

Software-defined IoT Units for **Cyber-physical Systems**

Vienna University of Technology Institute for Information Systems Distributed Systems Group Head: Prof. Schahram Dustdar

Homepage: www.infosys.tuwien.ac.at/research/viecom/SDIoTCloud/

Software-defined elastic IoT Cloud

Vision

- Virtualizing and pooling IoT cloud resources and capabilities of IoT infrastructure.
- Encapsulating fine-grained IoT resources and IoT capabilities in well-defined API.
- Providing an ecosystem for software-defined IoT cloud to support multitude of involved stakeholders.
- Automating provisioning and governance of IoT cloud systems.
- Enabling new types of cross-domain applications in future smart cities.

Novel Models and Techniques

- Software-defined IoT units.
- Software-defined gateway enables cloud connectivity, exposes data/control points and provides an execution environment for IoT units.
- A tool-suit for provisioning and runtime governance of software-defined IoT cloud systems.
- A programing model for the software-defined cloud-scale applications.
- IoT marketplace for IoT units and IoT artifacts.

1. Software-defined IoT units Conceptual model of software-Different examples of softwaredefined IoT units defined IoT units Atomic software-defined IoT units Dependency Late-bound cost-function Software-defined **IoT Unit** controllers mechanisms Complex software-defined IoT unit IoT resource and functionality binding Infrastructure capabilities Support for DevOps Fine-grained principles encapsulation of IoT Policy-based managed resources and IoT configuration capabilities Cost-awareness Software-defined API

2. Software-defined IoT gateway

- Enabling flexible customization of IoT resources and end-devices (e.g, gateways)
- Run-time modifications (e.g, of communication protocols)
- Code distribution
- Location-aware migrations
- Enchasing end-devices with reliability, availability, data quality, etc., aspects
- Fine-grained configuration of IoT capabilities

4. Application development support

- Scalability of programing enabled by Scopes
- Efficient development with an intuitive Intent-based approach
- Abstracting low-level processes with Domain libraries
- Environment agnostic applications
- based on Origins and Actions Reusable applications
- Loose coupling due to runtime binding of Entities with physical environments
- Support for multitude of developers (e.g., domain experts and high-level programmers)

3. Provisioning and governance

- deployment based on TOSCA and SALSA
- Automated IoT unit composition
- Managed configuration
- based on Chef recipes Provisioning with
- late-bound policies Runtime governance
- Elastic operations and DevOps principles
- Enforcement of nonfunctional properties (e.g, reliability, availability, etc.) with

plug-in controllers

References

1. Stefan Nastic, Sanjin Sehic, Le-Duc Hung, Hong-Linh Truong, and Schahram Dustdar. Provisioning Software-defined IoT Systems in the Cloud. The 2nd International Conference on Future Internet of Things and Cloud (FiCloud-2014), August 27-29, 2014, Barcelona, Spain. 2. Stefan Nastic, Sanjin Sehic, Michael Vögler, Hong-Linh Truong, and Schahram Dustdar. PatRICIA - a Novel Programming Model for IoT Applications on Cloud Platforms. International Conference on Service Oriented Computing and Applications (SOCA 2013), December 16-18, 2013, Hawaii, USA. 3. Sanjin Sehic, Stefan Nastic, Michael Vögler, Fei Li, and Schahram Dustdar. Entity-Adaptation: A Programming Model for Development of Context-Aware Applications. Symposium On Applied Computing (SAC 2014), March 24-28, 2014, Gyeongju, Republic of Korea.