
Provisioning Software-defined IoT Cloud Systems

Stefan Nastic, Sanjin Sehic, Duc-Hung Le, Hong-Linh Truong, and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology, Austria

Email: {lastname}@dsg.tuwien.ac.at

Abstract—Cloud computing is ever stronger converging with
the Internet of Things (IoT) offering novel techniques for IoT
infrastructure virtualization and its management on the cloud.
However, system designers and operations managers face numer-
ous challenges to realize IoT cloud systems in practice, mainly
due to the complexity involved with provisioning large-scale IoT
cloud systems and diversity of their requirements in terms of
IoT resources consumption, customization of IoT capabilities
and runtime governance. In this paper, we introduce the concept
of software-defined IoT units – a novel approach to IoT cloud
computing that encapsulates fine-grained IoT resources and IoT
capabilities in well-defined APIs in order to provide a unified
view on accessing, configuring and operating IoT cloud systems.
Our software-defined IoT units are the fundamental building
blocks of software-defined IoT cloud systems. We present our
framework for dynamic, on-demand provisioning and deploying
such software-defined IoT cloud systems. By automating provi-
sioning processes and supporting managed configuration models,
our framework simplifies provisioning and enables flexible run-
time customizations of software-defined IoT cloud systems. We
demonstrate its advantages on a real-world IoT cloud system for
managing electric fleet vehicles.

I. INTRODUCTION

Cloud computing technologies have been intensively ex-
ploited in development and management of the large-scale IoT
systems, e.g., in [11], [16], [18], because theoretically, cloud
offers unlimited storage, compute and network capabilities to
integrate diverse types of IoT devices and provide an elastic
runtime infrastructure for IoT systems. Self-service, utility-
oriented model of cloud computing can potentially offer fine-
grained IoT resources in a pay-as-you-go manner, reducing
upfront costs and possibly creating cross-domain application
opportunities and enabling new business and usage models of
the IoT cloud systems.

However, most of the contemporary approaches dealing
with IoT cloud systems largely focus on data and device inte-
gration by utilizing cloud computing techniques to virtualize
physical sensors and actuators. Although, there are approaches
providing support for provisioning and management of the
virtual IoT infrastructure (e.g, [8], [16], [18]), the convergence
of IoT and cloud computing is still at an early stage. System
designers and operations managers face numerous challenges
to realize large-scale IoT cloud systems in practice, mainly
because these systems impose diverse requirements in terms
of granularity and flexibility of IoT resources consumption,
custom provisioning of IoT capabilities such as communication
protocols, elasticity concerns, and runtime governance. For
example, modern large-scale IoT cloud systems heavily rely on
the cloud and virtualized IoT resources and capabilities (e.g.,
to support complex, computationally expensive analytics), thus
these resources need to be accessed, configured and operated in

a unified manner, with a central point of management. Further,
the IoT systems are envisioned to run continuously, but they
can be elastically scaled in/down in off-peek times, e.g., when a
demand for certain data sources reduces. Due to the multiplic-
ity of the involved stakeholders with diverse requirements and
business models, the modern IoT cloud systems increasingly
need to support different and customizable usage experiences.
Therefore, to utilize the benefits of cloud computing, IoT
cloud systems need to support virtualization of IoT resources
and IoT capabilities (e.g., gateways, sensors, data streams and
communication protocols), but also enable: i) encapsulating
them in a well-defined API, at different levels of abstraction,
ii) centrally managing configuration models and automatically
propagating them to the edge of infrastructure, iii) automated
provisioning of IoT resources and IoT capabilities.

In this paper, we introduce the concept of software-defined
IoT units – a novel approach to IoT cloud computing that
encapsulates fine-grained IoT resources and IoT capabilities
in a well-defined API in order to provide a unified view on
accessing, configuring and operating IoT cloud systems. Our
software-defined IoT units are the fundamental building blocks
of software-defined IoT cloud systems. They enable consuming
IoT resources at a fine granularity, allow for policy-based
configuration of IoT capabilities and runtime operation of
software-defined IoT cloud systems. We present our framework
for dynamic, on-demand provisioning of the software-defined
IoT cloud systems. By automating main aspect of provision-
ing processes and supporting centrally managed configuration
models, our framework simplifies provisioning of such systems
and enables flexible runtime customizations.

The rest of the paper is structured as follows: Section II
presents a motivating scenario and research challenges; Sec-
tion III describes main principles and our conceptual model
of software-defined IoT systems; Section IV outlines main
provisioning techniques for software-defined IoT systems; Sec-
tion V introduces design and implementation of our prototype,
followed by its experimental evaluation; Section VI discusses
the related work; Finally, Section VII concludes the paper and
gives an outlook of the future research.

II. MOTIVATION

A. Scenario
Consider a scenario about fleet management (FM) sys-

tem for small-wheel electric vehicles deployed worldwide,
on different golf courses. The FM is an IoT cloud system
comprising golf cars’ on-board gateways, network and the
cloud infrastructure. The main features provided by the on-
board device include: a) vehicle maintenance (fault history,
battery health, crash history, and engine diagnostics), b) vehicle
tracking (position, driving history, and geo-fencing), c) vehicle

1

info (charging status, odometer, serial number, and service
notification), d) set-up (club-specific information, maps, and
fleet information). Vehicles communicate with the cloud via
3G, GPRS or Wi-Fi network to exchange telematic and diag-
nostic data. On the cloud we host different FM subsystems and
services to manage the data. For example: a) Realtime vehicle
status: location, driving direction, speed, vehicle fault alarms;
b) Remote diagnostics: equipment status, battery health and
timely maintenance reminders; c) Remote control: overriding
on-board vehicle control system in case of emergency; d) Fleet
management: service history and fleet usage patterns.

In the following we highlight some of the requirements and
features of the FM system that we need to support:
• The FM subsystems and services are hosted in the cloud

and heavily rely on the virtualized IoT resources, e.g.,
vehicle gateways and their capabilities. Therefore, we
need to enable encapsulating and accessing IoT resources
and IoT capabilities, via an uniform API.

