renamed
numberOfClients metric, and then further propagate
the numberOfClients to the service unit’s parent
EventProcessing service topology. Obtaining the
cost/client/h, a CloudService level rule sums the
cost of the children service topology instances, and
divides it by the numberOfClients metric from the
EventProcessing topology. Figure 6 shows with thick lines
how, using MELA, such a complex cost/client/h
metric is composed and evaluated by combining available
metrics with additional cost information.

To monitor the performance of the DaaS, the MELA
user extracts for the DataController service unit its
writeLatency by averaging the write_latency
reported by all its instances running in virtual machines.
For the EventProcessing service unit the average
responseTime and total throughput are extracted
from its virtual machines, and propagated to the
EventProcessing service topology. Additionally, a metric
composition rule is defined to extract the average
cpuUsage for all service unit instances. Figure 6 shows a
snapshot of the DaaS, containing the simple and composite
metrics deemed important for analysing the service’s
behaviour.

Providing higher-level composite metrics such as
cost/client/h, structured after the service structure in
topologies and units, MELA facilitates service behaviour
analysis by the service controller, focusing on simple or
composed metrics that are of interest.

Figure 6 MELA visualisation of multi-level monitoring data with complex cost composition (see online version for colours)

58 D. Moldovan et al.

Figure 7 Cloud service elasticity pathway (see online version for colours)

6.2 Analysing elastic cloud services using elasticity

space and pathway

MELA’s second feature is elasticity analysis. The elasticity
space is used to determine what are the behavioural
boundaries in which the service fulfils supplied
requirements. The elasticity pathway function prototype
groups combination of different metric values as
DOMINANT, NON-DOMINANT, and RARE, according to
their encounter rate in the monitoring data, determining the
usual behaviour of the service and the correlations between
the analysed metrics. In our scenario, assuming a month of
30 days, the elasticity requirement for the service is a
maximum cost of 0.0034$ per served client per hour. Using
MELA, the user determines what are the elasticity
boundaries for various service topologies and units in which
the cost requirement is respected, and the correlations
between the analysed metrics. Using this information, the
MELA user can validate and refine the elasticity
requirements submitted to COMOT and used to control the
elasticity of the service.

As the cost boundaries are set by the MELA user, the
elasticity pathway of the service is inspected (Figure 7),
revealing that the cost/client/h is less than 0.0034$
only in approximate 72% of the encountered situations,
leading to the conclusion that a pricing scheme of 2.5$ per
month per client is not fully sustainable. To find the reason
for this situation, the provider uses the MELA multi-level
analysis feature to focus on the event processing service
topology.

Figure 8 presents a snapshot of the elasticity space for
the event processing service topology containing the
numberOfClients/h, responseTime, throughput,
and cost/h metrics. The complete space is depicted in
Figure 9 and thick lines mark the elasticity space
boundaries, i.e., minimum and maximum acceptable values.
For the numberOfClients/h elasticity space dimension
(upper left corner), the determined lower elasticity space
boundary is approximately 150, understandable given that
the service uses at least 4 VMs at 0.12$/h (150 multiplied
by 0.0034, gives a 0.51$/h). To learn more about the service
topology behaviour and its boundaries, the user focuses on
the responseTime dimension (lower right corner), for
which MELA determines both a minimum and maximum

boundary. This might seem weird at first, as the user would
expect to always want minimum response time, but, in this
case, this might be as result of under using the virtual
machines, which is not cost effective. Similarly, a lower
boundary was determined for the throughout dimension
(lower left corner), and the points of low throughput are
consistent with those of low responseTime, thus
strengthening the previous conclusion. By investigating the
elasticity pathway of the event processing service topology
(Figure 10), by summing up the behaviour situations, the
user can determine that in approximately 20% to 30% of the
situations, there is high response time with low number of
clients, which might indicate a potential bottleneck
somewhere in the service.

