

Automatic, multi-grained elasticity-provisioning for the Cloud

Decision Process for On-demand Elasticity Report

Deliverable no.:5.1
Date: 28-05-2013

Celar is funded by the European Commission DG-INFSO
Seventh Framework Programme, Contract no.: 317790

D 5.1 – Decision Process for On-demand Elasticity Report 2

Table of Contents

1 Introduction ... 9

1.1 Purpose of this document .. 10

1.2 Document structure and relevant publications .. 10

2 State of the Art in Elasticity Control .. 12

2.1 Resource elasticity control .. 12

2.2 Cost and quality in elasticity control ... 13

2.3 Application-patterns in elasticity control ... 13

2.4 Cloud application elasticity behavior analysis .. 14

3 Decision Module Requirements .. 16

3.1 Actors .. 16

3.2 Use cases .. 17

3.3 Functional requirements ... 17

3.4 Non-functional requirements .. 18

4 Decision Module Analysis .. 20

4.1 Application structure and elasticity requirements ... 20

4.1.1 Abstract application composition model .. 20

4.1.2 Elasticity requirements specification ... 22

4.2 Information analysis .. 24

4.2.1 Input .. 25

4.2.2 Input pre-processing ... 27

4.2.3 Output towards other CELAR modules .. 29

4.3 Runtime .. 30

4.3.1 Using SYBL elasticity directives for multiple level elasticity control 30

4.3.2 Control types at different structural levels of the application 31

4.3.3 Considered algorithms for generating action plans ... 32

5 Decision Module Architecture ... 33

5.1 Decision module conceptual architecture... 33

5.1.1 Data Processing Unit ... 34

5.1.2 Learning Engine (Cloud Application Behavior Prediction Engine) 34

5.1.3 Analysis Engine ... 34

5.1.4 Planning Engine .. 35

5.1.5 Reporting and Cloud Interaction Unit .. 35

5.2 Interactions within Decision Module .. 35

5.3 Interactions with other CELAR Modules ... 37

6 Towards the Implementation of the Decision Module ... 39

7 Conclusions ... 40

References ... 41

D 5.1 – Decision Process for On-demand Elasticity Report 3

List of Figures

Figure 1: CELAR System Architecture ... 9

Figure 2: UML Diagram of the Decision Module Use Cases .. 17

Figure 3: Abstract Composition Model .. 21

Figure 4: Mapping from User Perspective to System Perspective through Abstract
Composition Model .. 21

Figure 5: SYBL in BNF ... 22

Figure 6: Multi-dimensional Representation of Elasticity .. 24

Figure 7: Cloud Application Monitoring Information Model ... 25

Figure 8: Mapping User’s Application Description to Abstract Composition Model 28

Figure 9: An Action Plan Represented as a Directed Graph ... 29

Figure 10: Elasticity Control: from Directives to Action Plans ... 30

Figure 11: Decision Module Conceptual Architecture ... 33

Figure 12: Application Deployment .. 36

Figure 13: Elasticity Action Plan Generation ... 36

Figure 14: Application Deployment .. 38

Figure 15: Elasticity Action Plan Generation ... 38

D 5.1 – Decision Process for On-demand Elasticity Report 4

List of Tables

Table 1: Decision Module Use Cases ... 16
Table 2: Interaction with CELAR Modules .. 36

D 5.1 – Decision Process for On-demand Elasticity Report 5

List of Abbreviations

CPU Computer Processing Unit
ID Identifier
I/O Input/ Output
IaaS Infrastructure as a Service
PaaS Platform as a Service
TOSCA Topology and Orchestration Specification for Cloud Applications
SYBL Simple Yet Beautiful Language
VM Virtual Machine
WP Work Package
XML Extensible Markup Language

D 5.1 – Decision Process for On-demand Elasticity Report 6

Deliverable Title

Deliverable No.

Decision Process for On-demand Elasticity
Report
5.1

Filename CELAR_d5.1_finalrelease.docx
Author(s) Georgiana Copil, Daniel Moldovan, Hung

Duc Le, Hong-Linh Truong, Schahram
Dustdar

Date 28.05.2013

Start of the project: 1.10.2013
Duration: 36 Months
Project coordinator organization: ATHENA RESEARCH AND INNOVATION CENTER IN
INFORMATION COMMUNICATION & KNOWLEDGE TECHNOLOGIES (ATHENA)

Deliverable title: Decision Process for On-demand Elasticity Report
Deliverable no.: D5.1

Due date of deliverable: 31 May 2013
Actual submission date: 28 May 2013

Dissemination Level

X PU Public

 PP Restricted to other programme participants (including the Commission Services)

 RE Restricted to a group specified by the consortium (including the Commission Services)

 CO Confidential, only for members of the consortium (including the Commission Services)

D 5.1 – Decision Process for On-demand Elasticity Report 7

Deliverable status version control

Version Date Author

0.1 2 May 2013 Georgiana Copil, Daniel
Moldovan, Hung Duc Le,
Hong-Linh Truong,
Schahram Dustdar

0.2 8 May 2013 Georgiana Copil, Daniel
Moldovan, Hung Duc Le,
Hong-Linh Truong,
Schahram Dustdar

0.3 22 May 2013 Georgiana Copil, Daniel
Moldovan, Hung Duc Le,
Hong-Linh Truong,
Schahram Dustdar

1.0 28 May 2013 Georgiana Copil, Daniel
Moldovan, Hung Duc Le,
Hong-Linh Truong,
Schahram Dustdar

D 5.1 – Decision Process for On-demand Elasticity Report 8

Abstract

This document presents an overview of the Decision Module. First we present elasticity
decision requirements for applications supported by CELAR. We then analyze the Decision
Module in detail, covering application structure, inputs and outputs, and runtime
functionalities expected for elasticity decision making. Based on that, the architecture of the
decision module is presented, describing various types of interaction among decision
module components and between decision module components and other CELAR modules.
We focus on essential parts like granularity of the decisions, mechanisms used for decision
or the application model considered.

Keywords

Elastic adaptation, decision, elasticity, cloud computing, elastic control

D 5.1 – Decision Process for On-demand Elasticity Report 9

1 Introduction
Cloud computing elasticity in its widely-cited definition given by the National Institute
for Standards and Technology [NIST 2011] outlines “on-demand self-service”
(automatic, without the need of human interaction) and “rapid elasticity” as being two of
the five essential characteristics. Although on-demand provisioning of resources in a
pay-as-you-go manner facilitates greatly the accomplishment of these two
characteristics, the cloud application elasticity is still not well supported by
contemporary techniques, and there are many operations related to elasticity when
deploying or executing cloud-based applications (i.e. application configurations, and
platform configurations depending on the application).
The CELAR platform proposes multi-perspective elastic provisioning for cloud
applications, through both smart deployment and elastic adaptation of the application in
the cloud computing environment, considering the user’s application description and
the requirements regarding the application. As shown in the architecture of the CELAR
System in Figure 1 (in the Deliverable D1.1 [D1.1]), the CELAR System has three main
parts: Application Management Platform, Cloud Information and Performance Monitor,
and Elasticity Platform. The Elasticity Platform contains the Decision Module, the focus
of WP 5, of which the initial architecture and decision processes are being detailed in
this deliverable. Within the Application Management Platform, the application user1 (1)
describes his/her application structure at a high-level view, the elasticity “actions”/
“strategies” (i.e. scaling or configuration actions) that are possible within the described
application structure and the elasticity requirements, and (2) submits the application
for execution. The application is then deployed on the cloud and continuously controlled
by the Elasticity Platform and monitored by the Cloud Information and Performance
Monitor.

Physic

al

Layer

 IaaS
VS

SaaS

/

Pass

 Custom
Applications

Services

HBase

Cassandra

Hive

Hadoop

Cloud Provider

Monitoring
System

CELAR
DataBase

R
eso

u
rce Pro

visio
n

er

Decision
Module

Application
Description

Application
Submission

Information
System

Application

Management

Platform

Application
Profiler

In
te

rc
ep

to
r

Elasticity PlatformCloud

Information and

Performance

Monitor

M
u

lt
i-

le
ve

l M
et

ri
cs

 E
va

lu
at

io
n

Storage

VM

VM

Cluster

VM VMVM VS

A
p

p
licatio

n
O

rch
estratio

n

Other

Custom
App 1

Custom
App 2

Custom
App 3

C
lo

u
d

O
rch

estratio
n

CELAR Manager

Figure 1: CELAR System Architecture

1 For deliverables consistency, we will refer to the user using CELAR for elasticizing his/her application as
“application user” in accordance with Deliverable D1.1 Section 2.3.

D 5.1 – Decision Process for On-demand Elasticity Report 10

The requirements of cloud application elasticity imply that we need to support the
automatic decision on adaptation measures for fulfilling the application user’s elasticity
requirements considering different properties like quality, load characteristics,
estimated cost, and the measure in which the user wants to focus on. Currently, for
application auto-adaptation the user is usually required to describe low-level, detailed
requirements are too complex, although his/her major interest is usually the quality
s/he expects and the cost s/he is willing to pay for the expected quality. Controlling
cloud application elasticity in the contemporary view (i.e. the automatic scalability of
resources) has been targeted by both research and industry. Several authors propose
controllers for the automatic scalability/elasticity of entire applications [Yang 2009],
just parts of the application (i.e. application data-end) [Lim 2010], or specific types of
applications [Malkowski 2011]. Cloud providers offer tools for automatic scalability like
Amazon’s AutoScale [AutoScale], Paraleap AzureWatch for Windows Azure
[AzureWatch] or IBM’s SmartCloud [SmartCloud] initiative, automatically scaling
resources depending on what the user specifies through low-level resource targeted
policies. However, these approaches do not control the application on multiple levels
taking into consideration the complex application structure, or the fact that elasticity is a
complex multi-dimensional issue [Dustdar 2011].
The Decision Module is the core module of the Elasticity Platform and uses information
received from all the other modules for deciding smart deployment of a newly received
application and elastic control of deployed elastic applications. More importantly, the
Decision Module uses the novel multi-dimensional view on elasticity which targets
scaling the quality and cost of the applications rather than just resources, as shown in
recent studies [Dustdar 2011].
The Decision Module takes real-time decisions for application adaptation to meet user
elasticity requirements. The Decision Module facilitates an automatic adaptation process
of the application to “outside” stimuli (e.g. workload, increasing cost or decreasing
quality) without the need of user intervention, using the received description of
application elasticity capabilities which show what are the actions available for the
application adaptation and which structural part can be adapted. Moreover, not only
real-time adaptation decisions are enforced but also smart deployment of the
application, considering cloud providers services and estimated cost with respect to
quality and performance. For generating control decisions considering the complex
information on elasticity metrics and the complex application structure and run-time
topology, we use an internal application model which aggregates structural and run-
time data. We describe in more detail the research challenges and progress towards
finding solutions in Section 4.