• The FM system has different requirements regarding
communication protocols. The fault alarms and events
need to be pushed to the services (e.g, via MQ Telemetry
Transport (MQTT) [1]), when needed vehicle’s diag-
nostics should be synchronously accessed via RESTfull
protocols such as CoAP [10] or sMAP [7]. The remote
control system requires a dedicated, secure point-to-point
connection. Configuring these capabilities should be de-
coupled from the underlying physical infrastructure, in
order to allow dynamic, fine-grained customization.

• The FM system spans multiple, geographically distributed
cloud instances and IoT devices that comprise FM’s
virtual runtime topologies. These topologies abstract a
portion of the IoT cloud infrastructure, e.g., needed by
specific subsystem, thus they should support flexible
configuring to allow for on-demand provisioning.

The limited support for fine-grained provisioning at higher lev-
els leads to tightly coupled, problem specific IoT infrastructure
components, which require difficult and tedious configuration
management on multiple levels. This inherently makes provi-
sioning and runtime operation of IoT cloud systems a com-
plex task. Consequentially, system designers and operations
managers face numerous challenges to provision and operate
large-scale IoT cloud systems such as our FM.

B. Challenges
RC1 – The IoT cloud services and subsystems provide

different functionality or analytics, but they mostly rely on
common physical IoT infrastructure. However, to date the IoT
infrastructure resources have been mostly provided as coarse
grained, rigid packages, in the sense that the IoT systems,
e.g., the infrastructure components and software libraries are
specifically tailored for the problem at hand and do not allow
for flexible customization and provisioning of the individual
resource components or the runtime topologies. This inherently
hinders self-service, utility-oriented delivery and consumption
of the IoT resources at a finer granularity level.

RC2 – Elasticity, although one of the fundamental traits of
the traditional cloud computing, has not yet received enough
attention in IoT cloud systems. Elasticity is a principle to
provision the required resources dynamically and on demand,
enabling applications to respond to varying load patterns
by adjusting the amount of provisioned resources to exactly

match their current needs, thus minimizing resources over-
provisioning and allowing for better utilization of the avail-
able resources [9]. However, IoT cloud systems are usually
not tailored to incorporate elasticity aspects. For example,
new types of resources, e.g., data streams, delivered by IoT
infrastructure are still not provided elastically in IoT cloud
systems. Opportunistic exploitation of constrained resources,
inherent to many IoT cloud systems further intensifies the
need to provision the required resources on-demand or as
they become available. These challenges prevent current IoT
systems from fully utilizing the benefits cloud’s elastic nature
has to offer and call for new approaches to incorporate the
elasticity capabilities in the IoT cloud systems.

RC3 – Dependability is a general measure of dynamic sys-
tem properties, such as availability, reliability, fault resilience
and maintainability. Cloud computing supports developing and
operating dependable large-scale systems atop commodity in-
frastructure, by offering an abundance of virtualized resources,
providing replicated storage, enabling distributed computa-
tion with different availability zones and diverse, redundant
network links among the system components. However, the
challenges to build and operate dependable large-scale IoT
cloud systems are significantly aggravated because in such
systems the cloud, network and embedded devices are converg-
ing, thus creating very large-scale hyper-distributed systems,
which impose new concerns that are inherently elusive with
traditional operations approaches.

RC4 – Due to dynamicity, heterogeneity, geographical
distribution and the sheer scale of IoT cloud, traditional
management and provisioning approaches are hardly feasible
in practice. This is mostly because they implicitly make as-
sumptions such as physical on-site presence, manually logging
into devices, understanding device’s specifics, etc., which are
difficult, if not impossible, to achieve in IoT cloud systems.
Thus, novel techniques, which will provide an unified and
conceptually centralized view on system’s configuration man-
agement are needed.

Therefore, we need novel models and techniques to provi-
sion and operate the IoT cloud systems, at runtime. Some of the
obvious requirements to make this feasible in the very large-
scale, geographically distributed setup are: (i) We need tools
which will automate development, provisioning and operations
(DevOps) processes; (ii) Supporting mechanisms need to be
late-bound and dynamically configurable, e.g., via policies;
(iii) Configuration models need to be centrally managed and
automatically propagated to the edge of the infrastructure.

III. PRINCIPLES AND BUILDING BLOCKS OF
SOFTWARE-DEFINED IOT SYSTEMS

A. Principles of Software-Defined IoT
Generally, software-defined denotes a principle of abstract-

ing the low-level components, e.g., hardware, and enabling
their provisioning and management through a well-defined API
[14]. This enables refactoring the underlying infrastructure into
finer-grained resource components whose functionality can be
defined in software after they have been deployed.

Software-defined IoT systems comprise a set of resource
components, hosted in the cloud, which can be provisioned
and controlled at runtime. The IoT resources (e.g., sensory
data streams), their runtime environments (e.g., gateways) and
capabilities (e.g., communication protocols, analytics and data

2

TABLE I. SUMMARY OF MAIN PRINCIPLES AND ENABLERS OF SOFTWARE-DEFINED IOT SYSTEMS

Research challenges High-level principles Enablers
• Flexible customization • API encapsulation of IoT resources and capabilities • Software-defined IoT units
• Utility-oriented delivery and consumption • Fine-grained resources consumption • Software-defined IoT topology (complex units)
• Self-service usage model • Policy-based specification and configuration • Centrally managed configuration models and policies
• Support for elasticity concerns • Automated provisioning • Automated units composition
• Operating dependable large-scale IoT cloud systems • Cost awareness • Runtime unit control and modification
• Central point of management • Runtime elasticity governance

point controllers) are described as software-defined IoT units.
Software-defined IoT units are software-defined entities that are
hosted in an IoT cloud platform and abstract accessing and op-
erating underlying IoT resources and lower level functionality.
Generally, software-defined IoT units are used to encapsulate
the IoT resources and lower level functionality in the IoT cloud
and abstract their provisioning and governance, at runtime. To
this end, our software-defined IoT units expose well-defined
API and they can be composed at different levels, creating
virtual runtime topologies on which we can deploy and execute
IoT cloud systems such as our FM system. Therefore, main
principles of software-defined IoT systems include:

• API Encapsulation – IoT resources and IoT capabilities
are encapsulated in well-defined APIs, to provide a unified
view on accessing functionality and configurations of IoT
cloud systems.

