
International Journal of Web Services Research , Vol.X, No.X, 200X

 1

Selective Service Provenance in the VRESCo Runtime

Anton Michlmayr
1
, Florian Rosenberg

2
, Philipp Leitner

1
, and Schahram Dustdar

1

1)

 Vienna University of Technology

Argentinierstrasse 8/184-1

1040 Vienna, Austria

{lastname}@infosys.tuwien.ac.at

2)

 CSIRO ICT Centre

GPO Box 664

Canberra ACT 2601, Australia

florian.rosenberg@csiro.au

ABSTRACT:

In general, provenance describes the origin and well-documented history of some object. This

notion has been applied in information systems, mainly to provide data provenance of scientific

workflows. Similar to this, provenance in Service-oriented Computing has also focused on data

provenance. However, we argue that in service-centric systems the origin and history of services

is equally important. In this paper, we present an approach that addresses service provenance. We

show how service provenance information can be collected and retrieved, and how security

mechanisms on the one hand guarantee integrity and access to this information, and on the other

hand provide user-specific views on provenance. Finally, we give a performance evaluation of

our approach, which has been integrated into the VRESCo Web service runtime environment.

KEY WORDS:
Service Provenance, Quality of Service, Metadata, Event Processing

INTRODUCTION

The term ’provenance’ is commonly used to describe the origin and well-documented history of

some object and exists in various areas such as fine arts, archeology or wines. Provenance

information can be used to prove the authenticity and estimate the value of objects. For instance,

the price of wine depends on origin, vintage, and how the wine was stored. The notion of

provenance was adopted in information systems to refer to the origin of some piece of electronic

data (Moreau, Groth et al., 2008). Various research efforts have addressed data provenance in

different domains such as e-Science (Simmhan, Plale et al., 2005).

Service-oriented architecture (SOA) (Papazoglou, Traverso et al., 2007) and Web services

(Weerawarana, Curbera, et al., 2005) represent well-known paradigms for developing flexible

and cross-organizational enterprise applications. Data provenance in such applications and the

provenance of business processes as realized in Business Activity Monitoring (BAM) are

important issues that have been addressed by several research projects (Curbera, Doganata et al.,

2008), (Rajbhandari and Walker, 2006), (Tsai, Wei et al., 2007). These approaches mainly focus

on the provenance of the data produced, transformed or routed through an SOA system. In

contrast to that, we argue that service provenance also plays a central role, for instance during

service selection. If there are multiple alternative services available, service consumers might be

interested in the history of the candidates. This includes creation date, ownership and

modification information, as well as Quality of Service (QoS) attributes such as failure rate or

response time. Additionally, service providers are also interested in service provenance, for

instance, to identify services that do not perform as expected.

International Journal of Web Services Research , Vol.X, No.X, 200X

 2

In this paper, we introduce a novel service provenance approach that has been integrated into the

VRESCo runtime environment (Michlmayr, Rosenberg et al., May 2009). In most current

approaches, provenance information is captured at runtime and usually managed in a dedicated

provenance store. In our approach, we have enhanced the existing VRESCo event processing

mechanism (Michlmayr, Rosenberg et al., 2008) in order to capture and maintain provenance

information. Events are thereby published and correlated when certain situations occur (e.g., new

service is created, service revision is added, QoS changes, service operation is invoked, etc.).

Security issues such as data integrity and access control represent a central problem, which is

often neglected in provenance approaches (Tan, Groth et al., 2006). On the one hand, provenance

information must be accurate while on the other hand, appropriate access control mechanisms

should provide access to provenance information only to authorized parties. Moreover, service

owners should define who is able to access which provenance information. For instance, while

employees are able to access all information, sensitive in-house information might be hidden

from business partners. Such security mechanisms are also discussed in this work.

The contribution of this paper is threefold: Firstly, we present a brief summary of related work in

the field and position our work among these approaches. Secondly, we present the VRESCo

service provenance approach including how provenance information is collected and retrieved at

runtime. Furthermore, we give examples of its usage and applicability. Thirdly, we present access

control mechanisms for Web service runtimes including authentication and authorization features.

This also includes various types of visibility for events that are published in the runtime. It should

be noted that the present paper represents an extended version of our work published in

(Michlmayr, Rosenberg et al., 2009).

The remainder of this paper is organized as follows. Section 2 starts with the motivation of our

work, while Section 3 presents related work regarding provenance. Section 4 then describes our

provenance approach in detail, by showing how provenance information is collected, retrieved

and visualized. Section 5 addresses the security mechanism of our provenance system, while

Section 6 presents an evaluation of our work. Finally, Section 7 concludes the paper.

MOTIVATION

In this section, we want to present the motivation of our work. As already stated above, existing

work on provenance mainly focuses on data provenance, meaning how and when data was

created, transformed or accessed in processes (such as business processes or scientific workflows).

This is important, for instance, to validate the results of scientific simulation runs. In contrast to

that, however, we aim at addressing service provenance, which is the origin and well-documented

history of services. Although conceptually similar at first glance, these two paradigms differ since

our work introduces a different view on provenance in service-oriented systems.

The following motivating example highlights the motivation of our work. Furthermore, concrete

examples are used throughout the paper to describe and evaluate our approach. As stated above,

service selection represents an illustrative application for service provenance. If there are multiple

alternative services, service consumers might want to take the origin and history of the

alternatives into consideration. For instance, one service consumer may not trust specific service

providers due to bad experience in the past. Other service consumers may pay special attention to

QoS values of alternative services. If one service has performed well over the last months, it

might be preferred over recently published services without documented QoS history. Once

selected, the services may change, which also includes their behavior regarding QoS. In such

International Journal of Web Services Research , Vol.X, No.X, 200X

 3

cases, service consumers may want to automatically rebind to alternative services, which can be

triggered based on existing provenance information. Besides service selection, another motivation

for service provenance lies in the fact that service consumers and service providers may

continuously query or subscribe to current provenance information (e.g., changing QoS attributes,

new service revisions, etc.). For instance, service providers can use this information to verify if

their services perform as expected. Otherwise, corrective actions can be triggered.

Current service registry standards, such as UDDI (OASIS, February 2005) and ebXML (OASIS,

May 2005) provide only limited support for service provenance. In UDDI, the businessEntity

construct can be used to store information about the owner of a service, but this construct is fixed

and there is no further support for more complex structures regarding the history of a service. In

ebXML, every RegistryObject can be associated to persons or organizations that have either

submitted this information or are responsible for it. In addition, ebXML provides full versioning

of registry information. Therefore, the provenance model of ebXML is clearly advanced

compared to UDDI, but there is still no support to further collect and process service provenance

information. In addition, ebXML is rarely used in practice.

As a result, the motivation of our work is to provide rich support for service provenance. This

includes how to collect, retrieve and visualize provenance information. Furthermore, we also aim

at addressing security issues that typically occur in provenance systems. Finally, our approach is

integrated into an existing service runtime environment, instead of introducing a dedicated and

stand-alone provenance system.

RELATED WORK

Before going into the details of our approach, we want to give a brief overview of related work.

The provenance of electronic data has already been addressed in various research efforts (Moreau,

Groth et al., 2008). The focus of this research has often been on provenance in e-Science and

scientific workflows (Simmhan, Plale et al., 2005), which led to different research prototypes

such as Chimera (Foster, Vöckler et al., 2002). Over the years, research on data provenance

resulted in the Open Provenance Model (Moreau, Freire et al., 2007) and reference architectures

for provenance systems (Groth, Jiang et al., 2006).