1.1 Purpose of this document
The aim of this document is to present an initial analysis of the decision process for on-
demand elasticity, and to define the architecture of the Decision Module, the core
component of the Elasticity Platform and the focus of WP5. We define Decision Module’s
functional and non-functional requirements, and describe its internal components and
show initial solutions for constructing a generic, flexible and efficient Decision Module.

1.2 Document structure and relevant publications
The rest of the document is structured as follows: Section 2 contains the state of the art
of elasticity control for cloud applications. Section 3 contains an analysis of the Decision
Module actors, the use-cases driven by these actors, and the functional and non-
functional requirements of the Decision Module. Section 4 focuses on the Decision

D 5.1 – Decision Process for On-demand Elasticity Report 11

Module analysis, discussing issues that must be addressed for designing a fine-grained
elasticity control component. In Section 5 we propose the Decision Module architecture
considering the issues discussed in the analysis section. Section 6 gives short
implementation guidelines and the last Section concludes the deliverable and outlines
our future work.
This report is partially based on the works in [Copil 2013a], [Gambi 2013], [Copil
2013b].

D 5.1 – Decision Process for On-demand Elasticity Report 12

2 State of the Art in Elasticity Control
Elasticity control of cloud applications is an important step towards fully benefiting
from the on-demand, pay-per-use cloud computing model.
Schatzberg et al. [Schatzberg 2012] raise issues that appear in cloud elasticity control
and outline that in cloud computing elasticity is an important area of research, which
will facilitate the development of applications that would fully benefit from the
advantages of cloud computing and from on-demand resources allocation.
The different perspectives of cloud services performance/cost/quality measurement are
outlined by Li et al. [Li 2012] who proposes a list of categories of metrics which are used
for evaluating cloud services. Their retrieved cloud service evaluation metrics are
scattered over three aspects of cloud services: economics having as subdimensions cost
and elasticity evaluation metrics, performance with subdimensions communication,
computation, memory, storage evaluation metrics and security evaluation metrics. The
abstract metrics are associated to measurable metrics for easier grasp of reality and for
being able to actually compute the abstract metrics.
In what follows we present the existing research for cloud application elasticity control.
The first section targets resource-oriented elasticity control, while in the second section
we investigate research works focused either on quality or on cost in the cloud
application scaling system design. Next, we present research that considered different
application types (patterns) and research works targeting application analysis, related
to our approach which targets application behavior analysis for different application
types.

2.1 Resource elasticity control
Resource allocation and reallocation for cloud applications has been targeted in
numerous research works. In contrast to this, we also consider quality and cost as
dimensions of elasticity.
Moore et al. [Moore 2011] propose an inflate/deflate programming model, integrated
within the application for coordinating with a central controller and deciding on
whether the application should be provisioned more or less resources. Polo et al. [Polo
2011] present a resource-aware scheduling technique for MapReduce multi-job
workloads, improving resource utilization across machines by observing completion
time goals and leveraging job profiling information to dynamically adjust the number of
slots on each machine and the workload placement across them. You et al. [You 2011]
highlight that existing distributed storage solutions need to be able to scale even when
containing large data sets, and describe Ursa, a scalable data management middleware
system which scales to a large number of storage nodes and objects and aims to
minimize latency and bandwidth costs during system reconfiguration, employing
selection of data objects from hot-spot servers and topology-aware migration to
minimize reconfiguration costs. Lim et al. [Lim 2010] propose an automatic controller
targeting the application storage tier, also considering actuation delays, rebalancing and
other problems which appear in this case. The controller not only decides on scaling
horizontally at infrastructure level, but also handles rebalancing the data and
synchronizing resource scaling with software adaptation by considering the lags
introduced by each.
Lama et al. [Lama 2012] define AROMA, a system for automated resource allocation and
configuration of Hadoop parameters in clouds, achieving quality of service goals while
minimizing the incurred cost. The authors consider that jobs with similar resource
consumption patterns face similar bottlenecks, and create clusters of similar jobs and

D 5.1 – Decision Process for On-demand Elasticity Report 13

employ a support vector machine (SVM) model for predicting a job’s performance for
various combinations of resources, configuration parameters and inputs. Lee et all [Lee
2011] propose a data-analytics oriented cloud architecture for allocating resources to
data analytics applications in the cloud, proposing a resource sharing approach that
achieves high performance and fairness by evaluating how much progress each analytics
job is making with the assigned resources and allocating new resources based on this
evaluation.
Xiong et al. [Xiong 2011] propose a multi-level control approach for N-tier web
applications, which are modeled as a tandem queues and controlled at application and
container level for achieving the best resource allocation. Wang et al. [Wang 2011] show
that software resource allocation (e.g. server thread pool size) impacts considerably
system performance, both in under-allocation and over-allocation case.

2.2 Cost and quality in elasticity control
Elasticity has been outlined to be a complex property [Dustdar 2011] composed of
quality elasticity, cost elasticity and resources elasticity. This section shows research on
elasticity control which also considers cost and quality in the control process.
Truong et al. [Truong 2010] estimate the cost of application hosting on the cloud
considering different sub-costs which may interfere during the lifetime of the
application. Villegas et al. [Villegas 2012] propose a framework for conducting empirical
research in different IaaS clouds, comparing different allocation and provisioning
policies. The authors emphasize the importance of understanding the performance and
cost associated with different provisioning or allocation policies, for being able to
properly manage their application's workloads.
Gonzalez et al. [Gonzalez 2012] propose cloud infrastructure-level virtual machine
management for increasing the VM availability. The authors also provide a study on how
different properties of the cloud infrastructure affect the VM availability. Xu et al. [Xu
2010] highlight the complexity of selecting cloud services with lowest associated cost,
especially when periodical discounts are offered by cloud providers, and present a
service selection algorithm that takes into account time-sensitive intra and inter
provider discounts, minimizing the services cost. Chaisiri et al. [Chaisiri 2012] focus on
the complexity of selecting cloud services under different provisioning plans, such as
reservation and on-demand, defining an optimal cloud resource provisioning algorithm
that can provision resources used in multiple provisioning. Using deterministic
equivalent formulation, sample-average approximation, and Benders decomposition,
their proposed solution minimizes the total cost of resource provisioning in cloud
computing environments.
In our work we will target the control of elasticity as a complex property composed of
quality, cost and resources in contrast with works presented above which consider
either quality or cost. We also construct a model for anticipating how quality, resources
and cost affect each other.

2.3 Application-patterns in elasticity control
Patterns for cloud applications have begun being studied only recently. Fehling et al.
[Fehling 2012] describe cloud application patterns and their associated abstract
management flows for defining best practice rules corresponding to the different
application patterns. They outline the fact that, for taking advantage of cloud computing
properties, one needs to change the architectural principles of applications and focus
more on queuing-based applications. Moreover, the applications need to be designed for

D 5.1 – Decision Process for On-demand Elasticity Report 14

using as much as possible of the services offered by PaaS providers, and structured for
enabling scalability on various application parts.
Although the majority of research works in cloud application control propose
controlling only specific types of applications, several research works consider more
application types for cloud application control. Calheiros et al. [Calheiros 2012] propose
Aneka, a platform for facilitating the development and deployment of scalable
applications on the cloud, supporting several application models. Aneka provides
support for hybrid clouds and promotes the integration between desktop grids and
clouds. Aneka also provides dynamic resource provisioning considering the jobs type,
size and intensity and the cost. Juve et al. [Juve 2011] propose a system for automating
the provisioning process for cloud-based applications. They consider two application
models, one workflow application and one data storage case, and show how for these
cases the applications can be deployed and configured automatically.
In our approach we argue that application patterns are contributing factors to
application behavior. For supporting elasticity we will consider different application
patterns and learn their impact on application behavior under different stress factors.

2.4 Cloud application elasticity behavior analysis
In cloud application control, application behavior in response to external stress factors
such as workloads or actions enforced on the application is an important subject since it
gives knowledge on the system that needs to be controlled. We now present several
approaches on the analysis and prediction of cloud application behavior.
Marian et al. [Marian 2012] highlight that system monitoring is key to understanding
system behavior, task which is increasingly complex in large scale system deployments,
like the present-day, and provide a mechanism that extracts indexable kernel-level
system descriptions, or signatures, which accurately capture the state of a system at a
point in time, over which statistical analysis can be performed to analyze system
behavior. Verma et al. [Verma 2010] analyze the impact of reconfiguration actions on
the system performance. They observe that the live migration is affected by the CPU
usage of the source virtual machine, both in terms of the migration duration and
application performance. The authors conclude with a list of recommendations on
dynamic resource allocation. Lu et al. [Lu 2011] profile physical resource utilization
information of Virtual Machines (VMs), employing a directed factor graph to model the
multivariate dependence relationships among different resources (CPU, memory, disk,
network) across virtual and physical layers, improving the accuracy of the resource
utilization information collected within guest VMs. Singh et al. [Singh 2011] propose
Predico, a system able to predict the impact of workload changes on the behavior of data
center applications, using a network of queues to analytically model the behavior of
large distributed applications, and apply their approach to predict resource utilization
and latency for two large applications. Wang et al. [Wang 2012] focus on determining
performance fluctuations in n-tier systems especially during bursting workloads,
fluctuations that can be generated or amplified by various factors, such as cache misses,
garbage collection and inefficient scheduling policies.
The PRESS framework proposed by Gong et al. [Gong 2010] extracts patterns in
application demands and considers these patterns for automatic resource allocation. A
comparison with other algorithms shows that the proposed prediction algorithm has
comparably less under- and over-allocation errors. Shen et al. [Shen 2011] propose the
CloudScale framework which uses resource prediction for automating resource
allocation according to service level objectives (SLOs) with minimum cost. Based on

D 5.1 – Decision Process for On-demand Elasticity Report 15

resource allocation prediction, CloudScale uses predictive migration for solving scaling
conflicts (i.e. there are not enough resources for accommodating scale-up requirements)
and CPU voltage and frequency for saving energy with minimum SLOs impact.
Didona et al. [Didona 2012] introduced Transactional Auto Scaler, a system designed to
accurately predict the performance of applications running on top of transactional in-
memory data grids during scaling operations which employs a hybrid forecasting
methodology relying on analytical modeling and machine learning. Kundu et al. [Kundu
2012] propose two algorithms, based on artificial neural network and support vector
machines for constructing an application model correlating resource allocation with the
performance obtained with the respective resource allocation. Matsunaga et al.
[Matsunaga 2010] extend an existing classification tree algorithm called Predicting
Query Runtime (PQR) for predicting spatiotemporal utilization of resources for cloud
applications. The authors emphasize that the attributes chosen for the learning process
play a considerable role in the results obtained, and that system performance attributes
are mostly important for predicting execution time while application performance
attributes are of great importance for all the considered scenarios.
As opposed to discussed research work on this area, we propose using the multiple level
monitoring information and the application architectural and deployment patterns for
constructing a dependency model which would reflect the application behavior under
different external stress factors like application workloads or enforced actions. Using
information contained in this dependency model, we control the application elasticity
from the three main perspectives, quality cost and resources, and on multiple levels
according to the application structure.