• Fine-grained consumption – The IoT resources and capa-
bilities need to be accessible at different granularity levels
to support agile utilization and self-service consumption.

• Policy-based specification and configuration – The units
are specified declaratively and their functionality is
defined programmatically in software, using the well-
defined API and available, familiar software libraries.

• Automated provisioning – Main provisioning processes
need to be automated in order to enable dynamic, on-
demand configuring and operating software-defined IoT
systems, on a large-scale (e.g, hundreds gateways).

• Cost awareness – We need to be able to assign and control
costs of delivered IoT resources and capabilities in order
to enable their utility-oriented consumption.

• Elasticity support – They should support elasticity gov-
ernance [9], by exposing runtime control of elastic capa-
bilities through well-defined API.

IoT Cloud platform

IoT Infrastructure Datacenters

Actuator

Software-
defined
gateway

Comm. protocol

Monitoring

Software library

A) E)

C)

Principles
A) Software-defined

IoT unit

B) Unit configuration

C) Software-defined
runtime topology

D) Runtime unit modification
(e.g, changing comm. protocol)

E) Runtime topology
modification (e.g, add new link)

Sensor

Principles
Fine-grained
resources
abstraction and
API encapsulation

A) Software-defined
IoT unit

Policy-based
provisioning and
configuration

B) Unit’s configuration

C) Software-defined
runtime topology

Flexible runtime
control
(e.g., of elastic
capabilities)

D) Runtime unit modification
(e.g, changing
communication protocol)

E) Runtime topology
modification
(e.g, add new link)

A) Software-defined IoT unit

B) Managed configuration

C) Software-defined IoT topology
(higher-level units)

D) Runtime unit control
and modification
(e.g, changing communication
protocol)

E) Runtime unit control
and modification
(e.g, add a dependency reference)

IoT Cloud Platform

GatewayGateway

Communication
Broker

Configuration Models
Manager

D)

B)

IoT Cloud Infrastructure

A) Software-defined IoT unit

B) Managed configuration

C) Software-defined IoT topology
(higher-level units)

D) Runtime unit control
and modification
(e.g, changing communication
protocol)

E) Automated unit composition
(e.g., adding a capability)

Fig. 1. Main enablers of software-defined IoT cloud systems

Table I summarizes how we translate the aforementioned
high-level principles into concrete enablers. For example, to

allow for flexible system customization, we need to enable
fine-grained resource consumption, well-defined API encapsu-
lation and provide support for policy-based specification and
configuration. These principles are enabled by our software-
defined IoT units and support for centrally managed configura-
tion. Figure 1 gives high-level graphical overview of the main
building blocks and enabling techniques, needed to support the
main principles of software-defined IoT systems. Subsequently,
we describe them in more detail.

B. Conceptual Model of Software-defined IoT Units
Figure 2 illustrates the conceptual model of our software-

defined IoT units. The units encapsulate functional aspects
(e.g., communication capabilities or sensor poll frequencies)
and non-functional aspects (e.g., quality attributes, elasticity
capabilities, costs and ownership information) of the IoT
resources and expose them in the IoT cloud. The functional,
provisioning and governance capabilities of the units are
exposed via well-defined APIs, which enable provisioning and
controlling the units at runtime, e.g., start/stop. Our conceptual
model also allows for composing and interconnecting software-
defined IoT units, in order to dynamically deliver the IoT
resources and capabilities to the applications. The runtime
provisioning and configuration is performed by specifying
late-bound policies and configuration models. Naturally, the
software-defined IoT units support mechanisms to map the
virtual resources with the underlying physical infrastructure.

To technically realize our unit model we introduce a
concept of unit prototypes. They can be seen as resource con-
tainers, which are used to bootstrap more complex, higher-level
units. Generally, they are hosted in the cloud and enriched with
functional, provisioning and governance capabilities, which
are exposed via software-defined APIs. The unit prototypes
can be based on OS-level virtualization, e.g., VMs, or more
finer-grained kernel supported virtualization, e.g., Linux con-
tainers. Conceptually, virtualization choices do not pose any
limitations, because by utilizing the well-defined API, our
unit prototypes can be dynamically configured, provisioned,
interconnected, deployed, and controlled at runtime.

Given our conceptual model (Figure 2), by utilizing the
provisioning API, the unit prototypes can be dynamically
coupled with late-bound runtime mechanisms. These can be
any software components (custom or stock), libraries or clients
that can be configured and whose binding with the unit proto-
types is differed to the runtime. For example, the mechanisms
can be used to dynamically add communication capabilities,
new functionality or storage to our software-defined IoT
units. Therefore, by specifying policies, which are bound
later during runtime, system designers or operations managers
can flexibly manage unit configurations and customize their
capabilities, at fine granularity levels. Our conceptual model
also allows for composing the software-defined IoT units at
higher levels. By selecting dependency units, e.g., based on

3

Software-defined
IoT Unit

Fu
n

ct
io

n
al

 A
P

I
Utility

cost-function

IoT resource and functionality binding

Late-bound
policies

Infrastructure capabilities

Software-defined IoT API

Configuration Governance Provisioning Functionality

Internal External

Unit.start()

Unit.stop()Unit.addLinkUnit()

Unit.changeLink()

Unit.setCPU()

Unit.setMem() Unit.setPollFreq()

Unit.addComProtocol() replicateUnit()

Unit.addPolicy()

Atomic software-defined IoT units

Custom
proc. logic

IoT data
storage

Communication

In-memory
image

VPN
Messaging

Sand
box

Network
overlay ProtocolVolatile

History

Key/Value
store

Security
Data

quality

Outliers
filter

IoT compute

GW
runtime

Data point
controller

CEP
Component

-model

Unit.addDataPoint()

Elasticity

Auto scaling
group controller

Enables
configuring

flexible
pricing and
cost models

Functional
capabilities

Non-functional
capabilities

Non-func aspects:
How many cores, memory

Attributes

G
o

ve
rn

an
ce

 A
P

I

Dependency
units

Provisioning API

Runtime
mechanisms

Runtime
controllers

...