Additionally, there is some existing work in the area of data provenance in service-based systems

(Tsai, Wei et al., 2007), (Rajbhandari and Walker, 2006), (Simmhan, Plale et al., 2008), (Chen,

Yang et al., 2006), which is discussed in more detail below. In general, these approaches address

data provenance, which aims at capturing the history of data generated by some processes. In

contrast, our work focuses on service provenance by maintaining the origin and history of

services and associated metadata.

There are several issues when designing provenance in service-centric systems. (Tsai, Wei et al.,

2007) discuss the issues of data provenance in SOA systems compared to traditional data

provenance techniques. Their main focus is on security, reliability and integrity of data routed

through such a system. (Tan, Groth et al., 2006) also address security issues in SOA-based

provenance systems. They use p-assertions (Moreau, Groth et al., 2008), which represent specific

items that document parts of a process, as foundation for their considerations. Similar to our work,

they argue that access control, trust and accountability of provenance information are crucial. In

addition, we also address security mechanisms in service runtime environments, which have been

implemented using a claim-based authorization approach.

International Journal of Web Services Research , Vol.X, No.X, 200X

 4

(Rajbhandari and Walker, 2006) present a system that incorporates provenance into scientific

workflows to capture the history of produced data items. This history is captured by the workflow

engine and recorded into a provenance database, which is structured using RDF schema.

Furthermore, a provenance query service is used to query the provenance information stored in

the database. (Heinis and Alonso, 2008) present another approach to provenance of scientific data.

In their approach, they focus on how provenance data can be efficiently stored and queried in the

provenance database.

Another interesting work in this area is described by (Simmhan, Plale et al., 2008), who introduce

the Karma2 system. The goal of this work is to provide provenance in data-driven workflows.

The authors describe their provenance model including different provenance activities (e.g.,

ServiceInvoked, DataProduced, Computation, etc.). The idea is to trace workflow

executions for both process provenance (i.e., which services are invoked by a process) and data

provenance (i.e., which data items are produced and consumed). The architecture of Karma uses a

publish/subscribe infrastructure to publish provenance activities to interested subscribers. In

addition, provenance queries are provided to display provenance information using graphs.

Although our notion of provenance is different, there are some similarities to our work. Both

approaches use provenance queries and provenance graphs for visualization. Additionally,

provenance information is sent using a publish/subscribe infrastructure based on WS-Eventing

(W3C, 2006). However, while our approach provides content-based subscriptions and complex

event processing including event patterns, Karma2 supports only topic-based subscriptions (i.e.,

subscribers can only subscribe to receive either all or none events for one workflow).

Furthermore, Karma2 uses a modified SOAP library for collecting provenance information while

our work is integrated into the VRESCo runtime. Finally, our definition of service provenance

also includes service metadata and QoS attributes.

(Chen, Yang et al., 2006) introduce what they call augmented provenance, which is based on the

idea of semantic Web services (SWS). They address process provenance in scientific workflows

with a special emphasis on Grid environments. Their approach applies ontologies to model

metadata at various level of abstraction, while SWS are used for capturing execution-independent

metadata. Similar to our work, the authors use metadata as source for provenance. However, they

focus on SWS technology, while our work builds on the simplified VRESCo metadata model.

Furthermore, they provide neither provenance graphs nor subscriptions.

(Curbera, Doganata et al., 2008) present a slightly different view on provenance. They introduce

the notion of business provenance in order to achieve compliance violation monitoring. The basic

idea is to trace end-to-end business operations by capturing various business events, correlate

these events into a provenance store, and monitor if some compliance goals are violated. The

authors introduce a generic provenance data model, which can be represented in provenance

graphs. These graphs are built based on the event information in the provenance store, and can be

queried for root cause analysis. This work is complementary to ours since the authors address

business provenance using business events, while we focus on service provenance based on

events raised on the service management level.

SERVICE PROVENANCE APPROACH

The previous sections described the motivation and related work of our provenance approach,

which is presented in detail in this section. We show how provenance information is collected,

and how it can be queried, subscribed to, and visualized. First of all, however, we want to briefly

introduce the VRESCo runtime environment which is used as foundation for our approach.

International Journal of Web Services Research , Vol.X, No.X, 200X

 5

VRESCo Runtime Overview

The VRESCo project (Vienna Runtime Environment for Service-Oriented Computing)

introduced in (Michlmayr, Rosenberg et al., 2007) aims at addressing some of the current

challenges in Service-oriented Computing, such as dynamic binding and invocation of services,

service querying, service metadata, QoS-aware service composition, and complex event

processing. The main objective of the project is to facilitate the engineering of SOA applications.

Figure 1 depicts an overview of the VRESCo runtime architecture. Services and associated

service metadata (Rosenberg, Leitner et al., 2008) are published into the Registry Database,

which is accessed using an object-relational mapping (ORM) Layer. The Query Engine is used to

query all information stored in this database, whereas the Event Notification Engine is

responsible for publishing events when certain situations occur at runtime (e.g., new service is

published, QoS changes, etc.) (Michlmayr, Rosenberg et al., 2008). The VRESCo core services

are accessed either directly using SOAP or via the Client Library which provides a simple API.

Furthermore, VRESCo offers mechanisms to dynamically bind and invoke services using the

integrated DAIOS framework (Leitner, Rosenberg et al., 2009). Finally, the QoS Monitor

presented in (Rosenberg, Platzer et al., 2006) has been integrated to regularly measure the QoS

attributes (e.g., response time, availability, etc.) of services. The security mechanisms realized by

the Access Control Layer and the Certificate Store are discussed in more detail in Section 5.

VRESCo Runtime Environment

Registry

Database

Service

Client

Notification

Engine

SOAP

SOAP

SOAP

Query

Engine

Services

measure

Composition

Engine

Query

Interface

Publishing

Interface

Metadata

Interface

Notification

Interface

Management

Interface

Composition

Interface

Publishing/

Metadata

Service

Management

ServiceQoS

Monitor

VRESCo Client Library

Daios
Client

Factory
invoke

O
R

M

L
a

y
e

r

A
c
c
e

s
s

C
o

n
tr

o
l

Certificate

Store

Event

Database

Figure 1: VRESCo Architectural Overview

The overall runtime environment is implemented in C#/.NET using Windows Communication

Foundation (WCF) technology (Peiris, Mulder et al., 2007), while the Client Library is currently

provided for C# and Java. Furthermore, the open source framework NHibernate (Red Hat Inc.,

2009) is used for the ORM Layer. Some of the VRESCo core services are described in more

detail below; an extensive overview of the VRESCo runtime environment can be found in

(Michlmayr, Rosenberg et al., May 2009).

Collecting Provenance Information

In VRESCo, service provenance information is collected at runtime. This consists of various

aspects, such as basic service information, service metadata and service runtime events. While the

former two are mostly published by service providers, events are raised automatically by the

runtime. These aspects are discussed in more detail next.

International Journal of Web Services Research , Vol.X, No.X, 200X

 6

1. Basic Service Information:

The first part of service provenance information is represented by what we call basic

service information, which is kept in the Registry Database. This consists of required

information to invoke services (e.g., service endpoint, binding, WSDL file, etc.).

Furthermore, every service can be associated with service owner information. Another

interesting feature of VRESCo is service versioning, which allows one service to have

multiple service revisions. These service revisions are visualized in service revision

graphs (Leitner, Michlmayr et al., 2008). Service versioning information and revision

tags (i.e., every revision can be tagged by the service provider) are part of service

provenance information.