D 5.1 – Decision Process for On-demand Elasticity Report 16

3 Decision Module Requirements
The Decision Module is a core part of the Elasticity Provisioning Platform which
determines elasticity-enabling decisions for adapting the application to the current
workload considering the application user’s elasticity requirements and application
elasticity behavior from cost, quality and resource perspectives. Considering the
structure of the application, the Decision Module finds action plans for the smart
deployment of an application or for elastic application adaptation. The Decision Module
uses information from the CELAR DataBase and monitoring information from the Cloud
Information and Performance Monitor, interacts with the CELAR Manager for receiving
tasks coming from the other modules or for sending generated elasticity action plans to
the other modules. These modules are part of the Elasticity Platform and are described
in detail in Deliverable D3.1.
Similar to the use cases presented in the CELAR Deliverable D1.1 [D1.1] and Deliverable
D3.1 [D3.1], in this Section we present the Use Cases for the Decision Module. The first
part of this Section presents the main actors that interact with the Decision Module, the
next part focusing on describing how the defined actors interact with the Decision
Module. After introducing these concepts we describe functional and non-functional
requirements for the Decision Module.

3.1 Actors
The Decision Module interacts with various components of the CELAR System, which are
regarded as actors. Among them, two main actors are the Cloud Information and
Performance Monitor and the CELAR Manager:

 Cloud Information and Performance Monitor: the Decision Module’s decision
process can take place either in time intervals or be event driven. For the event
driven case, the event is triggered by the Cloud Information and Performance
Monitor when out-of-the-ordinary behavior is detected on the monitored metrics
(i.e. a sudden spike on the user’s request rate).

 CELAR Manager: this actor is essential for Decision Module interaction and
coordination with the other CELAR modules. The CELAR Manager sends to the
Decision Module the message that a new application needs to be deployed,
together with the identification number of the application (used to identify the
application in the CELAR DataBase), for the Decision Module to find a smart
deployment plan and send it back to the CELAR Manager together with an
estimate on the costs. Throughout the application’s execution, the Decision
Module checks the fulfillment of application user’s elasticity requirements and in
case of elasticity requirements violation, the Decision Module generates an
elasticity adaptation plan and sends it to the CELAR Manager together with
application elasticity analysis and estimated cost. The CELAR Manager forwards
the plan to the Resource Provisioner for enforcement and the adaptation plan,
together with the application elasticity analysis and estimated costs to the
Application Management Platform for informing the application user with regard
to the status of his/her application.

D 5.1 – Decision Process for On-demand Elasticity Report 17

3.2 Use cases
The following table shows the list of the Decision Module Use Cases.

Table 1: Decision Module Use Cases

Nb. Use case name Actor Description
1 Trigger New

Deployment
Event

CELAR Manager When a smart deployment strategy is needed, the
CELAR Manager triggers a “new application
deployment needed” event, and piggybacks
the ID of the new application. The information is
then taken from the CELAR Database (use case 2).

2 Trigger New
Decision Cycle

Cloud
Information and
Performance
Monitor

The Cloud Information and Performance Monitor
sends an event to the Decision Module whenever
it detects an abnormal application behavior
reflected in the monitored metrics.

3 Get
Monitoring
Information

Cloud
Information and
Performance
Monitor

The Decision Module gets fresh monitoring
information from the Cloud Information and
Performance Monitor either through a push or
pull manner. This use case is the case in which
Decision Module pulls fresh information from the
Cloud Information and Performance Monitor.

The above use cases are presented in Figure 2 through a UML Diagram.

Figure 2: UML Diagram of the Decision Module Use Cases

3.3 Functional requirements
In this section we present the functional requirements of the Decision Module that
derive from the above use cases and from the more generic functional requirements of
the Elasticity Platform from Deliverable D3.1 [D3.1].

FR1 -- Structure monitoring information:
Monitoring data retrieved from different monitoring sources at different levels, from
system to application level need to be mapped on the application structure with respect
to the application vertical software components stack and their run-time topology,
enabling fine grained analysis of application behavior.

FR2 -- Generate mappings between low level and application-level metrics:
The majority of existing monitoring solutions focus on system-level metrics, such as CPU
utilization, which, while important, do not fully capture the actual behavior of cloud
applications and cannot easily be mapped to application level metrics such as end user

D 5.1 – Decision Process for On-demand Elasticity Report 18

experience. As cloud application users are usually interested only in end-user
experience, a mechanism for defining application level metrics as a hierarchical
composition of lower level metrics needs to be defined. The complex composite metrics
are added to the already structured monitoring information, providing a mechanism
which supports tracing of high-level metrics to underlying resource level ones, enabling
the discovery of unexpected cloud application behavior. The unexpected application
behavior, further analyzed can be a case of user requirements violation, being followed
by a new decision process resulting in an elasticity adaptation plan.

FR3 -- Evaluate application user’s elasticity requirements:
Using the structured monitoring information enriched with metrics resulted from the
composition process above, the Decision Module evaluates application user’s elasticity
requirements in terms of cost, quality and resources. It considers the application
structure, the different metrics associated to that structure, and application profiling
information and decides whether the current application status is in accordance with
the requirements specified by the application user. Moreover, if hints about the
application workload characteristics are given by the application user, the decision
module adapts the decision frequency and mechanisms used to the workload
characteristics (e.g. if the workload has a certain periodicity, the decision will be
adapted to it).

FR4 -- Generate action plan:
An action plan is generated in two cases: (i) for the case the CELAR Manager signaled
that a smart deployment is needed for a new application, or (ii) for the case the analysis
phase found violations on elasticity requirements, and an elastic adaptation is needed.
For the first case, the Decision Module uses pulled information from the CELAR
DataBase concerning offered cloud services by infrastructure providers, application
user’s elasticity requirements and application profiling information and generates an
action plan consisting of a deployment configuration fulfilling all his requirements (e.g.
balancing between cost and quality).
In the second case, the Decision Module uses the analysis with regard to application
user’s elasticity requirements together with information regarding application profile,
application elasticity capabilities and the metrics resulted from monitoring and
generates an elasticity adaptation plan.

FR5 -- Learn adaptation action effects and elasticity adaptation action plans:
The Decision Module considers all information gathered in the past, and creates a
dependency model for detecting correlations between application types, available
actions and multiple level metrics. The model contains two main types of information:
action effects on multiple level metrics depending on application type, and learned
action plans that were considered successful for a specific type of application (an
application type refers to application architectural and deployment patterns, see
[Fehling 2011]).

3.4 Non-functional requirements
This section presents Decision Module non-functional requirements derived from above
use cases and from the description of Elasticity Provisioning Platform requirements
from Deliverable 3.1, and the means by which we achieve these requirements for the
Decision Module.

D 5.1 – Decision Process for On-demand Elasticity Report 19

NFR1 -- Abstraction
As specified in Deliverable D3.1, the Elasticity Provisioning Platform needs to be able to
handle different application types. Since the Decision Module is the core of this platform,
we intend to fulfill this non-functional requirement by enabling generic control for
various application types, using abstract models that will be generic enough to map on
different application patterns. The Decision Module uses an internal application model,
which is constructed according to the application structure description received from
the application user and fed with data from the profiler for creating a more accurate
representation. The Decision Module uses this generic internal application model for
modeling both application structure, real-time behavior and possible elasticity control
actions, abstracting from details which are application specific and generating elasticity
plans without knowing all the details of their implementation.

NFR2 -- Efficiency (time and resource utilization efficiency):
The Decision Module needs to take decisions in a timely manner. Considering that an
instance of the Decision Module is deployed for each application on the CELAR
Application Orchestrator server (Deliverable D1.1 Section 3.4.5), the module’s resource
usage in terms of CPU/memory usage is a less pressing problem. However, the time in
which the deployment/adaptation decisions are generated and enforced needs to be as
small as possible for minimizing the under/over-provisioning impact. Moreover,
mechanisms designed need to take into consideration the possibility of receiving high
amount of monitoring data (i.e. for the case of a complex application, which is deployed
on many machines and for which a high number of metrics is monitored with high
frequency) and its complexity.

NFR3 -- Robustness:
The Decision Module shall be able to cope with unexpected situations, like extremely
unpredictable load variations, erroneous monitoring data, and rapid oscillations
between under and over provisioning. Since the Decision Module controls the cloud
application and it is one of the core parts which enable application elasticity, unexpected
application behavior should not produce a failure in decision or worse, a termination of
the Decision Module. Moreover, incomplete monitoring information will be considered
when designing the Decision Module, and lack of profiling information is replaced by
runtime application behavior analysis.

NFR4 -- Failure Management:
The Decision Module needs to handle cases where the actions are not successful, by
taking measures like re-doing the action in case of the action failure, or undoing and re-
doing the actions which preceded the failed action. We plan to enforce this non-
functional requirement by monitoring the enforcement of the action plan, learning
which actions are opposite to each other and having the capacity to undo and redo
actions on-demand.

D 5.1 – Decision Process for On-demand Elasticity Report 20

4 Decision Module Analysis
This Section presents a detailed analysis of the Decision Module’s functionalities,
expected inputs and produced outputs, as well as the issues to be encountered in the
decision process. We first discuss possible elasticity requirements and on the
application structure, and propose an internal model used as basis for the decision
process and for reflecting the control actions. Next, we analyze both expected-to-be-
received and expected-to-be-returned information (expected input/output analysis),
outlining our assumptions and explaining the requirements. We end this Section by
analyzing the possible runtime behavior of the decision module.