...

Monitor.

Config.

N
o

n
-f

u
n

ct
io

n
al

 a
sp

ec
ts

Runtime composition

Fu
n

ct
io

n
al

 a
sp

ec
ts

Fig. 2. Conceptual model of software-defined IoT units.

their costs, analytics or elasticity capabilities, and linking them
together, we can dynamically build more complex units. This
enables flexible policy-based specification and configuration
of complex relationships between the units. Therefore, by
carefully choosing the granularity of our units and providing
configuration policies we can automate the units composition
process at different levels and in some cases completely defer
it to the runtime. This makes the provisioning process flexible,
traceable and repeatable across different cloud instances and
IoT infrastructures, thus reducing time, errors and costs.

The runtime governance API, exposed by the units, enables
us to perform runtime control operations such as starting
or stopping the unit or change the topological structure of
the dependency units, e.g., dynamically adding or removing
dependencies at runtime. Therefore, one of the most important
consequences of having software-defined IoT unit is that the
functionality of the virtual IoT infrastructure can be (re)defined
and customized after it has been deployed. New features can
be added to the units and the topological structure of the
dependency units can be customized at runtime. This enables
automating provisioning and governance processes, e.g., by
utilizing the governance API and providing monitoring at unit
level, we can enable elastic horizontal scaling of our units.

Therefore, most important features of software-defined IoT
units which enable the general principles of software-defined
IoT (see Section III-A) are:

• They provide software-defined API, which can be used
to access, configure and control the units, in a unified
manner.

• They support fine-grained internal configurations, e.g,
adding functional capabilities like different communica-
tion protocols, at runtime.

• They can be composed at higher-level, via depen-
dency units, creating virtual topologies that can be
(re)configured at runtime.

• They enable decoupled and managed configuration (via
late-bound policies) to provision the units dynamically
and on-demand.

• They have utility cost-functions that enable pricing the
IoT resources as utilities.

C. Units Classification
Depending on their purpose and capabilities, our software-

defined IoT units have different granularity and internal topo-

logical structure. Therefore, conceptually we classify them
into: (i) atomic, (ii) composed and (iii) complex software-
defined IoT units. Depending on their type, the units require
specific runtime mechanisms and expose specific provisioning
API. Next we describe each unit type in more detail.

The atomic software-defined IoT units are the finest-grained
software-defined IoT units, which are used to abstract the core
capabilities of an IoT resource. They provide software-defined
API and need to be packaged portably to include components
and libraries, that are needed to provide desired capabilities.
Figure 3 depicts some examples of the atomic software-defined
units. We broadly classify them into functional and non-
functional atomic software-defined IoT units, based on the
capabilities they provide. Functional units encapsulate capa-
bilities such as communication or IoT compute and storage.
Non-functional units encapsulate configuration models and
capabilities such as elasticity controllers or data-quality en-
forcement mechanisms. Therefore, the atomic units are used to
identify fine-grained capabilities needed by an application. For
example, the application might require the communication to
be performed via a specific transport protocol, e.g., MQTT or
it might need a specific monitoring component, e.g., Ganglia1.
Classifications similar to the one presented in Figure 3 can be
used to guide the atomic units selection process, in order to
easily identify the exact capabilities, needed by the application.

Software-defined
IoT Unit

Fu
n

ct
io

n
al

 A
P

I

Utility
cost-function

IoT resource and functionality binding

Late-bound
policies

Fu
n

ct
io

n
al

 a
sp

ec
ts

N
o

n
-f

u
n

ct
io

n
al

 a
sp

ec
ts

Infrastructure capabilities

Runtime composition

Software-defined IoT API

Configuration Governance Provisioning Functionality

Internal External

Unit.start()

Unit.stop()Unit.addLinkUnit()

Unit.changeLink()

Unit.setCPU()

Unit.setMem() Unit.setPollFreq()

Unit.addComProtocol() replicateUnit()

Unit.addPolicy()

Atomic software-defined IoT units

Custom
proc. logic

IoT data
storage

Communication

In-memory
image

VPN
Messaging

Sand
box

Network
overlay ProtocolVolatile

History

Key/Value
store

Security
Data

quality

Outliers
filter

IoT compute

GW
runtime

Data point
controller

CEP
Component

-model

Unit.addDataPoint()

Elasticity

Auto scaling
group controller

Enables
configuring

flexible
pricing and
cost models

Functional
capabilities

Non-functional
capabilities

Non-func aspects:
How many cores, memory

Attributes

G
o

ve
rn

an
ce

 A
P

I

Dependency
units

Provisioning API

Runtime
mechanisms

Runtime controllers
(e.g., elasticity)

...

...

Monitor.

Config.

Fig. 3. Example classification of atomic software-defined IoT units.

The composed software-defined IoT units have multiple
functional and non-functional capabilities, i.e., they are com-
posed of multiple atomic units. Similarly to the atomic units
they provide well-defined API, but require additional function-
ality such as mechanisms to support declaratively composing
and binding the atomic units, at runtime (Section IV-B).
Example of composed unit is a software-defined IoT gateway.