2. Service Metadata:

Besides basic service information, another important source for provenance information

is represented by service metadata as described in (Rosenberg, Leitner et al., 2008).

Briefly summarized, service metadata in VRESCo is used to describe the functionality

and semantics of services that cannot be seen in the WSDL descriptions. To accomplish

this, we have defined a mapping between our Service Model and Service Metadata Model

shown in Figure 2, which is borrowed from (Michlmayr, Rosenberg et al., May 2009).

Figure 2: Service Metadata and Service Model

In general, the VRESCo Metadata Model provides detailed descriptions of the service’s

purpose using service categories (i.e., services in the same domain), features (i.e.,

services performing the same task), as well as service operations including parameters,

pre- and post-conditions. Thereby, data concepts are used to model core entities in the

domain that are used as service input and output. Since one of the main goals of VRESCo

is dynamic invocation and service mediation, these data concepts can then be mapped

using mapping functions. Among others, mapping functions include data type conversion,

string manipulation, as well as mathematical and logical operators. Furthermore, CS-

Script can be used to define custom C# mapping scripts. As a result, two services that

perform the same task (i.e., implement the same feature) but have different interfaces can

be invoked seamlessly. More information about service mediation can be found in

(Leitner, Rosenberg et al., 2009). It should be noted that both basic service information

and service metadata is published by the service provider using the Publishing and

Metadata Service, respectively.

International Journal of Web Services Research , Vol.X, No.X, 200X

 7

3. Service Runtime Events:

The third and most important source of provenance information is provided by the

VRESCo Event Notification Engine, which has been introduced in (Michlmayr,

Rosenberg et al., 2008). In general, the idea is to publish events when certain situations

occur, such as new services being published or existing services being modified.

Subscribers are then enabled to receive notifications using different mechanisms (e.g., E-

Mail, WS-Eventing, etc.).

This general idea has been followed by existing Web service registries such as UDDI and

ebXML. However, both approaches focus on basic pre-defined events that enable users to

track services and other metadata in the registry. In addition to that, the VRESCo Event

Notification Engine provides several advanced concepts. Firstly, our approach provides

events regarding changing QoS attributes, binding and invocation, as well as other

runtime information. Secondly, VRESCo builds on content-based subscriptions and

supports complex event processing mechanisms, such as event patterns and statistical

functions on event streams. Thirdly, besides being able to subscribe to current events,

users can search in historical event information. Table 1 shows the main event groups

provided by VRESCo, where we distinguish between internal events (i.e., published

within the runtime) and external events (i.e., published outside the runtime).

Event Groups Examples

Internal Events

 User Management User is added/modified/deleted

 Service Management Service is added/modified/deleted

 Versioning Revisions are added/modified/deleted

 Metadata Feature/Concepts are added/modified/deleted

External Events

 Quality of Service Response Time, Availability, Throughput

 Binding/Invocation Service invocation has failed/succeeded

Table 1: Events in VRESCo

Besides internal events that track the change history of users, services, revisions and

metadata, most notable are QoS events, which are generated by the QoS Monitor (see

Figure 1). These QoS events capture the current QoS values, such as response time or

throughput. The aggregation of all QoS events then represents the history of a service.

This information can be of great interest for service consumers during service selection.

Moreover, for the same reason binding and invocation events are also important. These

events show how often services have been accessed, including the identity of the service

requester and her current IP address. Furthermore, they also record how many of these

service invocations have failed including the reasons for the failure (for instance, this can

be retrieved from the exception returned by the service). Finally, the rebinding of service

proxies from one service to another is also recorded by these events.

The architecture of the VRESCo Event Notification Engine is shown in Figure 3, which

is adapted from (Michlmayr, Rosenberg et al., 2008). The event processing functionality

is based on the open source event processing engine Esper (EsperTech Inc., 2009).

Therefore, subscriptions are defined using the Esper Event Processing Language (EPL),

which is similar to SQL and provides various complex event processing mechanisms

such as event patterns, sliding event windows and statistical functions on event streams.

International Journal of Web Services Research , Vol.X, No.X, 200X

 8

The Subscription Manager is responsible for managing subscriptions in the Subscription

Storage, and attaching corresponding listeners to Esper. These listeners are invoked when

events match to subscriptions. Events are published using the Eventing Service: internal

events are raised by the corresponding VRESCo core services (e.g., Publishing Service)

while external events (e.g., QoS events) are raised by external components (e.g., QoS

Monitor) and may need to be transformed using Event Adapters. The events are then fed

into Esper, which performs the actual matching between subscriptions and events.

Furthermore, events are persisted into the Event Database so that they can be accessed

later. For performance reasons, this operation is done periodically in batch mode using

the Persist Queue.

VRESCo Runtime

VRESCo Query Engine

VRESCo Event Notification Engine

Querying

Service

Subscription

Manager

Events

Subscriptions

Queries

Results

Event

Adapters

Eventing

Service

Notifications

E
s
p

e
r

E
n

g
in

e

Subscription

Storage

Query

Interface

Subscription

Interface

Notification

Manager

Delivery

Thread

Pool

Persist Queue

Event

Database

Pending

Notifications
Listeners

Figure 3: Eventing Architecture

When events match to subscriptions, Esper invokes the corresponding listener, which is

then forwarded to the Notification Manager. The latter is finally responsible for notifying

the interested subscriber depending on the given notification delivery mode. Currently,

we provide E-Mail and Web service notifications (compliant with WS-Eventing (W3C,

2006)) for external subscribers, while internal subscribers within the runtime can register

their own listeners. For performance reasons, the notifications are created and sent using

a dedicated notification delivery thread pool. If notifications cannot be delivered, they are

persisted, and can later be retrieved by the subscribers.

To demonstrate the power of events, we briefly discuss how QoS events are realized. The

QoS Monitor introduced in (Rosenberg, Platzer et al., 2006) is used to regularly measure

dependability attributes (e.g., response time, availability, etc.) of services within the

runtime. The measured values are then published to the runtime using the Management

Service (see Figure 1). Besides publishing QoS events, a dedicated QoS Scheduler is

used to regularly aggregate the information inherent to these events. Subscribers can now

take corrective actions if the QoS of some service is not as intended. To give a concrete

example, the following subscription declares interest if the average response time of

service revision 17 within the last 6 hours was more than 500ms:

International Journal of Web Services Research , Vol.X, No.X, 200X

 9

 select * from QoSRevisionEvent(Revision.Id=17

 and Property=’ResponseTime’).win:time(6 hours).stat:uni(’Value’)

 where average > 500

The VRESCo Event Notification Engine opens new possibilities such as provenance

subscriptions (described below) and notification-based rebinding (Michlmayr, Rosenberg

et al., May 2009). Furthermore, in our ongoing work we have integrated support for

client- and server-side QoS monitoring and event-based SLA violation detection.

Provenance Queries

Once provenance information is collected at runtime, the next issue is how to access and query

this information accordingly. This reaches from simple queries like “Who has created service X?”

to more complex ones like “What is the average response time of service X?” or “How often has

service X been invoked in the last 24 hours?”.

The provenance query mechanism in VRESCo is based on the Query Engine, which uses the

Vienna Querying Language (VQL) (Michlmayr, Rosenberg et al., May 2009). VQL provides a

generic and type-safe querying language similar to the Hibernate Criteria API (Red Hat Inc.,

2009), and can be used for querying all kinds of resources such as services, events or metadata.