4.1 Application structure and elasticity requirements
Cloud applications are usually distributed among several virtual machines which may
belong to different (virtual) clusters or even different cloud providers. Cloud application
elasticity entails the automatic adaptation of its different components according to the
demand and to the application user’s elasticity requirements targeting quality and cost
and their sub-classes. For instance, for a web application it may be the case that the
business-end needs to be scaled when there are new computationally intensive jobs
while the front-end and the data end have continuously stable loads. For obtaining
highly granular control of cloud applications and being aware of what application
component is being controlled, a composition-based model of the application is needed.
Several works have proposed different ways to structure cloud applications, e.g., TOSCA
[TOSCA] and CIMI [CIMI]. In our work, we define an internal cloud application
composition model for controlling elasticity which uses concepts from existing cloud
computing reference architectures (NIST CCRA [NIST 2011], IBM CCRA [IBM 2011]) and
is generic enough, mapping different application types, while still complying with the
proposed representations by different standardizing institutions. The model is used
internally by the Decision Module for building a “current application model” by
considering application structure and system-level information like how
components/tiers of the application communicate at runtime or what is the type of
relationship between application components/tiers.

4.1.1 Abstract application composition model
This model is needed in multi-level elasticity control for bridging the gap between the
information about the system as seen by the cloud user or developer, which mainly
consists of total costs and overall quality, and the data needed for accurately controlling
the application which is generally lower level information. The application structure in
Figure 3 is an internal model used for representing both application workflow elasticity
requirements and structural aspects of the application. The proposed model is generic,
aiming at supporting the structure of different kinds of applications (e.g. queue-based
applications, web applications or batch jobs).

D 5.1 – Decision Process for On-demand Elasticity Report 21

Figure 3: Abstract Composition Model

Our abstract model decomposes the cloud application into smaller sub-parts and
consists of component, relationship, composite component, and cloud application. A
component represents any kind of module or unit encapsulating functionality or data.
This view is generic enough to facilitate the modeling of different types of applications
and systems (i.e. web services, software package and web resource), each with different
views on the units or modules the application is composed of. A group of components
together with the relationships between them can be modeled as a composite
component, a cloud application being composed of one or more complex components.
The composite component is not physically represented at runtime; it is only a
representational concept helping with the cloud application control.

Figure 4: Mapping from User Perspective to System Perspective through Abstract Composition Model

Figure 4 shows a view on the cloud application from the structural and targeted metrics
point of view. If we take the example of a web service (the left side of Figure 4), the
cloud user views his/her web service as a set of services (in this case Service C1, Service
C2, and Service C3), some of them grouped together for monitoring purposes (in this
case Service Group which consists of Service C1 and Service C3). The metrics targeted in
user’s elasticity requirements in this stage are high level metrics, referring to the quality,
cost and resources of services, of groups of services or even of the entire web service. At
runtime, in the right part of the figure, service instances are deployed on virtual
machines, in different virtual clusters or even different cloud providers, being viewed by
the runtime control system through the light of an internal model (e.g. Service C1
becomes Component C1, possibly having more than one instances deployed on more
than one virtual machines), and the accessible metrics are low level ones. The system to
control such application needs to know how to aggregate metrics for obtaining the
higher level ones which are targeted by the user, and how services are linked together
for having the capacity to properly control them. For bridging this information gap
between the user and runtime perspective we propose using the described cloud

D 5.1 – Decision Process for On-demand Elasticity Report 22

application abstraction model, which facilitates the control system of the cloud
application to take actions while being aware of the structure of the cloud application.
The cloud application abstraction model is associated with metrics information from
two views. Firstly, the model is associated with metrics from the application user
perspective that can view the cloud application as a web service and has a high level
view concerning metrics. Next, the model is associated with metrics from the control
system perspective which views cloud applications in a uniform manner using our
abstract model and has an initial low level view concerning metrics, composed of
information provided by the Cloud Information and Performance Monitor. These two
views on metrics are mapped from one to another, aggregating low-level metrics for
computing higher level ones. For instance, availability at application level would be
computed from availability at each application part and the cost is aggregated from
static information from the cloud provider on cost per I/O and VM cost, and the run-time
application topology and loads.

4.1.2 Elasticity requirements specification
Elasticity requirements described by the application user through the Application
Management Platform are pulled by the Decision Module from the CELAR DataBase.
These requirements are structured according to the application model, depending on
which part of the application they are connected to. For this description we developed
SYBL, a language for elasticity requirements specification.
SYBL (Simple Yet Beautiful Language) is a directive-based language proposed for
enabling multiple level elasticity control of cloud applications. SYBL has a <Monitoring,
Constraints, Strategies> structure (see Figure 5) for the description of elasticity
specifications in monitoring preferences, the constraints needed for specific metrics and
the strategies suggested by the application user for fixing the encountered problems.
Each elasticity requirement specified through SYBL is also referred to as a SYBL
directive. More details on SYBL elasticity requirements can be found in [Copil 2013a].

Figure 5: SYBL in BNF

The application user can either detail strategies or just specify high-level elasticity
requirements, depending on the functionalities offered by the Application Management
Platform, and on the type of application user (i.e. the application user could have only
high level quality or cost-related requirements on the overall application, while the
application expert/developer can specify lower level elasticity requirements, specific to

D 5.1 – Decision Process for On-demand Elasticity Report 23

a component or complex component –e.g. the CPU usage should be lower than 80%, the
response time lower than 3 ms.).
To better grasp possible elasticity requirements, we present some examples depending
on the level at which the specification is described, as well as on the user type (for
describing elasticity requirements we make use of the CELAR user hierarchy defined in
Deliverable D1.1 Section 2.3) or elasticity type. Elasticity depends on the type of the user
and the granularity at which he/she wants to specify the application's elasticity. On one
hand, the purpose of elasticity requirements varies from controlling costs to achieving
higher quality or even specifying demands on the relation between cost, resources and
quality, for example:

 Cost-related elasticity requirements: An application owner may specify that when
the total cost is higher than 800 Euro for a number of clients, there should be a
scale-in action for keeping costs in acceptable limits.

 Quality-related elasticity requirements: An application user may need to monitor
different quality parameters, which should be in acceptable limits. For instance,
an application owner can specify constraints on the response time depending on
the number of users currently accessing the provided software. An application
developer could specify that the result from a data analytics algorithm must
reach a certain data accuracy under a cost constraint without caring how many
resources should be used for executing the code of that algorithm.

 Elasticity requirements on the relation between cost and quality: An application
owner could specify its pricing schema or price computation policies, for example
that when availability is higher than 99% for a predefined period of time the cost
should increase by 10%.

On the other hand, the user needs different granularities at which s/he can specify
elasticity requirements, the user having elasticity requirements for the entire
application or for specific application parts. This results in the need of having
specifications enforced at different levels, as opposed to usual approaches in resource
allocation and reallocation such as controlling only resources for the whole application
or component level [Moran 2011], [Han 2012]. To this end, the following elasticity
controls at different levels will be supported:

 Component level elasticity requirements: the user could specify different
requirements based on the component type, i.e. the nature of requirements for
the computation engine that are different from the requirements for the front-
end component. The user can control the cost associated with a component,
which means aggregating the cost of processes, storage and communication
associated to the component but residing on different virtual machines.

 Relationship level elasticity requirements: the application user could need to
specify the type of relation between components (e.g. master-slave, peer-to-peer,
or map reduce), the type of network connection one should ensure between two
components, the communication intensity (for determining which should be the
components location), etc.

 Composite Component level elasticity requirements: the application user could
specify requirements on a group of components connected by relationships, i.e.
the cost over that complex component should be within specific limits, or that the
complex component gathers components which should have really high
availability.

 Application level elasticity requirements: elasticity requirements can be applied on
the overall availability of the whole application, imposing aggregating data about

D 5.1 – Decision Process for On-demand Elasticity Report 24

the different components of the application and the communication between
them. The cost for the application at a defined level refers to the cost of
components usage, communication between components and storage.

To support the aforementioned requirements, we model elasticity properties into a
"resources-cost-quality" representation seen in Figure 6 on the left part, the right part of
the figure showing possible sub-dimensions of cost, quality or resources, which at their
turn could be further decomposed. The user should be given the opportunity of
specifying the application's behavior, most specifically in what direction it should
automatically scale in different cases in the space defined by the three axes (resource,
cost and quality). Many properties from each of the elasticity dimensions are strongly
interdependent, an elasticity property belonging to one axis being a multi-dimensional
function of properties belonging to the other two axes.

Figure 6: Multi-dimensional Representation of Elasticity

Depending on the user type (i.e. application owners usually pose application level
requirements at high level concerning cost and quality while application developers may
have lower level requirements also concerning resources), the application user can
specify elasticity requirements on the form of constraints on considered metrics or even
strategies if available. If only high-level elasticity requirements are available, the
decision module can use learned information and information about how the metrics
are aggregated at different levels to transfer the constraints into strategies referring to
lower level metrics.

4.2 Information analysis
This Section gives an overview of the input expected by the Decision Module and on the
output content and structure. The Decision Module takes as input the application
structure, the application elasticity capabilities described by the application user
through the Application Management Platform (received by the Decision Module in
TOSCA representation as node operations), the relationships between components at
runtime (i.e. master-slave, peer to peer, etc.), the elasticity requirements and the
monitoring information containing metrics values; it outputs an elasticity adaptation
action plan containing a sequence of actions which would adapt the application to
current loads and elasticity requirements.

D 5.1 – Decision Process for On-demand Elasticity Report 25

4.2.1 Input

4.2.1.1 Expected monitoring information
Monitoring information is received by the Decision Module from the Cloud Information
and Performance Monitor. For analyzing cloud application behavior, we need a
monitoring system capable of describing the monitored information source with respect
to the monitored application software stack, monitoring the vertical hierarchy of the
software stack levels, and their horizontal distribution over the application run-time
topology (Figure 7).

Figure 7: Cloud Application Monitoring Information Model

Monitoring data used by the Decision Module should contain enough information as to
identify both the monitored application component and from where in the application
deployment topology the data is retrieved. The monitoring data is internally structured
using our informational model containing vertical monitoring levels ordered according
to the monitoring information generality, starting from the most generic Operating
System (OS) level (e.g. CPU idle/usage, free memory, and packets sent/received) to
Service level(e.g. response time, latency, and throughput). These levels form the basic
building block of any cloud application and give from coarse- to fine-grained
information about the application behavior, from system information to the behavior of
a particular client process. The horizontal monitoring model levels are individual Virtual
Machine (VM) monitoring, and VM Cluster monitoring, providing a horizontal view over
the application deployment topology, allowing the description of both individual VMs
and VM Clusters containing VMs which perform related tasks.
For the data structure of the monitored metrics received from the Cloud Information
and Performance Monitor, we envision a simple structure containing the timestamp,
metric name, value, measurement unit, the monitoring level targeted by the metric, the
minimum monitoring interval in milliseconds (minimum data refresh period) and the ID
of the monitored application part (component, composite component or application)
targeted by the metric.
Using supplied data source descriptions, cloud application monitoring data can be
collected using both a push and pull based mechanism, covering a large spectrum of
usage scenario. The pull-based approach enables adaptive data collection, having the
ability to control the data sources querying time intervals, depending on the system
behavior. Such adaptive collection can be used to keep the monitoring data traffic to a
minimum, which might be important in a cloud environment where data traffic might be

D 5.1 – Decision Process for On-demand Elasticity Report 26

priced based on the quantity of transferred data. A pull-based mechanism provides
maximum control over the data collection process and is suited for systems that behave
within some predictable boundaries, for which stable time intervals can be detected in
order to schedule data source queries periodically. On the other hand, such a system can
easily become a problem when critical events occur within the monitored service,
periodical querying introducing unavoidable delays in detecting such events or even not
reporting them at all.
To address this second scenario, push-based data collection is also supported, in which
in the case of a critical event, the Cloud Information and Performance Monitor can send
directly to the Decision Module a list of monitored metrics using the agreed format.
After receiving the metrics list, the Decision Module uses the metric component IDs to
map them onto the internal model, after which it can query according to the affected
component other data sources for extra information, and then analyze the application
elasticity requirements in order to determine the nature and source of the critical event.

