
Towards A Flexible Mediation Framework for Dynamic Service Invocations

Philipp Leitner, Florian Rosenberg, Anton Michlmayr, Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1
A-1040, Vienna, Austria

lastname@infosys.tuwien.ac.at

Abstract

One of the main benefits of service-based systems is the
loose coupling of components, which allows for flexibil-
ity in the selection of internal and external business part-
ners. However, currently this flexibility is severely limited
by the fact that components have to provide not only the
same functionality, but do so via virtually the same inter-
face. Invocation-level mediation may be used to overcome
this issue – using mediation interface differences can be re-
solved transparently at runtime. In this paper we present the
general concepts of invocation-level mediation, and show
how these ideas are integrated in our dynamic service invo-
cation framework DAIOS. To demonstrate the flexibility of
our mediation framework we have implemented two funda-
mentally different mediation strategies, one based on struc-
tural similarity and one based on semantically annotated
WSDL (SAWSDL). We evaluate the runtime performance of
our mediation strategies, compare them with unmediated
invocations and relate the overhead introduced by invoca-
tion mediation to the flexibility gained by this approach.

1. Introduction

Systems based on the Service-Oriented Architecture
(SOA) [15] decouple clients from the service providers they
are using by utilizing standardized protocols and languages
(HTTP, SOAP [22], WSDL [23]) and a registry such as
UDDI [20] as service broker. In theory, this loose coupling
allows service clients to roam freely between internal and
external business partners, and always select the partner that
is most appropriate at any given time. However, in prac-
tice this flexibility in the selection of partners is currently
severely limited by the problem that clients rely on specific
service interfaces for their invocation – therefore, services
need to adhere to identical WSDL contracts in order to ac-
tually be interchangeable at runtime. The assumption of
interface compatibility is of course not realistic if services

are provided by different departments or companies.

Currently, most work in the area focusses on providing
an additional infrastructure to resolve these compatibility
issues: ESBs [17] provide an additional bus that decou-
ples clients and services, and integration adapters or media-
tors [1, 18] are used as intermediary to resolve the inherent
problems of invocation heterogeneity. The approach that
we present within this paper follows a different idea: we
use a pure client-side approach to mediation, i.e., we enable
the clients themselves to adapt their invocation to specific
target services. Specific mediation behavior is introduced
in the clients using mediation adapters, which can either
be general (e.g., a SAWSDL-based [24] semantic media-
tor) or tailored towards specific domains or scenarios. This
lightweight approach removes the need for an explicit medi-
ation middleware, and resembles the traditional idea of SOA
(where clients and services interact directly) more closely.

The contributions of this paper are fourfold: firstly, we
summarize the general concepts of dynamic invocation me-
diation; secondly, we present how the existing DAIOS Web
service invocation framework has been extended to include
a dynamic mediator interface, thirdly, we explain the imple-
mentation of a set of initial mediators that exemplify the ca-
pabilities of this interface, and finally we present the results
of an initial evaluation of the DAIOS mediation interface.

The rest of this paper is structured as follows: Section 2
clarifies the need for invocation mediation based on a illus-
trative example, Section 3 elaborates on some related work
in the field, Section 4 explains the general concepts of dy-
namic invocation mediation, Section 5 details the DAIOS
mediation interface and the mediators that we have imple-
mented using this interface, and Section 6 shows the results
of a preliminary evaluation of these adapters. Finally, Sec-
tion 7 concludes the paper with some final remarks, and an
outlook on future work.

<<internal>>
Lookup

Customer

<<external>>
Check Portability

Status
<<external>

Number Porting

<<internal>>
Update Customer
& Activate Number

<<internal>
Notify Customer

Figure 1. Number Portability Process

2. Motivating Example

To illustrate the need for runtime mediation and dynamic
service invocation we now present a simple motivating ex-
ample. Consider the problem of building a composite ser-
vice for cell phone number portability. Number porting is a
service pushed by the European Union that allows clients
to take their mobile telephone number with them if they
change their mobile provider. The number porting related
business process of a provider may look as sketched in Fig-
ure 1 (simplified for clarity).