Therefore, from a client-side perspective the provenance queries are built just like “normal”

service queries. Queries in VQL consist of multiple criteria where each criteria can have multiple

expressions (e.g., =, >, !=, etc.). Furthermore, VQL provides different querying strategies that

define if all criteria have to be fulfilled (QueryMode.EXACT) or not (QueryMode.RELAXED),

and if some criteria are more important than others (QueryMode.PRIORITY).

 01 IVRESCoQuerier querier =

 02 VRESCoClientFactory.CreateQuerier("joe", "pw");

 03

 04 // build provenance query regarding QoS

 05 var query1 = new VQuery(typeof(QoSRevisionEvent));

 06 query1.Add(Expression.Eq("Revision.Id", 815));

 07 query1.Add(Expression.Eq("Property",

 08 Constants.QOS_RESPONSE_TIME));

 09 query1.Add(Expression.Gt("Value", 500));

 10

 11 // build provenance query regarding invocations

 12 var query2 = new VQuery(typeof(ServiceInvokedEvent));

 13 query2.Add(Expression.Eq("Revision.Id", 4711));

 14 query2.Add(Expression.Eq("Publisher", "telco1"));

 15 query2.Add(Expression.Gt("Timestamp",

 16 new DateTime(2009, 8, 1)));

 17 query2.Add(Expression.Lt("Timestamp",

 18 new DateTime(2009, 8, 31)));

 19

 20 // execute provenance queries

 21 var results1 = querier.FindByQuery(query1,

 22 QueryMode.Exact) as IList<QoSRevisionEvent>;

 23 var results2 = querier.FindByQuery(query2,

 24 QueryMode.Exact) as IList<ServiceInvokedEvent>;

Listing 1: Provenance Queries

International Journal of Web Services Research , Vol.X, No.X, 200X

 10

Listing 1 gives two examples for provenance queries. Initially, the querier (i.e., the proxy to the

Query Engine) is created using the Client Library (line 1–2). The first query (line 5–9) returns all

measuring points (QoSRevisionEvents) where the response time of service revision 815 was

greater than 500 milliseconds. The second query (line 12–18) returns all service invocations

(ServiceInvokedEvents) of service revision 4711 from user telco1 that happened between

1.8.2009 and 31.8.2009. After the queries are built, they are executed using the querier in line

21–24, and the Query Engine returns all matching events.

Provenance Subscriptions

Besides using queries on the historic provenance information stored in the runtime, the Event

Notification Engine enables users to subscribe to certain events of interest. Subscriptions for

events or event patterns are specified in the Esper Event Processing Language (EPL) (EsperTech

Inc., 2009). If such events or event patterns occur, notifications are sent to interested subscribers

using E-Mail or WS-Eventing notifications. This mechanism is leveraged to receive notifications

if provenance events of interest occur.

 01 IVRESCoSubscriber subscriber =

 02 VRESCoClientFactory.CreateSubscriber("joe", "pw");

 03

 04 int id = subscriber.SubscribePerEmail(

 05 "select * from QoSRevisionEvent where " +

 06 "Revision.Id = 815 and " +

 07 "Property = 'ResponseTime' and Value > 500",

 08 "joe@foo.bar",

 09 new DateTime(2010, 1, 1));

Listing 2: Provenance Subscription

Listing 2 shows an example subscription in VRESCo, which is semantically equal to the first

query shown in Listing 1. If the response time of revision 815 is greater than 500ms (line 5-7), a

notification E-Mail should be sent to the given address. The date given in line 9 specifies how

long the subscription is valid. Furthermore, the identifier returned in line 4 can be used to cancel

or renew the subscription. The references provide more details on VRESCo subscriptions

(Michlmayr, Rosenberg et al., 2008) and EPL (EsperTech Inc., 2009).

Provenance Graphs

Besides querying provenance information, another useful feature is to illustrate this information

using provenance graphs. The aim of these graphs is to give an overview of relevant provenance

information, such as service versioning information, service ownership and service history

regarding binding and invocation, as well as QoS attributes in a graphical way. The input of

provenance graphs can either be services/revisions or provenance queries. In the first case, the

graph is built with all provenance information that is available for the requested service or

revision. In the second case, the result of a provenance query (which is a list of events as shown

in Listing 1) is displayed in a graph. Therefore, pre-defined templates that control the graph

generation are used. These templates are based on the event type returned by the provenance

query (i.e., only the relevant parts of the provenance graph are shown). Currently, we provide

such templates for QoS events and service invocation events.

International Journal of Web Services Research , Vol.X, No.X, 200X

 11

Due to the vast amount of information stored in the runtime, the provenance graphs tend to get

overloaded quickly. Therefore, the information inherent to the events is divided into several

groups such as core service details, versioning graph, invocations, QoS attributes, revision tags,

and operations. Each group summarizes the information of the corresponding events.

Figure 4 gives an example of a provenance graph, which was generated using our approach. This

graph shows provenance information of a specific service revision. First of all, parts of the

versioning graph are shown on the top of the graph. This includes both predecessors (edge

previous) and successors (edge next) of the current revision. The revision itself is positioned in

the center and gives information about the corresponding service, owner, creation date, and the

user that created this revision. While the first two elements are read from the metadata of this

service, the last two elements are stored in the RevisionPublishedEvent. The bottom part

illustrates the groups Invocations (i.e., number of successful/failed invocations, last

successful/failed invocation), QoS (i.e., QoS events and aggregated QoS information), Tags (e.g.,

“v1”), and Operations (i.e., all operations of this revision including input and output parameters).

Figure 4: Provenance Graph

The service provenance graphs in VRESCo are built using the open source graph drawing

libraries QuickGraph (Microsoft Cooperation, 2009) and GraphViz (Gansner and North, 2000).

Before such a graph is built, all relevant provenance information (i.e., events and service

metadata) is retrieved using the Query Engine. The corresponding graph is then generated using

this information while the graph libraries are used to render the resulting graph according to the

user’s preferences (e.g., PDF or PNG). The graph image (or a graph representation as GraphViz’

DOT file (Gansner and North, 2000)) is finally returned to the user. The overall approach of

building provenance graphs is implemented as part of the VRESCo Querying Service.

Process Provenance

The main focus of our work is on service provenance, since this has received little attention by

related approaches so far. However, additionally we have also implemented a first prototype for

achieving process provenance, which is based on the VRESCo Composition Engine (Rosenberg,

Celikovic et al., 2009). Compositions in VRESCo are defined in a domain-specific language

called VRESCo Composition Language (VCL). The overall idea is to define functional and QoS

constraints which can make use of constraint hierarchies by leveraging hard (i.e., required) and

soft (i.e., optional) constraints. The Composition Engine then tries to find an optimal solution for

these constraints semi-automatically. Therefore, data flow analysis is applied to generate a

structured composition model, while both constraint programming and integer programming can

be used for solving the optimization problem. Finally, the optimized compositions are executed

using Windows Workflow Foundation (WF) (Shukla and Schmidt, 2006).

International Journal of Web Services Research , Vol.X, No.X, 200X

 12

The basic idea of process provenance is to trace the history of workflows (e.g., which services

have been executed, workflow status, etc.). For this reason, WF provides a powerful tool called

the WF Tracking Service (Jaganathan, 2007), which enables hooking into the workflow engine to

receive certain events. In general, WF provides three types of such events. Workflow events

capture the life-cycle of workflow instances (Created, Completed, Idle, Suspended,

Resumed, Persisted, Unloaded, Loaded, Exception, Terminated, Aborted,

Changed and Started). Activity events describe the status of individual activity instances

(Executing, Closed, Compensating, Faulting and Canceling). Finally, User Events

can be used to track business- or workflow-specific data. In addition, tracking profiles are used to

define event filters, while matching events are sent to the users using tracking channels.