4.2.1.2 Application static information
Application static information concerns descriptive information with regard to the
application, useful for both a smart deployment of the application on the cloud
considering elasticity requirements and for automatic adaptation of the application
deployment topology according to the application loads. We describe static information
below, structured on information type:

 Application structure is received by the Application Management Platform from
the application user, placed in the CELAR DataBase and used by the Decision
Module in the process of finding a smart deployment or elastic adaptation action
plan.

 Application elasticity capabilities are descriptions of what actions can be enforced
for the application, and the level at which the respective action can be enforced
(i.e. application level, or action for a complex component or even at component
level). A scale out action at component level (for this example we consider one
component is deployed on one VM) would mean creating a new VM and
subscribing to the component’s load balancer, while a scale out action at complex
component level can mean creating an entire new cluster (i.e. creating a new load
balancer for the components that compose the cluster, creating new components,
making the proper configurations for the components to subscribe to the newly
created load balancer, and subscribing to the cluster’s load balancer).
Application elasticity capabilities do not target only horizontal scaling (e.g.
adding/removing VMs), but also vertical scaling (adding/releasing resources like
memory or storage) and configuration actions (changing the application or
component configuration).

 Application system (run-time) information is information concerning runtime
behavior of application components, like relationships among components (i.e.
client-server, master-slave, and peer-to-peer). This type of information is
gathered from multiple sources: an initial hint can be provided by the user, a
more accurate description resulting from the profiler. This information will be
continually refined by the Decision Module considering application evolution in
time.

 Application elasticity requirements are described by the application user with the
help of the Application Management Platform (see CELAR Architecture in Figure
1).

D 5.1 – Decision Process for On-demand Elasticity Report 27

4.2.2 Input pre-processing
The input described above is processed by the Decision Module by integrating all the
necessary information into the application model based on the compositional module of
Figure 3. The monitoring information is mapped according to the application different
structural levels (i.e. at component level, the cost could be the sum between the IO cost,
the number of VMs necessary for hosting the component, the communication cost
among these VMs, etc.), being used by the Decision Module when learning how different
actions impact the metrics at different levels (i.e. a scale-out, depending on its level has
an impact both on application level metrics and on component level metrics), and when
generating new action plans.

4.2.2.1 Monitoring information associated withthe application structure
Monitoring information retrieved from the Cloud Application and Performance Monitor
needs to be processed for composing higher level metrics which are normally targeted
by application users in their requirements (i.e. the application user would normally be
interested in application performance and data quality rather than, for example the CPU
usage). The metrics must also be mapped onto the application structure to enable in-
detail analysis of the behavior of application components.
While having metrics from different application levels is the first step towards
application elasticity control, simple, directly collected metrics might not be sufficient
for a complete elasticity analysis, as there might exist metrics that cannot be monitored
directly or which are defined as a composition of other metrics. One example is the cost
of running a cloud service, which usually depends both on direct measurable factors
such as service running time, network data transfer or used storage size, and factors
influenced by the cloud pricing policy, such as cost per hour per subscription scheme,
cost per transferred data, or cost for storage size and type.
The second issue is mapping collected metrics on the application structure, as to
support fine-grained analysis of application behavior. We provide a mechanism for
aggregating monitoring data in a hierarchical structure bound to the logical application
structure.
Towards describing cloud application properties that are not easy to measure directly,
and mapping the collected metrics on the application structure, we define a mechanism
for specifying metric mapping rules. Rules can be defined over one or more metrics
existent at one monitoring level. When defined over a set of metrics, a rule generates a
new composite metric. Each rule specifies the application structure level at which
simple and composite metrics will be mapped. Optionally, a rule can also specify
additional levels to which the metric is propagated. This propagation allows hierarchical
structuring of metrics, enabling the definition of mapping rules over metrics resulted
from rules applied at lower monitoring levels. The metrics mapping mechanism
provides a proper information model for the service behavior analysis phase.
Using the metrics mapping mechanism, values from existing directly monitored metrics
can be combined with values from other metrics or static values (such as cost), and be
used to obtain new metrics representing anything from a simple measurement unit
conversion, to metrics spanning more service components (such as service overall CPU
usage) and metrics that contain cloud provider data (such as overall service storage
cost). Although usually through metric composition the resulting metric loses
expressiveness detail and depth compared to the source metrics, it gains perspective,
providing a broader view over the system. The composite broader metric used in
combination with the deeper source metrics provides a better overview over the
behavior of a system than just using narrow but deep metrics.

D 5.1 – Decision Process for On-demand Elasticity Report 28

Through this mapping stage, the Decision Module structures the metrics received from
the Cloud Information and Performance according to the application structure (i.e.
application, component, relationship level). Considering that elasticity requirements
would target high level metrics (e.g. quality of data, performance, and cost) and the
control is enabled at resource-level (e.g. virtual machines allocated, storage) the
composite metrics provide the mechanism for tracing high level to low-level/resource-
level metrics. This facilitates a fine-grained analysis of the application behavior, at all
levels of the application structure (see model from Figure 3), and a low level control
using the available mechanisms (IaaS or PaaS level actions).

4.2.2.2 Application structure mapping to internal structure
From the reasoning perspective, having a description of the application which relies on
the model that is used in the decision process is of high importance for the decision
process. The decision process needs to use an internal application model fed with all the
necessary information, in which most of the applications or even all applications can be
represented. This would enable the decision process to be generic, to be independent on
the application type and to avoid the overhead of continuously pulling the information
from multiple sources.
Following the abstraction model of Figure 8, the application can be represented in an
XML structure which can be translated from TOSCA [TOSCA] or other description
languages. The decision module takes the application structure or topology from the
CELAR DataBase, together with the system information consisting of relationships
between the components and groups (the upper part of the figure, showing information
on Node 1, Node 2 and Node 3), and transforms it into the internal application
structure, the Node 1 becoming Comp C1, the connection between Node 3 and
Group 1 being represented as a separate entity, relationship Rel CC1-C3.

Figure 8: Mapping User’s Application Description to Abstract Composition Model

D 5.1 – Decision Process for On-demand Elasticity Report 29

Furthermore, the Decision Module associates the elasticity requirements with each part
of the application structure, and can generate elastic adaptation plans while being aware
of the application structure and of the requirements of the application user on each
application part or group of application parts.
The elasticity requirements can be translated from the specifications as received from
the Application Management Platform into SYBL constructs, also using the Decision
Module history for specifying strategies for constraints which are specified by the
application user and that are with high probability the same (i.e. in 99% of the cases the
action plan for when a constraint is violated is the same). By taking this approach, we
can save the time in searching for elasticity adaptation plans. SYBL constructs can be
associated with the part of the application for which the requirements are described,
and specific actions can be prescribed for the targeted application part.

4.2.3 Output towards other CELAR modules
The Decision Module returns towards other CELAR modules through the CELAR
Manager output regarding the action plan and an action plan elasticity report resulted
from the Decision Module analysis. The elasticity report contains information on how
elastic the application is, answering to questions such as “how did the application
behave when applying these actions?” or “how did the targeted metrics evolve?”.
The generated action plans are also sent to other CELAR modules for enforcement. The
action plans are generated as pairs of (Action, Enforcement Time) or (Action,
Actions To Be Finished), where Action represents what needs to be done and

Enforcement Time describes the time at which the action should be executed, and
Actions To Be Finished represent the actions that need to be enforced
successfully for enforcing the currently specified action. An example of action plan item
for the second type of specification would be (Reconfigure Component C1,
(Scale out for C1)), thus specifying that the current action to be enforced is the
reconfigure action for the component C1, but not before the scale out action is finished
successfully.
The action plan enforcement progress is continuously monitored by the Decision
Module and in case of an action enforcement failure or of unexpected results a new
sequence of actions is generated considering the updated knowledge regarding action
effect or the effect of combinations of actions.

Figure 9: An Action Plan Represented as a Directed Graph

As shown in Figure 9, the action plan can be expressed as a directed graph where the
time in which each action should be taken is not known or not necessarily important;
what counts is the sequence in which the actions have to be enforced and which
represents the dependency between them. In the directed graph, the graph nodes are
actions and the dependency between them plays the role of temporal consequence, A1-
>A2 meaning that A2 can start being enforced once the A1 action is finished being

D 5.1 – Decision Process for On-demand Elasticity Report 30

enforced. The relationship between A4 and A2 and A3 states that both actions need to
be finished for being able to start enforcing A4.
Therefore, the Decision Module does not just enforce action plans, but also checks
whether they are successful and takes appropriate measures in case in which they are
not, like sending new action plans to be enforced instead of the rest of the unsuccessful
plan.

4.3 Runtime
The Decision Module is a module deployed for each application on the CELAR
Application Orchestrator VM (see Section 3.4.5 from Deliverable D1.1), together with all
the CELAR modules responsible for the application’s adaptation. The Decision Module
takes decisions either periodically or event driven (each time the Cloud Information and
Performance Monitor triggers an event due to abnormal metric values), depending on
its configuration.