The process itself runs internally within the telecom-
munication provider where the customer recently signed
a contract (which is a precondition of this process). Af-
ter signing the contract, the new provider has to port
the number from the previous telecommunications com-
pany. The process starts by looking up the customer us-
ing the internal Lookup Customer service. After find-
ing the customer, the process has to send a message to
the customer’s former provider to check the portability
status Check Portability Status). If, for some
reason, the porting is not possible, the process is termi-
nated and rescheduled to be executed at a later point (this
is not shown in Figure 1 for reasons of brevity). Af-
ter the portability check, a number porting request is sent
to the old provider to release the number and transfer it
(Number Porting). After that, the account of customer
is updated with the ported number, and the account is ac-
tivated (Update Customer & Activate Number).
Finally, the customer is notified (via SMS, Mail, etc) that
the porting is finished (Notify Customer).

In this workflow, only the activities Lookup
Customer and Update Customer & Activate
Number are provided by internal services, which can be
assumed to have stable and relatively fixed interfaces. The
activities Check Portability Status and Number
Porting have to be carried out by external services
provided by the respective previous telecommunications

provider. Lastly, Notify Customer is an internal
activity, which may be provided by a variety of services
made avilable by different internal departments, depending
on how the client should be notified.

This scenario illustrates how essential dynamic adaption
to different service providers is – in some cases the ser-
vices to invoke differ between instances of the same busi-
ness process; in other cases the ability to dynamically ex-
change service providers simply adds value to the process
by increasing overall flexibility. Of course it would be pos-
sible in this scenario to use BPEL [7] Switch and Assign
statements to select the appropriate partner service and ex-
plicitly reformat the invocation input and output data ac-
cording to the respective target service, but this approach
unnecessarily complicates the business process by shifting
what is essentially an implementation issue (selecting the
right service provider in a given process instance) up into
the business process. Additionally, this approach would
only scale to a small and well-known number of alternate
service providers – if the number of potential alternatives
is very large, or if the alternatives change frequently this
workaround quickly becomes unfeasible. Even worse, if
the service to invoke (e.g., the service that implements the
activity Notify Customer) has to be looked up dynam-
ically in a service registry such as UDDI this approach fails
at any rate.

3. Related Work

There’s a lot of related work: (1) ESBs, (2) WSMX me-
diator [18], (3) requester-based mediation [11], (4) ad hoc
invocation of sem. WS [6], (5) adapting service requests
[3], adapters for WS integration [1], mediation-enabled
Web service usage [4], requester-based mediation [11] and
probably a 100 other papers one could cite. Have to distill
that to get the most important ones.

This is a dummy text. This is a dummy text. This is a
dummy text. This is a dummy text. This is a dummy text.

2

This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text. This is
a dummy text. This is a dummy text. This is a dummy text.
This is a dummy text. This is a dummy text. This is a dummy
text. This is a dummy text. This is a dummy text.

4. Interface-Level Invocation Mediation

As we have explained earlier, most current work focusses
on providing an additional infrastructure to resolve service
incompatibilities. Our invocation mediation architecture,
on the other hand, does not rely on any additional infrastruc-
ture; using our approach the client itself can adapt its invo-
cation to a specific target service interface. This is achieved
by extending clients with a mediation interface, which can
be used to plug in a number of either general-purpose or
domain-specific invocation mediators.

Generally, mediation can happen on two different lev-
els: invocation-level mediation defines the mapping of mes-
sages (single invocations) between services, while protocol-
level mediation considers resolving incompatibilities in the
business protocol (invocation ordering) of services. Sim-
ilar distinctions have previously been identified by differ-

ent researchers (among others [1, 4, 11, 18]). Per definition,
protocol-level mediation is only important for stateful ser-
vices, since stateless services do not rely on a specific order-
ing of invocations. Given that SOA traditionally focusses
on stateless services we do not cover protocol-level media-
tion in this publication, and leave this topic for future work.
However, others have already laid some ground work in this
area [5, 21].