VRESCo Runtime Environment

Event

Database

VRESCo

Tracking

Service

VRESCo

Tracking

Channel

WF Workflow Engine

WF

Tracking

Runtime VRESCo

Eventing

Service

Subscribers

Figure 5: Process Provenance Architecture

To integrate these workflow events into VRESCo, we have implemented our own Tracking

Service and Tracking Channel as shown in Figure 5. The Tracking Service reads the tracking

profile from a configuration file (not shown in the figure) and listens to all events that match this

profile (in our case, we listen to all WF events). When such events are published by the workflow

engine, they are sent to the Tracking Channel and finally forwarded to the Eventing Service that

feeds them into Esper. In addition to notifying interested subscribers, the events are persisted into

the Event Database. As a result, users can subscribe to and search for workflow events in the

same way as for all other events provided by the runtime.

Process provenance is provided since the workflow events are persisted in the Event Database.

Therefore, it is easily possible to query the information inherent to these events (e.g., which

workflow instances have been started, which services have been executed as part of the workflow

activities, etc.). Furthermore, user events could be leveraged to implement data provenance (i.e.,

which data has been produced or consumed by the workflow activities). This is one potential

extension to the presented provenance approach, which is left open for future work.

PROVENANCE SECURITY CONSIDERATIONS

In the previous section, we have described our service provenance approach. One of the main

issues in provenance systems is to build appropriate mechanisms for providing authentication and

authorization. This is crucial since provenance information is often sensitive and access should be

only granted to specific users. However, these security issues are often neglected in current

provenance approaches (Tan, Groth et al., 2006). In this section, we describe the different access

control mechanisms which have been integrated into the VRESCo runtime environment.

International Journal of Web Services Research , Vol.X, No.X, 200X

 13

Client Authentication

Authentication mechanisms generally aim at confirming the identity of users or objects. The

VRESCo runtime is not targeted at public Web services but focuses on enterprise scenarios. In

these settings, security issues often play a crucial role since only specific clients should be able to

access internal services and resources. Therefore, it is important to first authenticate these clients

before authorization mechanisms can be applied successfully. Furthermore, this authentication

mechanism must ensure the integrity of the service provenance information captured by the

service runtime. If clients are not authenticated then bogus provenance information could be

entered into the system.

For this reason, a dedicated User Management Service has been implemented, that is responsible

for maintaining all users known to the runtime. In this service, users are assigned to specific user

groups that allow fine-grained access control policies. For every user, the runtime maintains

several properties (e.g., first name, last name, company, etc.) and the needed user credentials such

as username and password.

Figure 6 shows the VRESCo authentication mechanism by using a typical invocation of some

core service (e.g., Publishing or Metadata Service). As shown in Figure 1, all client invocations of

VRESCo core services pass the Access Control Layer (ACL). Basically, authentication is then

done twofold: using certificates and username/password credentials. Before any VRESCo core

service can be invoked, a secure communication channel between service requester and VRESCo

host must be established. This is done using X.509 certificates and HTTPS (i.e., X.509

certificates are associated with every port where VRESCo core services are running). However,

the channel can only be established if both communication parties trust each other’s certificates.

Therefore, in step 1 and 2, the certificates of client and service are verified by the other side (we

assume that the certificates are exchanged before the first invocation). The client has to trust the

service certificate, while the Certificate Validator verifies if the client’s certificate is in the

Certificate Store (step 3). If this is not the case, an exception is returned to the requester and the

requested core service is not executed. It should be noted that the use of certificates additionally

enables to encrypt all messages which is provided as built-in functionality by the WCF platform

(Peiris, Mulder et al., 2007).

VRESCo Runtime Environment

Registry

Database

Service

Client

Client

Library

Certificate

Store

ACL

Certificate

Validator

Username

Password

Validator

1. Service Certificate

2. Client Certificate

4. Username/Password

VRESCo

Core

Service
7. Invoke

Claim

Checker

6. Check Claims

5. Verify

3. Verify

Figure 6: Authentication and Authorization in VRESCo

International Journal of Web Services Research , Vol.X, No.X, 200X

 14

In addition to certificates, VRESCo provides authentication using username and password which

follows the WS-Security specification (OASIS, 2006). For every invocation, these credentials are

attached to the SOAP message by the Client Library (step 4). For instance, this can also be seen

in the first two lines of Listing 1 and Listing 2, where username and password have to be

specified when creating proxies for the VRESCo core services. The Username/Password

Validator then verifies if these credentials match to the one’s stored in the Registry Database

(step 5). As before, if they do not match, an exception is returned to the requester and the

requested core service is not executed. As a result, after executing steps 1 to 5 client and service

are authenticated and both sides know the identity of the communicating party. In the next section,

we show how authorization is provided in VRESCo.

Claim-based Authorization

Authentication and authorization for Web services have been addressed by various research

efforts (e.g., (Bhargavan, Fournet et al., 2004), (Bhargavan, Fournet et al., 2008), (Felix and

Ribeiro, 2007)) and specifications such as WS-Security (OASIS, 2006). In general, authorization

is often done role-based where different roles are assigned to users, while security privileges are

directly granted to these roles. In our work, we follow the concept of claim-based authorization

that goes one step further: Claims can be defined on different resources (for instance, following

the well-known CRUD operations Create, Read, Update & Delete) for users and user groups.

Users are allowed to access these resources if they provide the needed claim in their credentials.

This includes all user claims that belong to a specific user. Furthermore, users inherit the claims

that are assigned to their user group.

Table 2 shows resources and their claims that have been implemented in VRESCo. We

distinguish between resource- and instance-level claims: Resource-level claims apply to all

instances of a resource (e.g., Read on all services), while instance-level claims refer only to a

specific instance of a resource (e.g., Update on user U1).

Resource Resource-level Instance-level

Category ●

Service ● ●

User ● ●

User Group ●

Claim ● ●

QoS ●

Table 2: Resource Claims

Besides having claims for the core resources Service, Category, User and User Group, the

resource Claim defines who is allowed to create, modify and delete custom claims. Therefore,

users can dynamically add claims for other resources (e.g., regarding the service metadata model).

Finally, claims on QoS can be used to restrict access to QoS information. In addition, the

PermissionManager claim enables to assign service instance-level claims to other users or groups.

This is of particular interest when service owners want to pass claims for their services to others.

Besides assigning claims manually, some claims are generated automatically when users and

resources are created.

Similar to users and user groups, claims are also managed by the User Management Service and

stored in the Registry Database. The VRESCo core services use the ACL (as shown in Figure 6)

to verify if the client has the required claims to invoke the current operation. After clients are

International Journal of Web Services Research , Vol.X, No.X, 200X

 15

authenticated, their identity is known and the Claim Checker can verify the claims stored in the

database (step 6). If the claims are present the operation can finally be executed (step 7),

otherwise an appropriate exception is returned to the requester. To give a concrete example for

such claims, the Publishing Service requires the Create claim on resource Service, while the

Query Engine requires the Read claim on the queried resources (i.e., either the resource-level

Read claim on the queried resources or the instance-level Read claim on instances returned by the

Query Engine).