The complex software-defined IoT units enable capturing
complex relationships among the finer-grained units. Internally,
they are represented as a topological network, which can
be configured and deployed, e.g., on the cloud. They define
an API and can integrate (standalone) runtime controllers
to dynamically (re)configure the internal topology, e.g., to
enable elastic horizontal scaling of the units. Finally, they
rely on runtime mechanism to manage the references, e.g.,
IP addresses and ports, among the dependency units.

We notice that the software-defined API and our units
offer different advantages to the stakeholders involved into

1http://ganglia.info/

4

designing, provisioning and governing of software-defined IoT
systems. For example, IoT infrastructure providers can offer
their resources at fine-granularity, on-demand. This enables
specifying flexible pricing and cost models and allows for
offering the IoT resources as elastic utilities in a pay-as-
you-go manner. Because our units support dynamic and au-
tomated composition on multiple levels, consumers of IoT
cloud resources can provision the units to exactly match their
functional and non-functional requirements, while still taking
advantage of the existing systems and libraries. Further, system
designers and operations managers, use late-bound policies
to specify and configure the unit’s capabilities. Because we
treat the functional and configuration units in a similar man-
ner (see Section IV-B), configuration models can be stored,
reused, modified at runtime and even shared among differ-
ent stakeholders. This means that we can support managed
configuration models, which can be centrally maintained via
configuration management solutions for IoT cloud, e.g., based
on OpsCode Chef2, Bosh3 or Puppet4.

IV. PROVISIONING SOFTWARE-DEFINED IOT CLOUD
SYSTEMS

A. Automated composition of software-defined IoT units
Generally, building and deploying software-defined IoT

cloud systems includes creating and/or selecting suitable
software-defined IoT units, configuring and composing more
complex units and building custom business logic components.
The deployment phase includes deploying the software-defined
IoT units together with their dependency units and required
(possibly standalone) runtime mechanisms (e.g., a message
broker). In this paper we mostly focus on provisioning reusable
stock components such as gateway runtime environments or
available communication protocols. Developing custom busi-
ness logic components is out of scope of this paper and we
address it elsewhere [15].

ACTIONS
* Pull external
repo
* Build
* Select
unit prototype
* Configure
* Exceptions
and errors

Atomic
unit

Compo-
sed
unit

Complex
unit

ACTIONS
* Conf.policies
* Select
unit prototype
* Resolve
dependencies
* Exceptions
and errors

ACTIONS

* Select
unit prototype
* Link unit
dependencies
* Exceptions
and errorsSelect

third-
party unit

Deploy

Standalone
runtime

mechanism
(optional)

Select
third-

party unit

UnitPrototype AtomicUnit
add

ComposedUnit ComplexUnit*

link

Fig. 4. Automated composition of software-defined IoT units.

Figure 4 illustrates most important steps to compose and
deploy our IoT units. There are three levels of configuration
that can be performed: (i) Building/selecting atomic units;
(ii) Configuring composed units; (iii) Linking into complex
units. Each of the phases includes selecting and provisioning
suitable unit prototypes. For example, the unit prototypes can
be based on different resource containers such as VMs, Linux
Containers (e.g., Docker) or OSGi runtime.

The atomic units are usually provided as stock components,
e.g., by a third-party, possibly in a market-like fashion. There-
fore, this phase usually involves selecting and configuring

2http://opscode.com/chef
3http://docs.cloudfoundry.org/bosh/
4http://puppetlabs.org

stock components (e.g., Sedona5 or NiagaraAX6 execution
environments). Classifications similar to the one presented in
Figure 3 can be used to guide the atomic units selection
process. In case we want to perform custom builds of the
existing libraries and frameworks, there are many established
build tools which can be used, e.g., for Java-based components,
Apache Ant or Maven.

On the second level, we configure the composed units, e.g.,
a software-defined IoT gateway. This is performed by adding
the atomic units (e.g., runtime mechanisms and/or software
libraries) to the composed unit. For example, we might want
to enable the gateway to communicate over a specific transport
protocol, e.g., MQTT and add a monitoring component to it,
e.g., a Ganglia agent. To perform this composition seamlessly
at runtime, additional mechanisms are required. We describe
them in Section IV-B.

Third level includes defining the dependencies references
between the composed units, which ”glue together” the com-
plex units. These links specify the topological structure of
the desired complex units. For example, to this end we
can set up a virtual private network and provide each unit
with a list of IP addresses of the dependency units. In this
phase, we can use frameworks (e.g., TOSCA-based, OpenStack
Heat, Amazon CloudFormation, etc.) to specify the runtime
topological structure of our units and utilize mechanisms (e.g.,
Ubuntu CloudInit7) to bootstrap the composition, e.g, pass the
references to the dependency units.

B. Centrally managed configuration models and policies
An important concept behind software-defined IoT cloud

systems is the late-bound runtime policies. Our units are con-
figured declaratively, via the policies by utilizing the exposed
software-defined API, without worrying about internals of the
runtime mechanisms, i.e, the atomic units. To enable seamless
binding of the atomic units we provide a special unit prototype,
called bootstrap container. The bootstrap container acts as a
plug-in system, which provides mechanisms to define (bind)
the units based on supplied configurations or to redefine them
when configuration policies are changed. For example, runtime
changes of the units are achieved by invalidating affected parts
of the existing dependency tree and dynamically rebuilding
them, based on the new configuration directives. Therefore, the
units can be simply ”droped in” and our bootstrap container
(re)binds them together, at runtime without rebooting system.