Figure 8 Event processing service topology elasticity space
snapshot (see online version for colours)

Thus, the MELA user focuses next on the service units
belonging to the DataEnd topology, and examines the
elasticity space of the DataController service unit by
capturing its writeLatency and cpuUsage (Figure 11).
For the writeLatency elasticity space dimension (left
side), MELA determined a higher elasticity space boundary,
indicating the maximum latency recorded in which the

 MELA: elasticity analytics for cloud services 59

service respected the cost requirement. For the cpuUsage
dimension there is only a lower elasticity boundary.
Investigating the elasticity pathway of the DataController
service unit (Figure 12), the MELA user can determine that
in approximately 30% of the encountered situations the
cpuUsage was over 95%, and in around 50% over 90%,

indicating a potential bottleneck. However, a further
analysis is needed to understand the complete elasticity
behaviour of the DaaS service, by investigating the
elasticity space and pathway for the other service elements,
selecting more metrics to be analysed, and/or refining the
elasticity requirements for the COMOT elasticity controller.

Figure 9 Event processing service topology elasticity space (see online version for colours)

Figure 10 Event processing service topology elasticity pathway (see online version for colours)

60 D. Moldovan et al.

Figure 11 Data controller service unit elasticity space (see online version for colours)

Figure 12 Data controller service unit elasticity pathway (see online version for colours)

The above-mentioned experiments have highlighted the
importance and challenges of monitoring and analysing the
behaviour of elastic services at multiple levels. The
elasticity space is crucial in understanding the elasticity
boundaries of cloud services. Given a control mechanism
and workload, in these experiments, from the elasticity
space analysis and a single high level user requirement, the
user can obtain insights regarding what other boundaries the
control mechanism must enforce at different levels in the
cloud service, e.g., that it needs at least 148 clients.
Applying the elasticity pathway function, the user can learn
what is the overall behaviour of the cloud service, bringing
insight in how does the service behave and what are the
dependencies between the service’s metrics, e.g.,
responseTime, throughput and numberOfUsers.
With this insight, the user can refine the service’s
requirements and resume the analysis process, iteratively
improving the service’s elasticity.

7 Related work

A framework for data collection and aggregation is
introduced by Wang et al. (2011). In Trihinas et al. (2014),
the authors introduce JCatascopia, a tool for monitoring

elastic applications relying on dynamic probe
addition/removal. Leitner et al. (2012) aim to extract
application-specific performance information from
system-level metrics, relying on application event streams.
Dhingra et al. (2012) monitor cloud resource usage from the
infrastructure owner perspective. An adaptive cloud
monitoring tool providing estimations on monitoring
accuracy is described by Meng et al. (2012). An elastic
monitoring framework for cloud infrastructures is presented
by Konig et al. (2012), providing a powerful query
mechanism for retrieving service level information, and
Katsaros et al. (2012) present a monitoring system
collecting both virtual infrastructure and service level
information. He et al. (2013) propose a cloud services
monitoring framework analysing monitoring information
and detecting abnormal behaviour, while Venzano and
Michiardi (2013) study traffic patterns on a private cloud,
highlighting that relationships between metrics are
influences by network, virtualisation layer, and VM
collocation. Gullhav et al. (2013) apply an extended
response time block method to monitor and approximate the
response time of cloud services, considering the horizontal
scalability of a single business tier, while Lloyd et al. (2012)
correlate physical and virtual machine resource utilisation
statistics to predict application performance across VMs.

 MELA: elasticity analytics for cloud services 61

Xiong et al. (2013) introduce vPerfGuard, a framework for
service performance diagnosis in consolidated cloud
environments, automatically discovering metrics which are
most descriptive of service performance. In contrast, we
adopt the cloud user perspective, and provide a
customisable mechanism for mapping system level
monitoring data to the running service structure, and
enriching data obtained from various monitoring systems,
providing a complete view over the monitored cloud service
behaviour.