Event Visibility

In the first version of the VRESCo Event Engine, events were visible to all users. However, this

can be problematic in business scenarios, especially regarding service provenance: For instance, a

company might allow a partner company to see all events concerning service management and

QoS, while events related to binding and invocation of services are only visible for employees.

(Mühl, Fiege et al., 2006) discuss security issues in event-based systems and present access

control techniques such as access control lists, capabilities, and role-based access control (RBAC).

Access control lists represent a simple way to define the permissions of different users for a

specific security object. Capabilities define the permissions of a specific user for different

security objects. Finally, RBAC extends capabilities by allowing users to have several roles

which are abstractions between users and permissions, and grant permissions directly to these

roles. (Fiege, Mezini et al., 2002) use the notion of scopes to define visibility boundaries for

events (i.e., only subscribers within specific scopes can access events).

In the VRESCo Event Notification Engine, we have integrated an access control mechanism

following RBAC which is similar to the idea of scopes. As mentioned above, users are divided

into different user groups. Access control can then be defined based on users and user groups

according to the event visibilities shown in Table 3.

Event Visibility Description

ALL Events are visible to all users
GROUP Events are visible to users within the publisher’s group
PUBLISHER Events are visible to the publisher only
<:GroupName> Events are visible to all users within a specific group
<Username> Events are visible to a specific user only

Table 3: Event Visibility

It should be noted that in our work the publisher defines the visibility of events. While one

publisher may not want that other users can see events (“PUBLISHER”), another may not define

any restrictions on events (“ALL”). Furthermore, it is possible to grant only specific users access

to events (e.g., “joe”). RBAC is then introduced by either granting access to all users of a specific

group (e.g., “:admins”), or all users within the same group as the publisher (“GROUP”).

Besides defining event visibilities for different users and groups, more fine-grained access control

is provided by allowing users to specify event visibilities for different event types. In VRESCo

events are classified in an event type hierarchy (e.g., ServiceInvokedEvent inherits from

ServiceManagementEvent). If no event visibility is defined for a specific event type, the engine

takes the visibility of the parent type, or the default visibility if none exists at all (i.e., “ALL” for

the base type VRESCoEvent). Event visibility is then enforced by the Notification Manager.

International Journal of Web Services Research , Vol.X, No.X, 200X

 16

-Id = 4711

-RevisionId = 17

-OperationId = 63

-InvocationInfo = '128.131.172.242'

-Timestamp = '18.06.2009 13:01:47'

-Publisher = 'joe'

-Visibility = ':admins'

ServiceInvokedEvent

Figure 7: Event Visibility Example

Figure 7 gives an example of a ServiceInvokedEvent. As highlighted in this figure, the

Notification Engine attaches event visibility and publisher to the event. When events match to

subscriptions, the Notification Manager gets the name of the subscriber from the corresponding

listener and extracts publisher name and event visibility from the notification payload. Based on

this information, the Notification Manager can verify if the current event is visible to the

corresponding subscriber, and either forwards or discards it.

Selective Service Provenance

The mechanisms introduced in this section provide fine-grained access control for service

provenance information stored in the runtime. This guarantees that only authenticated and

authorized users are able to access this information. It should be noted that this mechanism has an

interesting side effect: different users can come to different conclusions regarding the provenance

of services. In other words, two users (with different claims and event visibilities) may have

different views on the same service.

To give a concrete example, we consider the provenance graph shown in Figure 4. This graph

was generated for some user that had access to all provenance information (e.g., user admin).

However, claims and event visibility may restrict the visible information for specific users. For

instance, users without the resource-level Read claim on Service or without the instance-level

Read claim on Service 1 clearly would not receive any provenance information about this service.

To give an example for event visibility, if the visibility of Binding/Invocation events is set to

telco1, then other users might not see the INVOCATIONS node in the graph. This can be further

refined, by granting user telco1 access to ServiceInvokedEvents but restrict access to

ServiceInvocationFailedEvents only to users within the user group admins. In that case, only

information about successful invocations would be shown in the graph.

Another interesting feature enabled by event visibility was applied to QoS events. In our ongoing

work, we have integrated an additional QoS Monitor into VRESCo. In contrast to the existing

client-side monitor it represents a server-side approach using WCF Performance Counters (Peiris,

Mulder et al., 2007). By using two different event publishers for these two monitors, event

visibility can be defined so that specific users see only events from one monitor, either monitors,

or no QoS events at all. This is useful since client- and server-side monitoring results often differ

for some QoS attributes (e.g., availability), while other attributes can only be measured by one

approach (e.g., client-perceived response time of Web service requests).

EVALUATION

The evaluation in this section is twofold: Firstly, we discuss the usefulness and advantages of our

work based on the motivating example. Then, we show some performance results of our approach.

International Journal of Web Services Research , Vol.X, No.X, 200X

 17

Discussion

First of all, we want to highlight that there are several use cases for service provenance, which are

of interest for both service consumers and service providers. On the one hand, service providers

often want to know if their services perform as expected regarding various QoS attributes (e.g.,

response time, failure rate, throughput, etc.) or the expected number of service invocations.

Otherwise, corrective actions may be taken in order to achieve the expected values. On the other

hand, service provenance information is also of particular importance for service consumers,

especially when it comes to service selection. As described in the motivation, if there are multiple

candidate services, service consumers may want to take a look at the history of these alternatives.

If a service had good performance during the last year it may be more trustworthy than services

which have been recently published. Furthermore, our service mediation approach can be used to

dynamically rebind to alternative services if the current service is removed from the runtime or

does not fulfill the requirements any longer. As a result, provenance information can be used for

both service selection and dynamic rebinding.

Furthermore, security issues are often neglected in current provenance approaches. Therefore, one

concern of our approach is the integrity of provenance information, as well as appropriate access

control mechanisms. Firstly, we want to ensure that all provenance information is accurate which

requires that all users within VRESCo are authenticated. Secondly, and this is even more

important, only authorized users must be able to access services and metadata stored in the

registry database. This has been implemented by the claim-based access control mechanism.

Finally, considering provenance information we find it crucial that producers of provenance

information are able to define who is authorized to see which piece of information (i.e., different

clients may have different views of the same service). Therefore, we have introduced the notion

of event visibility to provide fine-grained access control to events.

Performance Evaluation

In this section, we describe the performance of our system. The following experiments have been

executed on an Intel Xeon Dual CPU X5450 with 3.0 GHz and 32GB RAM running on Windows

Server 2007 SP1 and .NET v3.5, while MySQL v5.1 has been used as database. Furthermore, all

test results represent the average of 10 repetitive runs.

Figure 8: Provenance Performance

International Journal of Web Services Research , Vol.X, No.X, 200X

 18

The performance of our provenance approach is depicted in Figure 8. It illustrates how long it

takes to generate the provenance graph shown in Figure 4 depending on the number of events that

have to be considered. The red and black lines illustrate how long it takes to build the graph (i.e.,

generate the corresponding GraphViz DOT file) and render it (i.e., transform the DOT file into

the desired format such as PNG) once all necessary information has been queried from the

Registry Database. The lines are almost constant, which is due to the grouping of different events

in the graph. The green and blue lines depict the query performance by distinguishing whether

event visibility must be evaluated. This is done by using two query issuers with different event

visibility: the first is user admin who can access all events, while only 25% of all events are

visible to the second user (i.e., the remaining 75% have to be sorted out for this user). The graph

shows that our approach scales linearly for several thousands of events and that the provenance

queries perform well (e.g., about 1s for 20000 events). Furthermore, it can be seen that the

overhead introduced when considering event visibility is acceptable (e.g., 13% for 20000 events,

and 25% for 40000 events which is not shown in the figure). All results were measured on the

server-side, since the client’s SOAP request to the Query Engine heavily depends on the network

latency. In general, the performance of the Query Engine is comparable to HQL and SQL, which

has been shown in more detail in our previous work (Michlmayr, Rosenberg et al., May 2009).