4.1. General Concepts

Before going on to explain our mediation architecture,
we need to define a number of general concepts that we are
going to use in the forthcoming sections. Where applica-
ble, we will use already existing, well-known terms (e.g.,
from the Semantic Web Services community [13]) instead
of inventing new ones.

First of all, we have to distinguish between two differ-
ent formats, high-level (domain) concepts and proprietary
(low-level) formats. High-level concepts represent things
and ideas that exist in the real world, i.e., which are indepen-
dent from a concrete service or implementation. High-level
concepts may (but do not necessarily need to) be concepts
in a Semantic Web ontology [12, 16]. Domain concepts are
what domain experts talk about. Proprietary formats, on
the other hand, are concrete implementations of high-level
concepts. They are optimized towards concrete implemen-
tation goals, and are specific for single services. In gen-
eral, proprietary formats motivate dynamic mediation – in
the end, invocation-level mediation is the process of mediat-
ing between different low-level formats that implement the
same domain concepts. Mediation between services is only
senseful, if the services implement the same concepts, even
though they are probably using different low-level formats
to represent them.

High-level concepts are mutually comparable: for every
pair of concepts it is possible to define whether they are
equal, compatible or different. If a concept is compatible to
another concept, it may be used whenever the other concept
is expected. Note that this compatibility is non-symmetric –
if concept A is compatible to concept B, B will usually not
be compatible to A (otherwise, A and B would be equal). In
some contexts it makes sense to define the degree of simi-
larity between two concepts. In this case, the similarity of
two equal concepts is 0, of two entirely different concepts
the distance is defined to be∞. For compatible concepts the
similarity may be in the interval [1;∞[, with higher values
meaning ”less similar”.

The general operation of invocation-level mediation is
the transformation of one format into another. We can dis-
tinguish three different types of transformation: (1) trans-
forming high-level concepts into a low-level format is called
lowering [8]; (2) the inverse operation, transforming propri-

3

High-Level
Concepts

Proprietary
Format

Format

is a is a

transform

implements

lower

lift

are comparable

convert

Figure 2. General mediation concepts

etary formats into domain concepts is called lifting; and (3)
we refer to the transformation of one proprietary format into
another as conversion.

These general concepts and their relationships are sum-
marized in Figure 2.

4.2. Mediation Scenarios

Client

Expected
Service

Actual
Service

Higher-Level
Concepts

Low-Level
Message

Low-Level
Message

Client

Actual
Service

Higher-Level
Concepts

High-Level
Message

High-Level
Message

Scenario (c)

Scenario (b)

Client

Expected
Service

Actual
Target

Low-Level
Message

Low-Level
Message

Scenario (a)

Convert

Convert

Lift

Lower

Lower

Lift

Lower

Lift

Figure 3. Mediation scenarios

From a high-level perspective we can distinguish three
scenarios for invocation-level mediation (Figure 3). In sce-
nario (a), a client’s implementation expects a concrete ser-
vice interface (Service A), but is actually invoking a dif-

ferent service (Service B). The invocation is mediated
by converting the low-level format provided by the client di-
rectly into the format expected by the actual target service.
Scenario (b) is similar, but in this scenario mediation is a
two-step procedure. Firstly, the client invocation is lifted
into more general domain concepts. Afterwards, this gen-
eral representation is lowered into the proprietary format
expected by Service B. The response of Service B
is processed analogously (lifting to a high-level representa-
tion, lowering to the proprietary format used by Service
A). Finally, in scenario (c) the client does not provide his
input in a proprietary format, but already in the concep-
tual high-level representation. Obviously, this scenario is
a special case of the ones explained earlier – in this case
the processing is simpler since no lifting of the input and no
lowering of the response is necessary.