4.3.1 Using SYBL elasticity directives for multiple level elasticity control
The Decision Module enforces control on multiple levels, taking into account the
structure of the application. Figure 10 shows a simple flow depicting how the Decision
Module can use the elasticity directives resulted from the elasticity requirements
specified by the application user for generating elasticity adaptation action plans.
In the first phase, the directives are evaluated and the currently valid SYBL directives
(their triggering conditions being evaluated to true) are extracted from the SYBL
directives set (see SYBL description in Section 3.1.2). On the resulted set, conflicting
directives can appear for the fact that users with different perspectives can specify
elasticity requirements at different levels. For instance, directives specified at cloud
application level can be in conflict with ones at component level: the application owner
might want low costs while the application designer specifying elasticity requirements
at component level might want high quality at any price. For solving the conflicting
issues, for metrics targeted by the pair of conflicting directives the intersecting range is
computed and a new directive is generated to replace the old ones (e.g. if one wants
price to be lower than 800 and the other one specifies availability higher than 99.5 with
the condition of having the price lower than 1200, we choose 800-1200 as an acceptable
price range). Using the set of directives to be enforced, the next step is to generate the
action plan containing the correct sequence of actions for enforcing the constraints and
strategies specified, and send it for enforcement to the Resource Provisioner through
the CELAR Manager.

Figure 10: Elasticity Control: from Directives to Action Plans

D 5.1 – Decision Process for On-demand Elasticity Report 31

Conflicting directives are defined as directives which should be enforced at a given time,
and which specify as desirable non-identical states. For instance, the elasticity constraint
that requires a cost smaller than 300 Euro when availability is less than 80% is not
opposed to, for example, the elasticity constraint which states that cost should be
between 400 and 600 Euro when availability is higher than 99.5%.
We identify three types of conflicts: (i) conflicts between constraints and strategies from
the same level of the cloud application, (ii) conflicts which appear between constraints
and strategies belonging to different levels of the cloud application and (iii) conflicting
directives targeting correlated metrics. For all types of directives conflicts, we first
search for specified priorities which may solve the conflicts and show which directive
should be enforced. The first type of conflicts is solved easily by our control runtime
system with the help of the priority construct, through which the user specifies the
hierarchy of priorities in the current specified directives. In the second type, the solution
to the problem is not that simple due to security concerns (i.e. controls from component
level are usually not aware of controls from cloud application region). When the latter
type of conflict appears, we compute an intersection of the constraints’ desired metric
states and create a new directive which includes the requirements resulted metric
states. If the intersection is null, a choice needs to be made between the requirements to
enforce or enforce none, based on Decision Module settings. The user can specify for
instance that the directives from a higher level have a higher priority, or that the
directives from component level have highest priority since the user specifying elasticity
requirements at component level has a better global perspective than the usual
developer, while he is also aware of what happens in the code at lower levels. The third
type of conflicts can appear between directives targeting different metrics, for instance
in case the cost decreases the quality will also decrease, so constraints targeting high
quality are in conflict with constraints targeting low costs. The elasticity control engine
needs to know when enforcing one directive which other metrics it affects, and take
appropriate measures for enforcing the other directives as well. We also plan to
anticipate the effect one directive may have upon all the other metrics (not just the one
specified in the directive).

4.3.2 Control types at different structural levels of the application
The elasticity capabilities are described by the application user through the Application
Management Platform, and their impact on the elastic application behavior is extremely
important but cannot be asked from the application user. Therefore, the Decision
Module needs to know how different actions will impact the application behavior.
For being able to estimate the action effects even from the beginning of application
deployment, we design a two-fold learning process two-fold: firstly, learning action
effect patterns for application patterns, and secondly, continuous refinement of the
generic learned model to the application behavior throughout the application hosting on
the cloud. The first part of the learning process is a continuous process which associates
expected application behavior in terms of metrics evolution with application patterns.
When a new application is deployed, we need to be able to estimate depending on its
architectural and deployment pattern the effect different control actions would have on
the application. This initial information is provided by the user in case s/he can give
hints on application behavior and by the Profiler module.
On the other hand, we need to have an even more fine-grained model which is
continuously improving throughout the run-time of the application, learning from
application’s reactions to incoming workloads or to adaptation actions from different
control levels. We will therefore have a global, static dependency model which can give

D 5.1 – Decision Process for On-demand Elasticity Report 32

estimations on how the application behaves based on the patterns to which it subscribes
and on the adaptation actions available. The second dependency model will be an
instantiation of the global model for the current application (architectural and
deployment pattern, available actions, etc.) which is continuously refined considering
the application metrics throughout the application execution.

4.3.3 Considered algorithms for generating action plans
We plan to consider and evaluate several algorithms for generating adaptation action
plans, taking into account application types, structure and possible application patterns.
Moreover, we can enable decision mechanisms for data and networking as opposed to
computation elasticity control.
Scientific applications require highly accurate decision making, and are not suitable for
high adaptation frequencies (low adaptation frequency algorithm), that would output
optimal or close to optimal solutions even if the decision takes more time (in this case
even exhaustive search is not out of the question). On the other hand, applications which
are to be hosted for a high period of time (e.g. web applications), can have bursty
workloads and responsive algorithms are necessary in which fast decisions need to be
taken, which need to also map into fast enforcements (e.g. adding resources or
increasing the quality should happen in the shortest possible time) or at least consider
the time dimension of the enforcement process (e.g. heuristic-based algorithms,
approximations or greedy algorithms). Moreover, these workloads can also have
patterns over time (e.g. high/low workloads on holidays, weekends etc.), so we need to
have algorithms addressing this anticipation and elastic adaptation according to the
discovered patterns (pattern-based algorithms), for instance different types of
mechanisms based on learning algorithms or clustering algorithms.
Furthermore, different application parts can map to different of the above enumerated
algorithms. For instance, presentation layer components or business components
would require patterns-enabled algorithms or responsive algorithms, while a complex
component of the same application consisting of a data analytics program which needs
to be run on a map reduce structure would entail a different type of adaptation
algorithm (low adaptation frequency algorithms).

D 5.1 – Decision Process for On-demand Elasticity Report 33

5 Decision Module Architecture
The Decision Module is a core component of the CELAR Elasticity Platform, used for
reasoning on the application metrics and generating elasticity adaptation action plans
for respecting the elasticity requirements specified by the CELAR user.

5.1 Decision module conceptual architecture
Figure 11 shows a conceptual view on the Decision Module. The Decision Module is
composed of three core components: the Learning Engine, the Analysis Engine and the
Planning Engine, and two components for interacting with the CELAR modules: the Data
Processing Unit and the Reporting and Cloud Interaction Unit.

Figure 11: Decision Module Conceptual Architecture

D 5.1 – Decision Process for On-demand Elasticity Report 34

The Data Processing Unit finds in the CELAR DataBase (see CELAR architecture Figure 1)
static information describing the application (i.e. application structure, application
elasticity requirements, application elasticity capabilities, application profile) and the
services offered by the cloud providers (cloud description) and dynamic information on
the application evolution (application monitored metrics). The received static and
dynamic information is sent towards the Learning Engine and the Analysis Engine. The
Learning Engine detects for similar situations and action effects through the history, and
feeds information relevant to the current application to the Planning Engine. The
Analysis Engine evaluates metrics corresponding to each of the application parts (i.e.
component level, complex component, application, relationships) against the elasticity
requirements which is forwarded to the Planning Engine and computes application
elasticity (composed of cost, quality and resources elasticity) which is forwarded to the
Reporting and Cloud Interaction Unit which sends it to the CELAR Manager (which
forwards it to the Application Management Platform for informing the CELAR user). The
Planning Engine processes all information received and generates a sequence of actions,
called action plan, for fulfilling the preferences of the CELAR user. The action plan is
sent to the CELAR Manager, forwards it to the Resource Provisioner for enforcement.

5.1.1 Data Processing Unit
The Data Processing Unit has as main scope processing data coming from other CELAR
modules, translating the data into structures used by the rest of the internal Decision
Module components. The data processing unit executes information mapping on three
main parts: (i) the application information is mapped to the Decision Module internal
model described in Section 3.2.2.1, (ii) the elasticity requirements are mapped into SYBL
descriptions for enabling the control and reasoning based on SYBL directives and (iii)
the monitoring data is aggregated according to the application structure and the
underlying resource structure as described in Section 3.2.2.2.

5.1.2 Learning Engine (Cloud Application Behavior Prediction Engine)
The Learning Engine uses the information from the Data Processing Unit for estimating
application behavior as response to external stress factors such as workload or
adaptation actions. We are interested not only in how the metrics targeted by the
application user are affected, but also in how much time it takes for the action to be
enforced. Initial work published in [Gambi 2013] applies change-point detection for
learning the amount of time necessary for an action to be enforced in an un-intrusive
manner. This information is valuable for the Decision Module due to the real time nature
of the control, and the mechanism can be extended for capturing information on
expected evolution on action enforcement for various metrics as well as for metrics
correlation, using learning approaches like Bayes networks or reinforcement learning.
The Learning Engine uses historic information for correlating application patterns to
action effect patterns for constructing a dependency model which helps estimating
action effects even for applications recently deployed.

5.1.3 Analysis Engine
The Analysis Engine performs a two-phase analysis over cloud application monitoring
data: (i) determines if the cloud application behavior violates user supplied elasticity
restrictions and (ii) performs deep inspection of application behavior towards tracing
the source of the violation as to support action plan generation.
The first analysis phase is designed as a lightweight process, analyzing independently in
parallel the supplied elasticity restrictions against the aggregated monitoring model.

D 5.1 – Decision Process for On-demand Elasticity Report 35

This step determines as fast as possible if there is any elasticity restriction violation, and
overlaps the analysis result over the monitoring model, paving the way towards the next
analysis phase.
The second analysis phase is a heavier process, aimed at detecting elasticity
requirements violations by inspecting both directly monitored and aggregated metrics
(in the case restrictions are defined using metric aggregation). The analysis is performed
over the monitored data model, vertically trough the service software stack and
horizontally over the deployment topology, determining which underlying software
component violates the application elasticity restrictions and from where in the
deployment topology the component the violation originates.
The result of the second analysis process is sent to the Planning Engine, which is in
charge of determining adaptation strategies that would bring the application back in a
situation in which all elasticity restrictions are respected.

5.1.4 Planning Engine
The Planning Engine uses information from the Analysis Engine and from the Learning
Engine for deciding on strategies which have the form of action plans. The Learning
Engine is firstly consulted for checking if there were similar situations in history of
current application or if for this application type there exists a predefined “recipe”/
sequence of actions which would help fulfilling the elasticity requirements. If this is the
case, the actions learned are mapped to the current application characteristics, and then
sent for enforcement. If not, the Planning Engine will use the appropriate type of
algorithm depending on the configurations and on the part of the application that
requires adaptation (information received from the Analysis Engine) for generating an
action plan which is bound to the current application model.

5.1.5 Reporting and Cloud Interaction Unit
The Reporting and Cloud Interaction Unit is responsible for mapping the action plan
generated by the Planning Engine into a format accepted by external CELAR modules,
non-dependent on the internal application model. It also sends the data generated by
the Analysis Engine which describes the application behavior in terms of relation
between metrics and elasticity requirements for the analyzed period of time.