We decouple the configuration models (late-bound policies)
from the functional units. Therefore, we can treat configuration
policies as any software-defined IoT unit, which adheres to
the general principles of software-defined IoT (Section III-A).
By encapsulating the configuration policies in separate units,
we can manage them at runtime via centralized configuration
managements solutions for IoT cloud. Our framework provides
mechanisms to specify and propagate the configuration models
to the edge of IoT cloud infrastructure (e.g., gateways) and
our bootstrap container enforces the provided directives. To
this end, our bootstrap container initially binds functional and
configuration units and continuously listens for configuration
changes and applies them on the affected functional units, ac-
cordingly. To enable performing runtime modifications without

5http://www.sedonadev.org/
6http://www.niagaraax.com/
7http://help.ubuntu.com/community/CloudInit/

5

worrying about any side-effects we require the configuration
actions to be idempotent. The usual approach to achieve this
is to wrap the units as OS services. Among other things the
late-bound policies and our mechanisms for managed configu-
ration enable flexible customization and dynamic configuration
changes, at runtime.

V. PROTOTYPE AND EXPERIMENTS

A. Prototype implementation
The main aim of our prototype is to enable developers and

operations managers to dynamically, on-demand provision and
deploy software-defined IoT systems. This includes providing
software-defined IoT unit prototypes, enabling automated unit
composition, at multiple levels and supporting centralized
runtime management of the configuration models.

In Section III we introduced the conceptual model of our
software-defined IoT units. To technically realize our units,
we utilize the concept of virtual resource containers. More
precisely, we provide different unit prototypes that can be
customized and/or modified during runtime by adding required
runtime mechanisms encapsulated in our atomic units. The unit
prototypes provide resources with different granularity, e.g.,
VM flavors, group quotas, priorities, etc., and boilerplate func-
tionality to enable automated provisioning of custom software-
defined IoT units.

Figure 5 provides a high-level overview of the framework’s
architecture. Our framework is completely hosted in the cloud
and follows a modular design which guarantees flexible and
evolvable architecture. The current prototype is implemented
atop OpenStack [2], which is an open source Infrastructure-as-
a-Service (IaaS) cloud computing platform. Presentation layer
provides an user interface via Web-based UI and RESTful API.
They allow a user to specify various configuration models
and policies, which are used by the framework to compose
and deploy our units in the cloud. Cloud core services layer
contains the main functionality of the framework. It includes
the PolicyProcessor used to read the input configurations and
transform it to the internal model defined in our framework.
Units management services utilize this model for composing
and managing the units. The InitializationManager is respon-
sible for configuring and composing more complex units. It
translates the directives specified in configuration models into
concrete initialization actions on the unit level. In our current

Units management services

Cloud core services layer

Framework

Sedona gateway

Monitoring

Niagara gateway

Topology model

Runtime topology

In
it

ia
liz

at
io

n
M

aa
ge

r

D
ep

lo
ym

en
t

M
an

ag
e

r

R
u

n
ti

m
e

C
o

o
rd

in
at

o
r

> Individual units
configuration models

> Topology model

SensorA

Comm. Protocol create/init/deploy
topology

e.g, start/stop
software-defined

unit

Repository

Initialization
Manager

Deployment
Manager

R
u

n
ti

m
e

C
o

o
rd

in
.

Repository
Services

C
lo

u
d

Sy
st

e
m

W
ra

p
p

e
r

C
o

n
fi

gu
ra

ti
o

n

M
an

ag
e

m
e

n
t

Units persistence layer

Policies repo. SD IoT units repo.

Presentation layer

Web UI RESTful API

Policy
Processor

Fig. 5. Framework architecture overview.

implementation, the core of the InitalizationManager is an
OpsCode Chef client, which is passed to the VMs during
initialization via Ubuntu cloud-init. InitalizationManager also
provides mechanisms for configuration management. The De-
ploymentManager is used to deploy the software-defined IoT
units in the cloud. Our prototype relies on SALSA8, a de-
ployment automation framework we developed. It utilizes the
API exposed by the CloudSystemWrapper to enable deploy-
ment across various cloud providers, currently implemented
for OpenStack cloud. DeploymentManager is responsible to
manage and distribute the dependency references for the
complex units (Section III-C). Units persistence layer provides
functionality to store and manage our software-defined units
and policies.

B. Experiments
1) Scenario analysis: We now show how our prototype is

used to provision a complex software-defined IoT unit, which
provides functionality for the real-life FM location tracking
service (Section II-A). The service reports vehicle location in
near real-time on the cloud. To enable remote access, the mon-
itored vehicles have an on-board device, acting as a gateway
to its data and control points. To improve performance and
reliability, the golf course provides on-site gateways, which
communicate with the vehicles, provide additional processing
and storage capabilities and feed the data into the cloud.
Therefore, the physical IoT infrastructure comprises network
connected vehicles, on-board devices and local gateways.

Typically, to provision the FM service system designers
and operations manager would need to directly interact with
the rigid physical IoT infrastructure. Therefore, they at least
need to be aware of its topological structure and devices’
capabilities. This means that the FM service also needs to have
understanding of the IoT infrastructure, instead of being able to
customize the infrastructure to its needs. Due to inherent inflex-
ibility of IoT infrastructure, its provisioning usually involves
long and tedious task such as manually logging into individual
gateways, understanding gateway internals or even on site
presence. Therefore, provisioning even a simple FM location
tracking service involves performing many complex tasks. Due
to a large number of geographically distributed vehicles and
involved stakeholders IoT infrastructure provisioning requires
a substantial effort prolonging service delivery and increasing
costs. Subsequently, we show the advantages our units (Sec-
tion III-B) and the provisioning techniques (Section IV) have
to offer to operations managers and application designers in
terms of: a) Simplified provisioning to reduce time, costs and
possible errors; b) Flexibility to customize and modify the IoT
units and their runtime topologies.

To enable the FM system we developed a number of atomic
software-define IoT units9 such as: a software-defined sensor
that reports vehicle location in realtime, messaging infrastruc-
ture based on Apache ActiveMQ10, software-defined protocol
based on MQTT and JSON, the bootstrap container based
on the Spring framework11, and corresponding configuration
units. The experiments are simulated on our OpenStack (Fol-
som) cloud and we used Ubuntu 12.10 cloud image (Memory:

8https://github.com/tuwiendsg/SALSA/
9https://github.com/tuwiendsg/SDM

10http://activemq.apache.org/
11http://projects.spring.io/spring-framework/

6

2GB, VCPUS: 1, Storage: 20GB). To display location changes
we develop a Web application which displays changes of
vehicles’ location on Google Maps.