These three scenarios are similar from an implementa-
tion point of view, but are conceptually different. The first
two scenarios are typical for legacy clients, or clients that
invoke a specific well-known service instance ”most of the
time”, but still need to invoke other services with differ-
ent contracts betimes. Speaking in terms of the example
from Section 2, one can image that a client for the ac-
tivity Notify Customer was implemented against an
e-mailing service (since this is the usual way of notify-
ing customers), but still needs to use a short message ser-
vice (and probably a number of other customer interac-
tion services) from time to time. The third scenario is
characteristic for clients that have already been built with
dynamic binding and runtime service selection in mind.
In our example we can assume that clients for the ac-
tivities Check Portability Status and Number
Porting are implemented in such a way, since there is no
”default” service that has to be used more often than oth-
ers – in this cases, the service to use is entirely dependent
on the concrete process instance. An invocation-level me-
diation architecture needs to address both of these scenarios
adequately. In the first scenario, no explicit high-level con-
ceptual representation is used. This eases the general me-
diation model, but leads to the well-known data integration
problem of having to implement the conversion logics for
n(n−1) different conversions into the client-side mediator.
Therefore, scenario (a) is only applicable if the number of
possible service alternatives is small and well-known, while
the scenarios (b) and (c) also scale to a higher number of al-
ternate services.

5. Mediation Adapters

Following we will detail how client-side mediation as
introduced in Section 4 has been implemented within the
DAIOS [10] project. The general idea of DAIOS is to decou-
ple clients from the services they are invoking by abstract-

4

ing from service implementation issues such as encoding
styles, operations or endpoints. Therefore, clients only need
to know the address of the WSDL interface describing the
target service, and the input message that should be passed
to it; all other details of the target service implementation
are handled transparently. In DAIOS, data flowing into and
out of services are represented by specific data structures
(DaiosMessges). These messages are on a higher level
of abstraction than e.g., SOAP messages, and can be rep-
resented as an unordered labelled tree structure. An ex-
ample DaiosMessage representing a customer is shown
in Figure 4. DAIOS implements mapping rules between
DaiosMessages and WSDL / SOAP (more information
on this mapping can be found in [10]).

ROOT

fName:
String

lName:
String

address:
Complex

street:
String door: int city :

String

Figure 4. Example Daios Message

5.1. DAIOS Invocation Mediation

Even though DAIOS decouples clients from the service
providers they are using by leveraging the concept of dy-
namic invocation, clients still need to know the exact struc-
ture of the message that the service expects. This data cou-
pling is problematic – services from different providers will
usually not rely on the same data model, even if the func-
tionality that they implement is equivalent or similar. There-
fore, we have extended DAIOS to include an interface that
can be used to hook a Chain of Mediators into the client.
The chain of mediators implements a stepwise transforma-
tion from the original input (which may be in the propri-
etary format of a different service, or directly representing
high-level concepts) into the proprietary format expected by
the target service. Input usually enters the chain encoded as
DaiosMessage (since this is, what service clients deal
with), and the output of the chain is SOAP (since this is
what Web services expect. Therefore, the mediator chain
should at some point contain the ”default” mediator, which
implements the mapping of the DAIOS-internal message
format to SOAP (as indicated above).

In Figure 6, DAIOS’ overall mediation architecture,
and how it leverages the standard SOA model of service