Cloud monitoring is also the focus of many industry
tools such as Nagios (http://www.nagios.org/), Ganglia
(http://ganglia.sourceforge.net/), Zabbix (http://www.zabbix.
com/), OpenNMS (http://www.opennms.org/), or Hyperic
(http://www.hyperic.com/). Such tools mostly focus on
gathering data from the physical and virtual infrastructure,
and distributing it, without correlating it with the services
running on it. Such tools can act as data sources for our
framework, as we do not focus data collection. We differ as
we do not focus on monitoring, and rely on data from
existing solutions, structure and enrich it, and use it to
analyse the elasticity of cloud services.

Based on monitoring information, service analysis and
control mechanisms can be built. An architecture for
controlling cloud services using high-level rules is
introduced by Vaquero et al. (2012). The cost of Amazon
EC2 spot instances is analysed by Agmon Ben-Yehuda
et al. (2011). Emeakaroha et al. (2012) present CASViD, an
adaptive architecture for evaluating SLA violations using
both system-level and application-level monitoring
information. A mechanism for adapting cloud allocation is
presented by Singh et al. (2010), using an aggregation that
monitors the workload at each service tier. Demchenko
et al. (2012) present a framework for multi-domain
heterogeneous cloud services interoperability. Konstantinou
et al. (2012) present a cloud-enabled framework for
monitoring and adaptively resizing NoSQL clusters.
Kolodner et al. (2011) introduce a scalable cloud
environment for data-intensive storage services, scaling
with respect to the resource usage cost and service
performance. Warneke and Kao (2011) target elastic data
processing in clouds by allocating virtual machines on
demand, and Duong et al. (2011) introduce a framework for
dynamic resource provisioning and adaptation in IaaS
clouds. Sampaio and Mendonça (2011) propose Uni4Cloud,
a framework for the deployment and management of
multi-cloud services, while Miglierina et al. (2013)
introduce a control theoretic approach for multi-cloud
services, targeting resource level control. We differ as we
provide insight in the elasticity of cloud services, and
introduce concepts and techniques for extracting elasticity
boundaries, with respect to the cost, quality and
performance of cloud services, based on which control
strategies for the service’s elasticity can be refined.

8 Conclusions and future work

Elasticity analytics are crucial to cloud service developers
and providers to understand the behaviour of their services
at multiple levels, from individual units to the whole
service, towards developing smarter mechanisms for
controlling their elasticity. This paper introduced concepts
and techniques for monitoring and analysing the elasticity
of cloud services. A cross-level metric composition
mechanism was introduced, for linking service level with
system level monitoring information, and deriving higher
level information from it. For characterising the behaviour
of elastic cloud services, the concepts of elasticity space and
elasticity pathway were introduced. Evaluating the elasticity
space based on the cross-level metric composition
mechanism and user requirements, our approach determines
elasticity boundaries for all service’s elements, bringing
insight in the behaviour of the service, and how such a
service should be controlled. Applying the elasticity
pathway over the elasticity space, a mechanism for
classifying the elasticity behaviour of cloud services was
defined, providing insight in the service’s behaviour
evolution and a base for predicting it. We have introduced
MELA, elasticity analytics as a service, implementing the
concepts and techniques defined in this paper. MELA
provides features for real-time multi-level analysis of elastic
cloud services, and integrates different elasticity analysis
functions to support the analysis of other complex elastic
behaviour.

As future work we will investigate cloud infrastructure
elasticity and elasticity of cloud offered services. We will
further focus on determining patterns of elasticity behaviour
of cloud services. Furthermore, we will work on automatic
extraction of elasticity dependencies between elasticity
space dimensions, providing deeper insight in cloud
service’s elasticity.

Acknowledgements

This work was partially supported by the European
Commission in terms of the CELAR FP7 project
(FP7-ICT-2011-8 #317790). This article is a revised and
expanded version of the paper entitled ‘MELA: monitoring
and analysing elasticity of cloud services’, presented at
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Bristol, UK,
December 2–5, 2013.

References
Agmon Ben-Yehuda, O., Ben-Yehuda, M., Schuster, A. and

Tsafrir, D. (2011) ‘Deconstructing Amazon EC2 spot instance
pricing’, in International Conference on Cloud Computing
Technology and Science, CloudCom.