2) Simplified provisioning: To demonstrate how our ap-
proach simplifies provisioning of the virtual IoT infrastructure,
we show how a user composes the FM complex software-
defined IoT unit, using our framework. Figure 6 shows the
custom deployment of the topological structure of the FM
vehicle tracking unit, deployed in the cloud. The unit contains
two gateways for the vehicles it tracks, a web server for the
Web application and a message broker that connects them.

SALSA CENTER

state: RUNNING
Id: sd IoT system

UNIT PROTOTYPE

state: RUNNING
Id: VM container

state: RUNNING
Id: VM container

SD UNIT

state: RUNNING
Id: mqtt_broker

state: RUNNING
Id: VM container

UNIT PROTOTYPE

UNIT PROTOTYPE

SD UNIT

state: RUNNING
Id: SD gateway_1278

SD UNIT

state: RUNNING
Id: SD gateway_1280

SD UNIT

state: RUNNING
Id: Web server

Fig. 6. Topological structure of FM vehicle tracking unit (a screen shot).

In order to start provisioning the complex unit, system
designer only needs to provide a policy describing the re-
quired high-level resources and capabilities required by the
FM service. For example, Listing 1 shows a snippet from
the configuration policy for FM location tracking unit, that
illustrates specifying a software-defined gateway, for the on-
board device.

...
<tosca:NodeTemplate id="SD-Gateway"
name="car_1278" type="vm">
<tosca:Properties>
<MappingProperties>
<MappingProperty type="vm">
<property name="instanceType">m1.small</property>
<property name="provider">openstack@dsg</property>
<property name="baseImage">ami-00000163</property>
</MappingProperty>

</MappingProperties>
</tosca:Properties>
<tosca:Requirements>
<tosca:Requirement name="MQTT-broker-IP" type="String"
id="brokerIp_Requirement"/>
</tosca:Requirements>
<tosca:DeploymentArtifacts>
<tosca:DeploymentArtifact artifactType="chef"
artifactRef="deployClient"/>
</tosca:DeploymentArtifacts>

</tosca:NodeTemplate>
...

Listing 1. Partial TOSCA-like complex unit description.

The policy describes gateway’s initial configuration and the
cloud instance where it should be deployed. Additionally, it
defines a dependency unit, i.e. the MQTT broker and specifies
vehicle’s Id that can be used to map it on the underlying device,
as shown in [15]. Our framework takes the provided policy,
spawns the required unit prototypes and provides them with
references to the dependency units. At this stage the virtual
infrastructure comprises solely of unit prototypes (VM-based).
After performing the high-level unit composition and establish

the dependencies between the units, the user continues com-
posing on the finer granularity level. By applying the top-down
approach we enable differing design decisions and enable early
automation of known functionality, to avoid over-engineering
and provisioning redundant resources.

In the next phase, the user provisions individual unit proto-
types. To this end, he/she provides policies specifying desired
finer-grained capabilities. Listing 2 shows example capabili-
ties, that can be added to the gateway. To enable asynchronous
pushing of the location changes it should communicate over
the MQTT protocol. Listing 3 shows a part of Chef recipe used
to add MQTT client to the gateway. Our framework fetches the
atomic units, that encapsulate the required capabilities, from
the repository and composes them automatically, relying on
the software-defined API and our bootstrap container.

{"run_list":
["recipe[bootstrap_container]",
"recipe[mqtt-client]",
"recipe[protocol-config-unit]",
"recipe[sd-sensor]"]

}

Listing 2. Run list for software-defined gateway.

include_recipe ’bootstrap_container::default’
remote_file "mqtt-client-0.0.1-SNAPSHOT.jar" do
source "http://128.130.172.215/salsa/upload/files/..."
group "root"
mode 00644
action :create_if_missing
end

Listing 3. Chef recipe for adding the MQTT protocol.

Therefore, compared to the traditional approaches, which
require gateway-specific knowledge, using proprietary API,
manually logging in the gateways to set data points, our
automated units composition (Section IV-A), based on declar-
ative unit configuration policies, simplifies the provisioning
process and makes it traceable and repeatable. Our units can
easily be shared among the stakeholders and composed to
provide custom functionality. This enables system designers
and operations managers to rely on the existing, established
systems, thus reducing provisioning time, potential errors and
costs.

3) Flexible customization: To exemplify the flexibility of
our approach let us assume that we need to change con-
figuration of the FM unit to use CoAP instead of MQTT.
This can be due to requirements change (Section II-A),
reduced network connectivity or simply to reuse the unit
for a golf course with different networking capabilities. To
customize the existing unit, an operations manager only needs
to change the "recipe[protocol-config-unit]"unit
(Listing 2) and provide an atomic unit for the CoAP client.
This is a nice consequence of our late-bound runtime mecha-
nisms and support for managed configuration models, provided
by our framework. We treat both functional and configuration
units in the same manner and our bootstrap container manages
their runtime binding (Section IV-B). Compared to traditional
approaches that require addressing each gateway individually,
firmware updates or even modifications on the hardware level,
our framework enables flexible runtime customization of our
units and supports operation managers to seamlessly enforce
configuration baseline and its modifications on a large-scale.

7

VI. RELATED WORK

Recently, many interesting approaches enabling conver-
gence of IoT and cloud computing appeared. For example,
in [5], [8], [11], [16], [18] the authors mostly deal with
IoT infrastructure virtualization and its management on cloud
platforms, [6], [13] utilize the cloud for additional computation
resources, in [17], [19] the authors mostly focus on utilizing
cloud’s storage resources for Big-IoT-Data and [12], [16]
integrating IoT devices with enterprise applications based on
SOA paradigm. Due to limited space in the following we only
mention related work exemplifying approaches that deal with
IoT infrastructure virtualization and management.