providers, consumers and registry. In the figure, we exem-
plify the mediation model based on the activity Notify
Customer from the process in Figure ??. Additionally,
we assume that the client has been developed according to
the mediation scenario (b) from Section 4. (1) A number
of different messaging services are published in the ser-
vice registry. The messaging services all have a similar
domain purpose (sending messages to customers), but they
are provided by providers and are accessible using a differ-
ent interface. Note that we do not assume a public service
registry [19] in this paper; instead, we assume a company-
private service registry containing only well-known services
provided in-house or by well-known partners, since such
registries are more common in today’s real-world service-
based systems. (2) When the activity Notify Customer
in the process has to be carried out, the client looks up a
messaging service in the registry (according to the prefer-
ences of the customer) and constructs a DAIOS frontend to
the service (for more details refer to [10]). (3) Finally, the
client constructs a message in the proprietary format of one
of the possible alternatives (the SMS service in the exam-
ple) and commences the invocation. The message is now
passed through the mediation chain of this client, and will
be lifted to a common domain representation using well-
defined transformation rules, and again lowered into the for-
mat expected by the actual target service. As a last medi-
ation step, the ”default” mediator serializes the message to
SOAP. This SOAP message is then passed to the Web ser-
vice stack included in DAIOS, and sent to the target service.
If a return message is received as a response to the invoca-
tion, it travels through the mediator chain in the opposite
direction, and passed back to the client in the proprietary
format of the SMS service.

So far, we have only discussed the larger framework that
enables mediation, and not the implementation of the me-
diators themselves. Concrete DAIOS mediators have to im-
plement the Java interface sketched in Listing 1.

� �
1 p u b l i c i n t e r f a c e I M e d i a t o r {
2

3 p u b l i c i n t s i m i l a r i t y
4 (
5 IGround ing i n p u t , IWSDLType t y p e
6) t h ro ws U n s u p p o r t e d G r o u n d i n g E x c e p t i o n ;
7

8 p u b l i c IGround ing t r a n s f o r m T o S e r v i c e
9 (

10 IGround ing i n p u t , IWSDLType t a r g e t
11) t h ro ws U n s u p p o r t e d G r o u n d i n g E x c e p t i o n ;
12

13 p u b l i c IGround ing t r a n s f o r m F r o m S e r v i c e
14 (
15 IGround ing i n p u t , IWSDLType t a r g e t
16) t h ro ws U n s u p p o r t e d G r o u n d i n g E x c e p t i o n ;
17

18 }� �
Listing 1. DAIOS Mediation Interface

5

Internal Service
Registry

Chain of Mediators

Telco Client
Mail

Service

E-Mail
Service

SMS
Service

(1) publish
(2) lookup

Client
Code

Telco
Messaging Services

Web Service
Stack

Chain of Mediators

M1 M2 M3

M1 M2 M3

(3) invoke

Figure 5. Client-Side Mediation Architecture

In the listing, the methods transformToService
and transformFromService are used to imple-
ment the actual transformation from one representation
(IGrounding) into another one. Typically, this transfor-
mation methods expect a specific input representation and
emit messages in a specific output representation (e.g., the
transformToService operation from the SAWSDL-
based mediator described below expects input in form of
high-level domain objects and lowers it into the proprietary
format expected by the target service). If an unexpected
representation is passed to the mediator, it should by con-
vention throw an UnsupportedGroundingException. In this
case, the mediator may have been inserted into the media-
tor chain in the wrong position. The second parameter of
the operation, the target WSDL type, is used to steer the
transformation (i.e., the target WSDL type represents the
format that message should have after the transformation).
Often, this target type will contain additional metadata nec-
essary for transformation (e.g., in the case of the SAWSDL-
based mediator this parameter contains the SAWSDL lift-
ing and lowering mappings). A third public operation,
similarity, can be implemented by mediators to nu-
merically describe the amount of transformation necessary
in order to mediate between a given input and a service in-
terface (e.g., the similarity operation of the structural
mediator explained below delivers the tree edit distance [2]
as similarity metric). Regarding Figure 2 described earlier,
the two transformation methods implement the various pos-
sible different transformations (lift, lower, convert), while
the similarity method represents the ”are comparable”
association in the figure. Note that every mediator is free to
implement any of the three mediation scenarios from Sec-
tion 4.

Ultimately, it is the decision of the client how he wants
to construct the mediation chain for every given invocation
(i.e., which mediators should be used, and in which order).