Next, we have evaluated the performance of the Event Notification Engine by using a simulation

of QoS events to measure the throughput of the actual matching between events and subscriptions.

These events were continuously published internally, while we increased the number of

subscribers and varied the percentage of matching subscriptions (we have chosen values between

0% and 20% since higher values are unusual in typical settings). Finally, we measured how many

events can be processed per second. It should be noted that we do not consider the time needed to

actually notify external subscribers, since this is done by a dedicated delivery thread pool and

varies significantly depending on the notification mechanism, such as E-Mail or Web services.

Figure 9: Eventing Throughput

The results are depicted in Figure 9. It can be seen that the throughput clearly decreases with the

number of matching subscriptions. The throughput starts about 2000 events per second without

subscriptions and converges to about 200-300 events per second for 2000 subscriptions. Clearly,

the percentage of matching subscriptions also slightly influences the throughput since more

listeners have to be invoked. However, the measured throughput is still higher than the expected

number of events in typical VRESCo environments.

International Journal of Web Services Research , Vol.X, No.X, 200X

 19

Figure 10: Eventing Overhead

Finally, the overhead of the Event Notification Engine is also of interest. To show this, we have

measured the eventing overhead when services are published into the runtime. To be more

concrete, we simulated a certain number of sequential Web service publications both with and

without eventing support. The results depicted in Figure 10 show that the overhead is 10-15% in

this setting, which seems acceptable when considering the possibilities opened up by the

VRESCo eventing mechanism. It should be noted, however, that eventing support can be easily

disabled in the configuration if not desired.

CONCLUSION AND FUTURE WORK

Provenance of electronic data has been an active research topic in the past years. In service-

oriented systems, the main focus was on data provenance, meaning the origin and history of data

produced by some processes. In this work, we have presented an approach for service provenance.

Our approach is integrated into the VRESCo runtime where several security mechanisms have

been implemented to guarantee access control and integrity of service provenance information.

Since our work is based on runtime events, different event visibilities have been introduced to

restrict access to these events. Provenance information can be obtained using provenance queries,

or as notifications to provenance subscriptions. Furthermore, provenance graphs can be used to

visualize the provenance information of a service. We have shown the performance and

applicability of our approach for both service consumers and service providers based on some

illustrative examples.

For future work, we consider to integrate data provenance produced by the VRESCo Composition

Engine which is part of our ongoing research (Rosenberg, Celikovic et al., 2009). Furthermore, in

addition to the current graph representation we envision to visualize provenance information

regarding QoS and binding/invocation in dashboards, as often done in business activity

monitoring.

ACKNOWLEGMENT
The research leading to these results has received funding from the European Community’s

Seventh Framework Programme FP7/2007-2013 under grant agreement 215483 (S-Cube).

Additionally, we would like to thank our students Andreas Huber, Thomas Laner and Christian

Marek for their technical contributions to VRESCo.

International Journal of Web Services Research , Vol.X, No.X, 200X

 20

REFERENCES

1. Bhargavan, K., Fournet, C., & Gordon, A. D. (2004). A Semantics for Web Services Authentication.

Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’04), Venice, Italy, January 14-16 (pp. 198-209). ACM.

2. Bhargavan, K., Fournet, C., & Gordon, A. D. (2008). Verifying Policy-Based Web Services Security.

ACM Transactions on Programming Languages and Systems (TOPLAS) , 30 (6), 1-59.

3. Chen, L., Yang, X., & Tao, F. (2006). A Semantic Web Service Based Approach for Augmented

Provenance. Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence

(WI’06), Hong Kong, China, December 18-22 (pp. 594-600). IEEE Computer Society.

4. Curbera, F., Doganata, Y. N., Martens, A., Mukhi, N., & Slominski, A. (2008). Business Provenance -

A Technology to Increase Traceability of End-to-End Operations. 16th International Conference on

Cooperative Information Systems (CoopIS’08), Monterrey, Mexico, November 12-14 (pp. 100-119).

Springer.

5. EsperTech Inc. (2009). Esper. Retrieved November 10, 2009, from http://esper.codehaus.org/

6. Felix, P., & Ribeiro, C. (2007). A Scalable and Flexible Web Services Authentication Model.

Proceedings of the 2007 ACM workshop on Secure web services (SWS’07), Fairfax, VA, USA,

November 2 (pp. 66-72). New York, NY, USA: ACM.

7. Fiege, L., Mezini, M., Mühl, G., & Buchmann, A. P. (2002). Engineering Event-Based Systems with

Scopes. Proceedings of the 16th European Conference on Object-Oriented Programming

(ECOOP’02), Málaga, Spain, June 10-14 (pp. 309-333). London, UK: Springer-Verlag.

8. Foster, I., Vöckler, J., Wilde, M., & Zhao, Y. (2002). Chimera: AVirtual Data System for Representing,

Querying, and Automating Data Derivation. Proceedings of the 14th International Conference on

Scientific and Statistical Database Management (SSDBM'02), Edinburgh, Scotland, UK, July 24-26

(pp. 37-46). IEEE Computer Society.

9. Gansner, E. R., & North, S. C. (2000). An Open Graph Visualization System and its Applications to

Software Engineering. Software: Practice and Experience , 30 (11), 1203-1233.

10. Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., et al. (2006). An Architecture for

Provenance Systems. Retrieved November 10, 2009, from University of Southampton:

http://eprints.ecs.soton.ac.uk/12023/1/provenanceArchitecture7.pdf (Technical Report).

11. Heinis, T., & Alonso, G. (2008). Efficient Lineage Tracking for Scientific Workflows. Proceedings of

the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD'08), Vancouver,

BC, Canada, June 10-12 (pp. 1007-1018). ACM.

12. Jaganathan, R. (2007, January). Windows Workflow Foundation: Tracking Services Deep Dive.

Retrieved November 10, 2009, from http://msdn.microsoft.com/en-us/library/bb264458(VS.80).aspx

13. Leitner, P., Michlmayr, A., Rosenberg, F., & Dustdar, S. (2008). End-to-End Versioning Support for

Web Services. Proceedings of the International Conference on Services Computing (SCC'08),

Honolulu, HI, USA, July 8-11 (pp. 59-66). IEEE Computer Society.

14. Leitner, P., Rosenberg, F., & Dustdar, S. (2009). DAIOS – Efficient Dynamic Web Service Invocation.

IEEE Internet Computing , 13 (3), 30-38.

15. Leitner, P., Rosenberg, F., Michlmayr, A., Huber, A., & Dustdar, S. (2009). A Mediator-Based

Approach to Resolving Interface Heterogeneity of Web Services. In W. Binder, & S. Dustdar,

Emerging Web Service Technologies, Volume III (pp. 55-74). Birkhäuser.

16. Michlmayr, A., Rosenberg, F., Leitner, P., & Dustdar, S. (2008). Advanced Event Processing and

Notifications in Service Runtime Environments. Proceedings of the 2nd International Conference on

Distributed Event-Based Systems (DEBS’08), Rome, Italy, July 1-4 (pp. 115-125). ACM.