Copil, G., Moldovan, D., Truong, H-L. and Dustdar, S. (2013)
‘Multi-level elasticity control of cloud services’, in Basu, S.,
Pautasso, C., Zhang, L. and Fu, X. (Eds.): Service-Oriented
Computing, Lecture Notes in Computer Science, Vol. 8274,
pp.429–436.

62 D. Moldovan et al.

Dean, D.J., Nguyen, H. and Gu, X. (2012) ‘UBL: unsupervised
behavior learning for predicting performance anomalies in
virtualized cloud systems’, in International Conference on
Autonomic Computing, ICAC, ACM, pp.191–200.

Demchenko, Y., Makkes, M., Strijkers, R. and de Laat, C. (2012)
‘Intercloud architecture for interoperability and integration’,
in International Conference on Cloud Computing Technology
and Science, CloudCom, IEEE, pp.666–674.

Dhingra, M., Lakshmi, J. and Nandy, S.K. (2012) ‘Resource usage
monitoring in clouds’, in International Conference on Grid
Computing, GRID, pp.184–191.

Duong, T.N.B., Li, X. and Goh, R. (2011) ‘A framework for
dynamic resource provisioning and adaptation in IaaS
clouds’, in International Conference on Cloud Computing
Technology and Science, CloudCom, IEEE, pp.312–319.

Dustdar, S., Guo, Y., Satzger, B. and Truong, H.L. (2011)
‘Principles of elastic processes’, IEEE Internet Computing,
September–October, Vol. 15, No. 5, pp.66–71, doi:
10.1109/MIC.2011.121.

Emeakaroha, V., Ferreto, T., Netto, M., Brandic, I. and
De Rose, C. (2012) ‘Casvid: application level monitoring for
SLA violation detection in clouds’, in Computer Software and
Applications Conference, COMPSAC, IEEE, pp.499–508.

Gullhav, A., Nygreen, B. and Heegaard, P. (2013) ‘Approximating
the response time distribution of fault-tolerant multi-tier cloud
services’, in IEEE/ACM International Conference on Utility
and Cloud Computing (UCC), pp.287–291.

Han, R., Guo, L., Ghanem, M. and Guo, Y. (2012) ‘Lightweight
resource scaling for cloud applications’, in IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp.644–651.

He, S., Ghanem, M., Guo, L. and Guo, Y. (2013) ‘Cloud resource
monitoring for intrusion detection’, in IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom), Vol. 2, pp.281–284.

Katsaros, G., Kousiouris, G., Gogouvitis, S.V., Kyriazis, D.,
Menychtas, A. and Varvarigou, T. (2012) ‘A self-adaptive
hierarchical monitoring mechanism for clouds’, Journal of
Systems and Software, Vol. 85, No. 5, pp.1029–1041.

Kolodner, E., Tal, S., Kyriazis, D., Naor, D., Allalouf, M.,
Bonelli, L., Brand, P., Eckert, A., Elmroth, E., Gogouvitis, S.,
Harnik, D., Hernandez, F., Jaeger, M., Lakew, E., Lopez, J.,
Lorenz, M., Messina, A., Shulman-Peleg, A., Talyansky, R.,
Voulodimos, A. and Wolfsthal, Y. (2011) ‘A cloud
environment for data-intensive storage services’, in
International Conference on Cloud Computing Technology
and Science, CloudCom, IEEE, pp.357–366.

Konig, B., Alcaraz Calero, J. and Kirschnick, J. (2012) ‘Elastic
monitoring framework for cloud infrastructures’, IET
Communications, Vol. 6, No. 10, pp.1306–1315.

Konstantinou, I., Angelou, E., Tsoumakos, D., Boumpouka, C.,
Koziris, N. and Sioutas, S. (2012) ‘Tiramola: elastic NoSQL
provisioning through a cloud management platform’, in
International Conference on Management of Data, SIGMOD,
ACM, pp.725–728.