To do that, the client can choose from a set of general-
purpose mediators. Additionally, domain-specific media-
tors can be implemented. Using such special-purpose me-
diators existing domain or service mapping knowledge can
be re-used, e.g., existing mediation infrastructure can be in-
tegrated into the DAIOS model easily. In the following sec-
tion we will detail the implementation of two very different
general-purpose mediators, which come shipped with the
DAIOS code. We believe that these mediators demonstrate
the flexibility of our client-side mediation approach.

5.2. Structural Mediation

Sketch the implementation of the structural mediator.
Explain what the advantages and disadvantages of this me-
diator are. Specifically, explain that the transformation
of DaiosMessages results in a tree edit distance problem,
which is NP-hard.

5.3. Semantic Mediation

Sketch the implementation of the SAWSDL mediator. Ex-
plain what the advantages and disadvantages of this medi-
ator are. Specifically discuss how we integrate ontologies
and stuff, how lifting and lowering happens, etc ...

6. Evaluation

For the evaluation we should at least do performance
comparison between unmediated invocations and mediated
ones (the two different versions), and show that we (hope-
fully) don’t have a big performance penalty because of me-
diation. Obviously the performance penalty will be depen-
dent on the degree of mediation necessary, therefore evalu-
ate at least three different scenarios. We should do a good
evaluation here

6

ROOT

name:
String

id: long city :
String

ROOT

customer:
Complex

name:
Stringid: long

city :
String

address:
Complex

street :
String

door :
int

telephoneNr:
Complex

number:
String

addInfo:
String

number:
String

check_porting_status
Interface I

check_porting_status
Interface II

Figure 6. Structurally Different Service Interfaces

7. Conclusion

Currently, dynamic selection of services in SOA-based
systems is severely limited by incompatibilities in the in-
terface of these services. Enterprise integration solutions
such as ESBs or mediation middleware can be used to re-
solve these problems, but these solutions add additional
layers and complexity to the service-based systems built.
In this paper we have presented a mediation architecture
that enables the clients themselves to adapt to varying ser-
vice interfaces. We have explained the general concepts of
interface-level mediation, and how based on these concepts
a mediation interface has been implemented in our existing
DAIOS project. The implementation of two conceptionally
different mediators has been used as a showcase of the flex-
ibility of our approach. The current working Java prototype
of DAIOS is available as open source software at Google
Code1. This prototype includes the mediation interface de-
scribed in this paper.

As part of our future work, we plan to extend the work
presented in this paper in various directions: firstly, we plan
to extend our approach to interface mediation also to medi-
ation on protocol level; secondly, we are aiming at aligning
DAIOS more closely with our SOA runtime environment
VRESCO [9, 14], in order to provide an end-to-end SOA
environment to clients.

8. Acknowledgements

The research leading to these results has received
funding from the European Communitys Seventh Frame-
work Programme [FP7/2007-2013] under grant agreement
215483 (S-Cube).

1http://code.google.com/p/daios/

References

[1] B. Benatallah, F. Casati, D. Grigori, H. R. M. Nezhad, and
F. Toumani. Developing adapters for web services integra-
tion. In CAiSE, Lecture Notes in Computer Science, 2005.

[2] P. Bille. A survey on tree edit distance and related problems.
Theoretical Computer Science, 337(1-3):217–239, 2005.

[3] L. Cavallaro and E. D. Nitto. An approach to adapt service
requests to actual service interfaces. In SEAMS’08: Pro-
ceedings of the International Workshop on Software Engi-
neering for Adaptive and Self-Managing Systems, 2008.

[4] E. Cimpian, A. Mocan, and M. Stollberg. Mediation enabled
semantic web services usage. In ASWC, volume 4185, pages
459–473, 2006.

[5] M. Dumas, M. Spork, and K. Wang. Adapt or perish: Al-
gebra and visual notation for service interface adaptation.
In Business Process Management, volume 4102 of Lecture
Notes in Computer Science, pages 65–80, 2006.