5.2 Interactions within Decision Module
For the case when the CELAR Manager triggers an event of new application deployment,
the Data Processing Unit forwards to the Analysis Engine information concerning
application structure, elasticity requirements, elasticity capabilities, profiling
information and cloud static information (steps 8, 9, 10 from Figure 12). The Analysis
Engine asks for previous knowledge on the same type of application, or on similar
application with similar elasticity requirements. The Analysis Engine also maps the
application structure to an internal module, which is further presented in Section 4.1
(step 14 from Figure 12). The Analysis Engine abstracts and gathers all the received
information into the abstraction internal model, and sends to the Planning Engine the
request for a deployment strategy. The deployment strategy/plan, together with the
elasticity report resulted from the analysis and planning steps are sent to the Reporting
and Cloud Interaction Unit which forward them to the CELAR Manager. The elasticity
report consists of estimated costs, estimated application elastic behavior (i.e. application
reaction to external actions in terms of high and lower level metrics).

D 5.1 – Decision Process for On-demand Elasticity Report 36

Figure 12: Application Deployment

Figure 13 shows the elastic adaptation case sequence diagram, showing what steps are
taken for finding an action plan for the elastic adaptation of the deployed application.
The Analysis Engine continually gets monitoring information from the Data Processing
Unit (step 10 from Figure 13), verifies if the elasticity requirements are fulfilled (step 11
from Figure 13) and sends to the planning engine the requirements that are found being
violated (step 12 from Figure 13). The planning engine uses the Learning Engine for
finding information on estimated actions effects (step 16 from Figure 13) and uses it for
generating an action plan (step 17 from Figure 13). The action plan is sent to the
Reporting and Cloud Interaction Unit for enforcement (step 18 from Figure 13). The
action plan is stored by the learning engine. Throughout action plan execution, the
enforcement is monitored and the action effect is learned. If the action plan does not
have the expected effect, the decision module will generate a different action plan.

Figure 13: Elasticity Action Plan Generation

D 5.1 – Decision Process for On-demand Elasticity Report 37

5.3 Interactions with other CELAR Modules
The Decision Module interacts with CELAR DataBase for obtaining all the necessary
information (i.e. application monitoring information, application profile, elasticity
requirements, application structure or application capabilities) and with the CELAR
Manager for finding when it needs to provide a smart deployment strategy and for
sending the generated plans (either for deployment or for elasticity control/adaptation)
together with the cost estimation. The cost estimation together with the action plan and
the elasticity analysis report are further sent by the CELAR Manager to the Application
Management Platform for informing the application user. The generated action plan is
also sent by the CELAR Manager for enforcement to the Resource Provisioner.

Table 2: Interaction with CELAR Modules

Input From Output To

Component Input Type Component Output Type

CELAR
Manager

New Application Added Event CELAR
Manager

Application Deployment
Action Plan

Application Elasticity
Control Action Plan

CELAR
DataBase

Application Profile Cost Estimation

Application Elasticity
Analysis Report Application Elasticity

Requirements and Application
Structure/Topology

Cloud
Information and
Performance
Monitor

Application Monitoring

VM Level Monitoring

Figure 14 shows the sequence of steps to be followed by the two CELAR modules which
the Decision Module interacts with. Firstly, in case of new application submission to the
CELAR System, the CELAR Manager sends the Decision Module the event of new
application submission and application’s ID. In the next steps, the Decision Module
interrogates the CELAR DataBase for the application structure, requirements, profile,
and elasticity capabilities and generates a new deployment plan (step 5-9 of sequence
diagram shown in Figure 14). The generated plan together with application elasticity
report is sent to the CELAR Manager, which in turn passes the received plan to the
Resource Provisioner for elasticity enforcement, and the plan together with the
elasticity report to the Application Management Platform.

D 5.1 – Decision Process for On-demand Elasticity Report 38

Figure 14: Application Deployment

The sequence diagram in Figure 15 depicts the sequence of steps necessary for elastic
adaptation actions. The decision module gets fresh monitoring information from the
Cloud Information and Performance Monitor on the monitored metrics of the
application. The decision module checks whether the elasticity requirements are
fulfilled, and in case of violation, it generates an elastic adaptation action plan and sends
it to the CELAR Manager for enforcement together with the elasticity report, which are
forwarded to the Application Management Platform. The plan is also recorded in the
CELAR DataBase.

Figure 15: Elasticity Action Plan Generation

D 5.1 – Decision Process for On-demand Elasticity Report 39

6 Towards the Implementation of the Decision Module
Following the above design, we plan to implement a Decision Module able to interact
with other CELAR modules in order to take elasticity adaptation decisions. The
described components of the Decision Module are to be implemented using techniques
and mechanisms which were outlined in this deliverable description, detailing for the
implementation process the techniques used.
Throughout the implementation process several decisions need to be taken which may
also involve other CELAR modules:

 Input/ Output structure – the structure of the input and the output need to be
agreed for facilitating inter-module communication (e.g. whether the application
structure is described using TOSCA [TOSCA], a different description language or
even CELAR-defined description).

 Communication mechanisms – how the Decision Module will communicate with
other modules, what protocols and languages are used, etc.

 Algorithms/mechanisms used for decision, depending on application type,
structure, etc. – as described in the Analysis section (Section 3.3), we can have
different decision mechanisms depending on the part of the application we focus
and on the application type (e.g. scientific, gaming, etc.).

The first version of the Decision Module prototype will be described in deliverable D5.2,
based on the initial design detailed in the current document.

D 5.1 – Decision Process for On-demand Elasticity Report 40

7 Conclusions
In this document we have provided a detailed analysis and design description of the
Decision Module. We have detailed the actors involved in the Decision Module, use-
cases resulted and the functional and non-functional requirements for the Decision
Module. We described a model for the application model which is to be used as a basis
for the Decision Module’s reasoning process, and presented the Decision Module
architecture together with the interactions between internal components and
interactions with other CELAR modules. Based on this deliverable, the implementation
progress on the Decision Module will be further documented into deliverables D5.2 and
D5.3.

D 5.1 – Decision Process for On-demand Elasticity Report 41

References
[AutoScale] Amazon AutoScale, http://aws.amazon.com/autoscaling/

[AzureWatch] ParaleapAzureWatch for Windows Azure: https://www.paraleap.com/

[Calheiros 2012] Rodrigo N. Calheiros, Christian Vecchiola, DilebanKarunamoorthy, and
RajkumarBuyya.“The Aneka platform and QoS-driven resource provisioning for elastic
applications on hybrid Clouds”.Future Generation Computing Systems 28, 6 (June 2012),
861-870. http://dx.doi.org/10.1016/j.future.2011.07.005

[Chaisiri 2012] Sivadon Chaisiri, Bu-Sung Lee, Dusit Niyato, "Optimization of Resource
Provisioning Cost in Cloud Computing," IEEE Transactions on Services Computing, vol. 5,
no. 2, pp. 164-177, 2012 http://doi.ieeecomputersociety.org/10.1109/TSC.2011.7

[CIMI] DMTF. Cloud Infrastructure Management Interface
(CIMI).http://dmtf.org/standards/cloud

[Copil 2013a] Georgiana Copil, Daniel Moldovan, Hong Linh-Truong, and Schahram
Dustdar. “SYBL: an Extensible Language for Controlling Elasticity in Cloud Applications”.
13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing -
CCGRID2013, Delft, the Netherlands, May 14-16, 2013. [ACCEPTED]
http://www.infosys.tuwien.ac.at/research/viecom/papers/SYBL_ccgrid2013.pdf

[Copil 2013b] Georgiana Copil, Daniel Moldovan, Hong-Linh Truong, Scahahram
Dustdar, “Multiple Levels Elasticity Control of Cloud Services”, May 2013, under
submission.
http://www.infosys.tuwien.ac.at/prototypes/elasticitycontrol/papers/multiLevelContr
ol.pdf

[D1.1] User Requirements and System Architecture V1, Deliverable, CELAR Project,
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_1.X:D
1.1

[D3.1] Architecture Definition of the Elasticity Provisioning Platform, Deliverable,
CELAR Project,
https://wiki.celarcloud.eu/doku.php?id=CELAR_Project:Deliverables:Deliverables_3.X:D
3.1

[Didona 2012] Diego Didona, Paolo Romano, Sebastiano Peluso, and Francesco Quaglia.
“Transactional auto scaler: elastic scaling of in-memory transactional data grids”. In
Proceedings of the 9th international conference on Autonomic computing (ICAC '12). ACM,
New York, NY, USA, 125-134. DOI=10.1145/2371536.2371559
http://doi.acm.org/10.1145/2371536.2371559

[Dustdar 2011] Schahram Dustdar, Yike Guo, Benjamin Satzger, Hong Linh Truong.

„Principles of Elastic Processes”. IEEE Internet Computing 15(5): 66-71 (2011)

[Fehling 2011] Christoph Fehling, Frank Leymann, Ralph Mietzner, Walter Schupeck , “A
Collection of Patterns for Cloud Types, Cloud Service Models, and Cloud-based

D 5.1 – Decision Process for On-demand Elasticity Report 42

Application Architectures,” University of Stuttgart, Faculty of Computer Science,
Electrical Engineering, and Information Technology, Germany, University of Stuttgart,
Institute of Architecture of Application Systems, Technical Report Computer Science
2011/05, May 2011. http://www.iaas.uni-stuttgart.de/institut/mitarbeiter/fehling/TR-
2011-05%20Patterns_for_Cloud_Computing.pdf

[Fehling 2012] Christoph Fehling, Frank Leymann, Jochen Rütschlin, David Schumm.
"Pattern-Based Development and Management of Cloud Applications."Future Internet 4,
no. 1: 110-141.