Leitner, P., Inzinger, C., Hummer, W., Satzger, B. and Dustdar, S.
(2012) ‘Application-level performance monitoring of cloud
services based on the complex event processing paradigm’, in
Service-Oriented Computing and Applications, SOCA,
pp.1–8.

Lloyd, W., Pallickara, S., David, O., Lyon, J., Arabi, M. and
Rojas, K. (2012) ‘Performance modeling to support multi-tier
application deployment to infrastructure-as-a-service clouds’,
in IEEE International Conference on Utility and Cloud
Computing (UCC), pp.73–80.

Mao, M. and Humphrey, M. (2013) ‘Scaling and scheduling to
maximize application performance within budget constraints
in cloud workflows’, in IEEE International Symposium on
Parallel Distributed Processing (IPDPS), pp.67–78.

Meng, S., Iyengar, A.K., Rouvellou, I., Liu, L., Lee, K.,
Palanisamy, B. and Tang, Y. (2012) ‘Reliable state
monitoring in cloud datacenters’, in International Conference
on Cloud Computing Technology and Science, CLOUD,
IEEE, pp.951–958.

Miglierina, M., Gibilisco, G., Ardagna, D. and Di Nitto, E. (2013)
‘Model based control for multicloud applications’, in
International Workshop on Modeling in Software Engineering
(MiSE), pp.37–43.

Moldovan, D., Copil, G., Truong, H-L. and Dustdar, S. (2013)
‘MELA: monitoring and analyzing elasticity of cloud
services’, in International Conference on Cloud Computing
Technology and Science, CloudCom, to appear.

Sampaio, A. and Mendonça, N. (2011) ‘Uni4cloud: an approach
based on open standards for deployment and management of
multi-cloud applications’, in International Workshop on
Software Engineering for Cloud Computing (SEECLOUD),
ACM, pp.15–21.

Singh, R., Sharma, U., Cecchet, E. and Shenoy, P. (2010)
‘Autonomic mix-aware provisioning for non-stationary data
center workloads’, in International Conference on Autonomic
Computing, ICAC, pp.21–30.

Trihinas, D., Pallis, G. and Dikaiakos, M.D. (2014) ‘JCatascopia:
monitoring elastically adaptive applications in the cloud’, in
International Symposium on Cluster, Cloud and Grid
Computing, CCGRID.

Truong, H-L., Dustdar, S., Copil, G., Gambi, A., Hummer, W.,
Le, D-H. and Moldovan, D. (2014) ‘CoMoT – a
platform-as-a-service for elasticity in the cloud’, in
International Workshop on the Future of PaaS.

Vaquero, L.M., Morán, D., Galán, F. and Alcaraz-Calero, J.M.
(2012) ‘Towards runtime reconfiguration of application
control policies in the cloud’, Journal of Network and Systems
Management, Vol. 20, No. 4, pp.489–512.

Venzano, D. and Michiardi, P. (2013) ‘A measurement study of
data-intensive network traffic patterns in a private cloud’, in
DCC 2013, Workshop on Distributed Cloud Computing,
IEEE/ACM Conference on Utility and Cloud Computing
(UCC), Dresden, Germany’.

Wang, C., Schwan, K., Talwar, V., Eisenhauer, G., Hu, L. and
Wolf, M. (2011) ‘A flexible architecture integrating
monitoring and analytics for managing large-scale data
centers’, in International Conference on Autonomic
Computing, ICAC, pp.141–150.

Warneke, D. and Kao, O. (2011) ‘Exploiting dynamic resource
allocation for efficient parallel data processing in the cloud’,
IEEE Transactions on Parallel and Distributed Systems,
Vol. 22, No. 6, pp.985–997.

Xiong, P., Pu, C., Zhu, X. and Griffith, R. (2013) ‘vPerfGuard: an
automated model-driven framework for application
performance diagnosis in consolidated cloud environments’,
in ACM/SPEC International Conference on Performance
Engineering (ICPE), pp.271–282.