[6] A. Eberhart. Ad-hoc invocation of semantic web services.
In ICWS ’04: Proceedings of the IEEE International Con-
ference on Web Services, 2004.

[7] O. for the Advancement of Structured Information Stan-
dards (OASIS). Web Services Business Process Execution
Language Version 2.0. http://www.oasis-open.
org/committees/download.php/18714/
wsbpel-specification-draft-May17.htm,
2007. Visited: 2008-04-28.

[8] J. Kopecky, D. Roman, M. Moran, and D. Fensel. Semantic
web services grounding. In AICT-ICIW ’06: Proceedings of
the Advanced International Conference on Telecommunica-
tions and International Conference on Internet and Web Ap-
plications and Services, page 127, Washington, DC, USA,
2006. IEEE Computer Society.

[9] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar.
End-to-End Versioning Support for Web Services. In Pro-
ceedings of the International Conference on Services Com-
puting (SCC 2008). IEEE Computer Society, July 2008.

7

[10] P. Leitner, F. Rosenberg, and S. Dustdar. Daios – Efficient
Dynamic Web Service Invocation. Technical Report TUV-
1841-2007-01, Vienna University of Technology, 2007.

[11] B. Lin, N. Gu, and Q. Li. A requester-based mediation
framework for dynamic invocation of web services. In SCC
’06: Proceedings of the IEEE International Conference on
Services Computing, 2006.

[12] A. Maedche and S. Staab. Ontology learning for the seman-
tic web. IEEE Intelligent Systems, 16(2):72–79, 2001.

[13] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web
services. IEEE Intelligent Systems, 16(2), 2001.

[14] A. Michlmayr, F. Rosenberg, C. Platzer, and S. Dustar. To-
wards Recovering the Broken SOA Triangle - A Software
Engineering Perspective. In Proceedings of the 2nd Interna-
tional Workshop on Service Oriented Software Engineering
(IW-SOSE’07), 2007.

[15] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: State of the Art and Research
Challenges. IEEE Computer, 11, 2007.

[16] J. R. G. Pulido, M. A. G. Ruiz, R. Herrera, E. Cabello,
S. Legrand, and D. Elliman. Ontology languages for
the semantic web: A never completely updated review.
Knowledge-Based Systems, 19(7):489–497, 2006.

[17] M.-T. Schmidt, B. Hutchison, P. Lambros, and R. Phippen.
The enterprise service bus: making service-oriented archi-
tecture real. IBM Systems Journal, 44(4), 2005.

[18] M. Stollberg, E. Cimpian, A. Mocan, and D. Fensel. A se-
mantic web mediation architecture. In CSWWS, volume 2
of Semantic Web And Beyond Computing for Human Expe-
rience, 2006.

[19] A. Tsalgatidou and T. Pilioura. An overview of standards
and related technology in web services. Distrib. Parallel
Databases, 12(2-3):135–162, 2002.

[20] UDDI.org. UDDI Technical White Paper. http:
//www.uddi.org/pubs/Iru_UDDI_Technical_
White_Paper.pdf, 2000. Visited: 2007-07-31.

[21] S. K. Williams, S. A. Battle, and J. E. Cuadrado. Proto-
col mediation for adaptation in semantic web services. In
ESWC, pages 635–649, 2006.

[22] World Wide Web Consortium (W3C). SOAP Ver-
sion 1.2 Part0: Primer. http://www.w3.org/TR/
soap12-part0/, 2003.

[23] World Wide Web Consortium (W3C). Web Services
Description Language (WSDL) Version 2.0 Part
0: Primer - W3C Candidate Recommendation 27
March 2006. http://www.w3.org/TR/2006/
CR-wsdl20-primer-20060327/, 2006.

[24] World Wide Web Consortium (W3C). Semantic Annotations
for WSDL and XML Schema, 2007. http://www.w3.
org/TR/sawsdl/ (Last accessed: Aptril 15, 2008).

8