International Journal of Web Services Research , Vol.X, No.X, 200X

 21

17. Michlmayr, A., Rosenberg, F., Leitner, P., & Dustdar, S. (2009, May). End-to-End Support for QoS-

Aware Service Selection, Invocation and Mediation in VRESCo. Retrieved November 10, 2009, from

Vienna University of Technology: http://www.infosys.tuwien.ac.at/Staff/michlmayr/papers/TUV-

1841-2009-03.pdf (Technical Report).

18. Michlmayr, A., Rosenberg, F., Leitner, P., & Dustdar, S. (2009). Service Provenance in QoS-Aware

Web Service Runtimes. Proceedings of the 7th IEEE International Conference on Web Services

(ICWS'09), Los Angeles, CA, USA, July 6-10 (pp. 115-122). IEEE Computer Society.

19. Michlmayr, A., Rosenberg, F., Platzer, C., Treiber, M., & Dustdar, S. (2007). Towards Recovering the

Broken SOA Triangle – A Software Engineering Perspective. Proceedings of the 2nd International

Workshop on Service Oriented Software Engineering (IW-SOSWE’07), Dubrovnik, Croatia, September

3 (pp. 22-28). ACM.

20. Microsoft Cooperation. (2009). Quickgraph. Retrieved November 10, 2009, from Codeplex:

http://www.codeplex.com/quickgraph

21. Moreau, L., Freire, J., Futrelle, J., McGrath, R., Myers, J., & Paulson, P. (2007). The Open Provenance

Model. Retrieved November 11, 2009 from University of Southampton:

http://eprints.ecs.soton.ac.uk/14979/1/opm.pdf (Technical Report).

22. Moreau, L., Groth, P., Miles, S., Vazquez-Salceda, J., Ibbotson, J., Jiang, S., et al. (2008). The

Provenance of Electronic Data. Communications of the ACM , 51 (4), 52-58.

23. Mühl, G., Fiege, L., & Pietzuch, P. (2006). Distributed Event-Based Systems. Secaucus, NJ, USA:

Springer-Verlag New York, Inc.

24. OASIS. (2006, February). WS-Security v1.1. Retrieved November 10, 2009, from http://www.oasis-

open.org/committees/wss/

25. OASIS. (2005, May). ebXML Registry Services and Protocols. Retrieved November 10, 2009, from

http://oasis-open.org/committees/regrep/

26. OASIS. (2005, February). Universal Description, Discovery and Integration (UDDI). Retrieved

November 10, 2009, from http://oasis-open.org/committees/uddi-spec/

27. Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-Oriented Computing:

State of the Art and Research Challenges. IEEE Computer , 40 (11), 38-45.

28. Peiris, C., Mulder, D., Cicoria, S., Bahree, A., & Pathak, N. (2007). Pro WCF: Practical Microsoft

SOA Implementation. Berkeley, CA, USA: Apress.

29. Rajbhandari, S., & Walker, D. W. (2006). Incorporating Provenance in Service Oriented Architecture.

Proceedings of the International Conference on Next Generation Web Services Practices (NWeSP’06),

Seoul, Korea, September 25-28 (pp. 33-40). IEEE Computer Society.

30. Red Hat Inc. (2009). Hibernate. Retrieved November 10, 2009, from https://www.hibernate.org/

31. Rosenberg, F., Celikovic, P., Michlmayr, A., Leitner, P., & Dustdar, S. (2009). An End-to-End

Approach for QoS-Aware Service Composition. Proceedings of the 13th IEEE International

Enterprise Computing Conference (EDOC'09), Auckland, New Zealand, September 1-4 (pp. 151-160).

IEEE Computer Society.

32. Rosenberg, F., Leitner, P., Michlmayr, A., & Dustdar, S. (2008). Integrated Metadata Support for Web

Service Runtimes. Proceedings of the Middleware for Web Services Workshop (MWS'08), Munich,

Germany, September 16 (pp. 361-368). IEEE Computer Society.

33. Rosenberg, F., Platzer, C., & Dustdar, S. (2006). Bootstrapping Performance and Dependability

Attributes of Web Services. Proceedings of the International Conference on Web Services (ICWS’06),

Chicago, IL, USA, September 18-22 (pp. 205-212). IEEE Computer Society.

34. Shukla, D., & Schmidt, B. (2006). Essential Windows Workflow Foundation. Addison-Wesley.

International Journal of Web Services Research , Vol.X, No.X, 200X

 22

35. Simmhan, Y. L., Plale, B., & Gannon, D. (2005). A Survey of Data Provenance in e-Science. SIGMOD

Record , 34 (3), 31-36.

36. Simmhan, Y. L., Plale, B., & Gannon, D. (2008). Karma2: Provenance Management for Data Driven

Workflows. International Journal of Web Services Research , 5 (3), 1-22.

37. Tan, V., Groth, P. T., Miles, S., Jiang, S., Munroe, S., Tsasakou, S., et al. (2006). Security Issues in a

SOA-Based Provenance System. International Provenance and Annotation Workshop (IPAW’06),

Chicago, IL, USA, May 3-5 (pp. 203-211). Springer.

38. Tsai, W.-T., Wei, X., Zhang, D., Paul, R., Chen, Y., & Chung, J.-Y. (2007). A New SOA Data-

Provenance Framework. Proceedings of the 8th International Symposium on Autonomous

Decentralized Systems (ISADS’07), Sedona, Arizona, March 21-23 (pp. 105-112). IEEE Computer

Society.

39. W3C. (2006, March). Web Services Eventing (WS-Eventing). Retrieved November 10, 2009, from

http://www.w3.org/Submission/WS-Eventing/

40. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., & Ferguson, D. F. (2005). Web Services

Platform Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging,

and More. Prentice Hall PTR.

ABOUT THE AUTHORS

Anton Michlmayr received the MSc degree in computer science from Vienna University of Technology.

He is currently a PhD candidate and university assistant in the Distributed Systems Group at Vienna

University of Technology. His research interests include software architectures and middleware for

distributed systems with an emphasis on service-oriented architectures and distributed event-based systems.

More information can be found at http://www.infosys.tuwien.ac.at/Staff/michlmayr.

Florian Rosenberg Florian Rosenberg is currently a research scientist at the CSIRO ICT Centre in

Australia. He received his PhD in June 2009 with a thesis on "QoS-Aware Composition of Adaptive

Service-Oriented Systems" while working as a research assistant at the Distributed Systems Group, Vienna

University of Technology. His general research interests include service-oriented computing and software

engineering. He is particularly interested in all aspects related to QoS-aware service composition and

adaptation. More information can be found at http://www.florianrosenberg.com.

Philipp Leitner has a BSc and MSc in business informatics from Vienna University of Technology. He is

currently a PhD candidate and university assistant at the Distributed Systems Group at the same university.

Philipp's research is focused on middleware for distributed systems, especially for SOAP-based and

RESTful Web services. More information can be found at http://www.infosys.tuwien.ac.at/Staff/leitner.

Schahram Dustdar is Full Professor of Computer Science with a focus on Internet Technologies heading

the Distributed Systems Group, Institute of Information Systems, Vienna University of Technology (TU

Wien). He is also Honorary Professor of Information Systems at the Department of Computing Science at

the University of Groningen (RuG), The Netherlands. He is Chair of the IFIP Working Group 6.4 on

Internet Applications Engineering and a founding member of the Scientific Academy of Service

Technology. More information can be found at http://www.infosys.tuwien.ac.at/Staff/sd.