In [11] the authors develop an infrastructure virtualization
framework for wireless sensor networks. It is based on a
content-based pub/sub model for asynchronous event exchange
and utilizes a custom event matching algorithm to enable
delivery of sensory events to subscribed cloud users. In [18] the
authors introduce sensor-cloud infrastructure that virtualizes
physical sensors on the cloud and provides management and
monitoring mechanisms for the virtual sensors. However, their
support for sensor provisioning is based on static templates
that, contrary to our approach, do not support dynamic provi-
sioning of IoT capabilities such as communication protocols.
SenaaS [5] mostly focuses on providing a cloud semantic
overlay atop physical infrastructure. They define an IoT on-
tology to mediate interaction with heterogeneous devices and
data formats, exposing them as event stream services to the
upper layers. OpenIoT framework [16] utilizes semantic web
technologies and CoAP [10] to enable web of things and
linked sensory data. They mostly focus on discovering, linking
and orchestrating internet connected objects, thus conceptually
complementing our approach. In [8] the authors focus on
developing a virtualization infrastructure to enable sensing
and actuating as a service on the cloud. They propose a
software stack which includes support for management of
device identification, selection and aggregation, all of which
can be seen as enablers of our approach. Also there are various
commercial solutions such as Xively [4] and ThingWorx [3],
which allow users to connect their sensors to the cloud and
enable remote access and management.

Most of these approaches focus on different virtualization
techniques for IoT devices and data format mediation. They
also enable some form of configuration, e.g., setting sensor
poll rates. These approaches can be seen as complementary
to our own, as device virtualization sets the corner stone
for achieving software-defined IoT systems. We rely on the
advances in convergence of IoT and cloud, introduced by the
previous work and extend it with novel concepts for abstracting
and encapsulating IoT resources and capabilities, exposing
them via software-defined API on the cloud and enabling fine-
grained provisioning. Therefore, our approach can be seen as
a natural step in evolution of IoT cloud systems.

VII. CONCLUSION

In this paper, we introduced the conceptual model of
software-defined IoT units. To our best knowledge this is
the first attempt to apply software-defined principles on IoT
systems. We showed how they are used to abstract IoT
resources and capabilities in the cloud, by encapsulating
them in software-defined API. We presented automated unit
composition and managed configuration, the main techniques

for provisioning software-defined IoT systems. The initial
results are promising in the sense that software-defined IoT
system enable sharing of the common IoT infrastructure among
multiple stakeholders and offer advantages to IoT cloud system
designers and operations managers in terms of simplified, on-
demand provisioning and flexible customization. Therefore,
we believe that software-defined IoT systems can significantly
contribute the evolution of the IoT cloud systems.

In the future we plan to continue developing the prototype
and extend it in several directions: a) Providing techniques
and mechanisms to support runtime governance of software-
defined IoT systems; b) Enabling our software-defined IoT
systems to better utilize the edge of infrastructure, e.g., by
providing code distribution techniques between cloud and IoT
devices; c) Enabling policy-based automation of data-quality,
security and safety aspects of software-defined IoT systems.

ACKNOWLEDGMENT

This work is sponsored by Pacific Controls Cloud Com-
puting Lab (PC3L12)

REFERENCES
[1] Mq telemetry transport. http://mqtt.org/. March 2014.
[2] Openstack. http://www.openstack.org/. March 2014.
[3] Thingworks. http://thingworx.com. Last accessed: March 2014.
[4] Xively. https://xively.com. Last accessed: March 2014.
[5] S. Alam, M. Chowdhury, and J. Noll. Senaas: An event-driven sensor

virtualization approach for internet of things cloud. In NESEA, 2010.
[6] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti. Clonecloud:

elastic execution between mobile device and cloud. In Proceedings of
the sixth conference on Computer systems. ACM, 2011.

[7] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and D. Culler. smap:
a simple measurement and actuation profile for physical information.
In SenSys, pages 197–210, 2010.

[8] S. Distefano, G. Merlino, and A. Puliafito. Sensing and actuation as a
service: a new development for clouds. In NCA, pages 272–275, 2012.

[9] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong. Principles of elastic
processes. Internet Computing, IEEE, 15(5):66–71, 2011.

[10] B. Frank, Z. Shelby, K. Hartke, and C. Bormann. Constrained applica-
tion protocol (coap). IETF draft, Jul, 2011.

[11] M. M. Hassan, B. Song, and E.-N. Huh. A framework of sensor-cloud
integration opportunities and challenges. In ICUIMC, 2009.

[12] M. Kovatsch, M. Lanter, and S. Duquennoy. Actinium: A restful runtime
container for scriptable internet of things applications. In Internet of
Things, pages 135–142, 2012.

[13] K. Kumar and Y.-H. Lu. Cloud computing for mobile users: Can
offloading computation save energy? Computer, 43(4):51–56, 2010.

[14] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010.

[15] S. Nastic, S. Sehic, M. Voegler, H.-L. Truong, and S. Dustdar. Patricia
- a novel programing model for iot applications on cloud platforms. In
SOCA, 2013.

[16] J. Soldatos, M. Serrano, and M. Hauswirth. Convergence of utility
computing with the internet-of-things. In IMIS, pages 874–879, 2012.

[17] P. Stuedi, I. Mohomed, and D. Terry. Wherestore: Location-based data
storage for mobile devices interacting with the cloud. In ACM Workshop
on Mobile Cloud Computing & Services. ACM, 2010.

[18] M. Yuriyama and T. Kushida. Sensor-cloud infrastructure-physical
sensor management with virtualized sensors on cloud computing. In
NBiS, 2010.

[19] A. Zaslavsky, C. Perera, and D. Georgakopoulos. Sensing as a service
and big data. arXiv preprint arXiv:1301.0159, 2013.

12http://pcccl.infosys.tuwien.ac.at/

8