[Gambi 2013] Alessio Gambi, Daniel Moldovan, Georgiana Copil, Hong Linh-Truong,
SchahramDustdar. “On Estimating Actuation Delays in Elastic Computing Systems”. 8th
International Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS) - San Francisco, USA, May 20-21, 2013. [ACCEPTED]
http://www.infosys.tuwien.ac.at/research/viecom/papers/seams13-id46-p-16142-
preprint.pdf

[Gong 2010] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. “PRESS: PRedictive Elastic
ReSource Scaling for cloud systems”. International Conference on Network and Service
Management (CNSM), 2010, vol., no., pp.9,16, 25-29 Oct. 2010
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5691343&isnumber=5691
186

[Gonzalez 2012] Andres J. Gonzalez, Bjarne E. Helvik. “System management to comply
with SLA availability guarantees in cloud computing”. 2012 IEEE 4th International
Conference on Cloud Computing Technology and Science (CloudCom), vol., no.,
pp.325,332, 3-6 Dec. 2012
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6427508&isnumber=6427
477

[Han 2012] Rui Han, Li Guo, Ghanem, M.M., Yike Guo. "Lightweight Resource Scaling for
Cloud Applications," 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), vol., no., pp.644,651, 13-16 May
2012 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6217477&isnumber
=6217397

[IBM 2011] IBM Cloud Computing Reference Architecture.
https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmissio
n.02282011.doc

[Juve 2011] Gideon Juve and Ewa Deelman."Automating Application Deployment in
Infrastructure Clouds," Cloud Computing Technology and Science (CloudCom), 2011 IEEE
Third International Conference on , vol., no., pp.658,665, Nov. 29 2011-Dec. 1 2011
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6133211&isnumber=6133
119

[Kundu 2012] Sajib Kundu, Raju Rangaswami, Ajay Gulati, Ming Zhao, and Kaushik
Dutta. 2012. Modeling virtualized applications using machine learning techniques.

D 5.1 – Decision Process for On-demand Elasticity Report 43

SIGPLAN Not. 47, 7 (March 2012), 3-14. DOI=10.1145/2365864.2151028
http://doi.acm.org/10.1145/2365864.2151028

[Lama 2012] Palden Lama and Xiaobo Zhou. “AROMA: automated resource allocation
and configuration of mapreduce environment in the cloud”. In Proceedings of the 9th
international conference on Autonomic computing (ICAC '12). ACM, New York, NY, USA,
63-72. DOI=10.1145/2371536.2371547
http://doi.acm.org/10.1145/2371536.2371547

[Lee 2011] Gunho Lee, Byung-Gon Chun, and H. Katz. “Heterogeneity-aware resource
allocation and scheduling in the cloud”. In Proceedings of the 3rd USENIX conference on
Hot topics in cloud computing (HotCloud'11). USENIX Association, Berkeley, CA, USA, 4-4.

[Li 2012] Zheng Li, Liam O’Brien, He Zhang and Rainbow Cai. “On a Catalogue of Metrics
for Evaluating Commercial Cloud Services”.2012 ACM/IEEE 13th International
Conference on Grid Computing (GRID), pp.164,173, 20-23 Sept.
2012 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6319167&isnumber
=6319148

[Lim 2010] Harold C. Lim, Shivnath Babu, and Jeffrey S. Chase.“Automated control for
elastic storage”. In Proceedings of the 7th international conference on Autonomic
computing (ICAC '10). ACM, New York, NY, USA, 1-10. DOI=10.1145/1809049.1809051
http://doi.acm.org/10.1145/1809049.1809051

[Lu 2011] Lei Lu, Hui Zhang, Guofei Jiang, Haifeng Chen, Kenji Yoshihira, and Evgenia
Smirni. “Untangling mixed information to calibrate resource utilization in virtual
machines”. In Proceedings of the 8th ACM international conference on Autonomic
computing (ICAC '11). ACM, New York, NY, USA, 151-160.
DOI=10.1145/1998582.1998606 http://doi.acm.org/10.1145/1998582.1998606

[Malkowski 2011]Simon J. Malkowski, Markus Hedwig, Jack Li, Calton Pu, and Dirk
Neumann. “Automated control for elastic n-tier workloads based on empirical
modeling”. In Proceedings of the 8th ACM international conference on Autonomic
computing (ICAC '11). ACM, New York, NY, USA, 131-140.
http://doi.acm.org/10.1145/1998582.1998604

[Marian 2012] Tudor Marian, Hakim Weatherspoon, Ki-Suh Lee, and Abhishek Sagar.
“Fmeter: extracting indexable low-level system signatures by counting kernel function
calls”. In Proceedings of the 13th International Middleware Conference (Middleware '12),
Priya Narasimhan and Peter Triantafillou (Eds.). Springer-Verlag New York, Inc., New
York, NY, USA, 81-100

[Matsunaga 2010] Andréa Matsunaga and José A. B. Fortes.“On the Use of Machine
Learning to Predict the Time and Resources Consumed by Applications”.In Proceedings
of the 2010 10th IEEE/ACM International Conference on Cluster, Cloud and Grid
Computing (CCGRID '10). IEEE Computer Society, Washington, DC, USA, 495-504. 98
http://dx.doi.org/10.1109/CCGRID.2010.98

[Moore 2011] Ryan W. Moore and Bruce R. Childers.“Inflation and deflation of self-
adaptive applications”.In Proceedings of the 6th International Symposium on Software

D 5.1 – Decision Process for On-demand Elasticity Report 44

Engineering for Adaptive and Self-Managing Systems (SEAMS '11). ACM, New York, NY,
USA, 228-237.http://doi.acm.org/10.1145/1988008.1988041

[Moran 2011] Daniel Morán, Luis M. Vaquero, Fermín Galán. "Elastically Ruling the
Cloud: Specifying Application's Behavior in Federated Clouds". 2011 IEEE International
Conference on Cloud Computing (CLOUD), vol., no., pp.89, 96, 4-9 July 2011
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6008697&isnumber=6008
659

[NIST 2011] NIST Cloud Computing Reference Architecture. September 2011,
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[Polo 2011] Jordà Polo, Claris Castillo, David Carrera, Yolanda Becerra, Ian Whalley,
Malgorzata Steinder, Jordi Torres, and Eduard Ayguadé. “Resource-aware adaptive
scheduling for mapreduce clusters”. In Proceedings of the 12th ACM/IFIP/USENIX
international conference on Middleware (Middleware'11), Fabio Kon and Anne-Marie
Kermarrec (Eds.). Springer-Verlag, Berlin, Heidelberg, 187-207. DOI=10.1007/978-3-
642-25821-3_10 http://dx.doi.org/10.1007/978-3-642-25821-3_10

[Schatzberg 2012] Dan Schatzberg, Jonathan Appavoo, Orran Krieger, and Eric Van
Hensbergen.“Why Elasticity Matters”. Technical Report BUCS-TR-2012-006, Computer
Science Department, Boston University, April 15, 2012.

[Shen 2011] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John Wilkes. 2011.
CloudScale: elastic resource scaling for multi-tenant cloud systems. In Proceedings of the
2nd ACM Symposium on Cloud Computing (SOCC '11). ACM, New York, NY, USA, Article 5 ,
14 pages. DOI=10.1145/2038916.2038921
http://doi.acm.org/10.1145/2038916.2038921

[Singh 2011] Rahul Singh, Prashant Shenoy, Maitreya Natu, Vaishali Sadaphal, and
Harrick Vin. “Predico: a system for what-if analysis in complex data center applications”.
In Proceedings of the 12th ACM/IFIP/USENIX international conference on Middleware
(Middleware'11), Fabio Kon and Anne-Marie Kermarrec (Eds.). Springer-Verlag, Berlin,
Heidelberg, 123-142. DOI=10.1007/978-3-642-25821-3_7
http://dx.doi.org/10.1007/978-3-642-25821-3_7

[SmartCloud] IBM SmartCloud Initiative http://www.ibm.com/cloud-
computing/us/en/index.html

[TOSCA] OASIS Committee Specification, “Topology and Orchestration Specification for
Cloud Applications Version 1.0 18 March 2013”, http://docs.oasis-
open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html.

[Verma 2010] Akshat Verma, Gautam Kumar, and Ricardo Koller. 2010. “The cost of
reconfiguration in a cloud”. In Proceedings of the 11th International Middleware
Conference Industrial track (Middleware Industrial Track '10). ACM, New York, NY, USA,
11-16. DOI=10.1145/1891719.1891721
http://doi.acm.org/10.1145/1891719.1891721

D 5.1 – Decision Process for On-demand Elasticity Report 45

[Villegas 2012] David Villegas, Athanasios Antoniou, Seyed Masoud Sadjadi, and
Alexandru Iosup.“An Analysis of Provisioning and Allocation Policies for Infrastructure-
as-a-Service Clouds”.In Proceedings of the 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (ccgrid 2012) (CCGRID '12). IEEE Computer
Society, Washington, DC, USA, 612-619. DOI=10.1109/CCGrid.2012.46
http://dx.doi.org/10.1109/CCGrid.2012.46

[Wang 2011] Qingyang Wang, Simon Malkowski, Deepal Jayasinghe, Peng Cheng Xiong,
Calton Pu, Yasuhiko Kanemasa, Motoyuki Kawaba, and Lilian Harada.“The Impact of Soft
Resource Allocation on n-Tier Application Scalability”.2011 IEEE InternationalParallel &
Distributed Processing Symposium (IPDPS) vol., no., pp.1034,1045, 16-20 May 2011
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6012911&isnumber=6012
804

[Wang 2012] Qingyang Wang, Yasuhiko Kanemasa, Motoyuki Kawaba, and Calton Pu.
“When average is not average: large response time fluctuations in n-tier systems”. In
Proceedings of the 9th international conference on Autonomic computing (ICAC '12). ACM,
New York, NY, USA, 33-42. DOI=10.1145/2371536.2371544
http://doi.acm.org/10.1145/2371536.2371544

[Xiong 2011] Pengcheng Xiong, Zhikui Wang, Simon Malkowski, Qingyang Wang, Deepal
Jayasinghe, and Calton Pu. “Economical and Robust Provisioning of N-Tier Cloud
Workloads: A Multi-level Control Approach”. In Proceedings of the 2011 31st
International Conference on Distributed Computing Systems (ICDCS '11). IEEE Computer
Society, Washington, DC, USA, 571-580.http://dx.doi.org/10.1109/ICDCS.2011.88

[Xu 2010] Lei Xu and Brendan Jennings. „A Cost-Minimizing Service Composition
Selection Algorithm Supporting Time-Sensitive Discounts”. In Proceedings of the 2010
IEEE International Conference on Services Computing (SCC '10). IEEE Computer Society,
Washington, DC, USA, 402-408. DOI=10.1109/SCC.2010.76
http://dx.doi.org/10.1109/SCC.2010.76

[Yang 2009] Jie Yang, Jie Qiu, and Ying Li. 2009.“A Profile-Based Approach to Just-in-
Time Scalability for Cloud Applications”.In Proceedings of the 2009 IEEE International
Conference on Cloud Computing (CLOUD '09). IEEE Computer Society, Washington, DC,
USA, 9-16. DOI=10.1109/CLOUD.2009.87 http://dx.doi.org/10.1109/CLOUD.2009.87

[You 2011] Gae-won You, Seung-won Hwang, and Navendu Jain. “Scalable load
balancing in cluster storage systems”. In Proceedings of the 12th International
Middleware Conference (Middleware '11). International Federation for Information
Processing, Laxenburg, Austria, Austria, 100-119

