
Service Provenance in QoS-Aware Web Service Runtimes

Anton Michlmayr, Florian Rosenberg, Philipp Leitner, and Schahram Dustdar
Distributed Systems Group, Vienna University of Technology

Argentinierstrasse 8/184-1, 1040 Vienna, Austria
{lastname}@infosys.tuwien.ac.at

Abstract

In general, provenance of electronic data represents an
important issue in information systems. So far, Service-
oriented Computing research has mainly focused on prove-
nance of data. However, service provenance also plays a
central role since service providers and consumers want to
be aware of the service’s origin and history. In this pa-
per, we present an approach for service provenance that
builds on service metadata and various service runtime
events. In addition, access control mechanisms are imple-
mented to restrict access to this information. Besides be-
ing able to query and subscribe to provenance information,
provenance graphs can be used to illustrate the history of
services. We give some usage examples of service prove-
nance and show how our approach was integrated into the
VRESCo Web service runtime environment.

1. Introduction

In fine arts and archaeology, the term ’provenance’ is
commonly used to describe the origin and well-documented
history of some object. This information can then be used
to prove the authenticity and estimate the value of objects.
This notion was adopted in information systems to refer to
the origin of some piece of electronic data [16]. Various re-
search efforts have addressed data provenance in different
domains such as e-Science [25].

Service-oriented architecture (SOA) [19] and Web ser-
vices [28] as the most common realization of an SOA rep-
resent well-known paradigms for developing flexible and
cross-organizational enterprise applications. The prove-
nance of data in such applications and the provenance of
business processes as realized in Business Activity Mon-
itoring (BAM) are important issues that have already been
addressed by several research projects [5, 20, 27]. These ap-
proaches mainly focus on the provenance of data which is
produced, transformed or routed through an SOA system. In
contrast to that, service provenance also plays a central role,

for instance during service selection. If there are multiple
alternative services, the service consumer might be inter-
ested in the history of possible candidates. This can include
service creation date, ownership or modifications, as well as
information regarding Quality of Service (QoS) such as his-
toric failure rates or average response times. Furthermore,
service providers are also interested in service provenance
(e.g., to identify services that do not perform well).

In this paper, we introduce a novel service provenance
approach for service runtime environments. In general,
provenance information is captured at runtime and usually
managed in a dedicated provenance store. In our approach,
we have enhanced an existing event processing mechanism
in the VRESCO runtime [14] in order to capture and main-
tain provenance information. Events are thereby published
and correlated when certain situations occur (e.g., new ser-
vice is created, service revision is added, QoS changes, ser-
vice operation is invoked, etc.).

Security issues such as data integrity and access control
mechanisms represent a central problem which is often ne-
glected in provenance approaches [26]. On the one hand,
it must be ensured that the provenance information is ac-
curate while on the other hand, appropriate access control
mechanisms must be implemented in order to provide ac-
cess to provenance information only to authorized parties.
Moreover, service owners should be enabled to define who
is able to access which information in a fine-grained way.
For instance, while employees should be able to access all
available provenance information, sensitive in-house infor-
mation should be hidden from business partners.

The contribution of this paper is threefold: Firstly, we
present an access control mechanism for Web service run-
times including authentication and authorization features.
This also includes various types of visibility for events that
are published in the runtime. Secondly, we discuss how the
information inherent to these events together with service
metadata stored in the runtime can be used as a foundation
for service provenance. Finally, we show how our approach
was integrated into the VRESCO runtime and give some
examples of provenance queries, subscriptions and graphs.

VRESCo Runtime Environment

Registry
Database

Service
Client

Notification
Engine

SOAP

SOAP

SOAP

Query
Engine

Services

measure

Composition
Engine

Query
Interface

Publishing
Interface

Metadata
Interface

Notification
Interface

Management
Interface

Composition
Interface

Publishing/
Metadata
Service

Management
ServiceQoS

Monitor

VRESCo Client Library

Daios Client
Factory

invoke

O
R

M

La
ye

r

A
cc

es
s

C
on

tro
l

Certificate
Store

Event
Database

Figure 1. VRESCo Architecture

The organization of this paper is as follows: Section 2
briefly introduces the VRESCO runtime and presents the
access control mechanisms that are the basis for our ap-
proach. Section 3 then describes our Web service prove-
nance approach, explains how provenance can be queried
and subscribed, and shows how graphs can be used for il-
lustration purposes. Section 4 discusses the usefulness and
performance of our approach and shows an example prove-
nance graph. Section 5 presents related work in this field
and Section 6 finally concludes the paper.

2 Access Control for Services and Events

One of the most important issues in provenance sys-
tems is to build appropriate access control mechanisms for
providing authentication and authorization. This is crucial
since provenance information might be sensitive and access
should often be granted only to specific users. In our ser-
vice runtime it must first be guaranteed that only authorized
parties have access to services and associated service meta-
data. In a second step, it is important to identify which par-
ties performed which tasks since these are the basic building
blocks of provenance information.

In this section, we briefly introduce the VRESCO run-
time which is used as a foundation for our service prove-
nance approach. Then we describe the different access con-
trol mechanisms which have been integrated into our run-
time to be provenance-aware.

2.1 VRESCo Runtime Overview

The VRESCO project (Vienna Runtime Environment
for Service-Oriented Computing) introduced in [15] aims
at addressing some of the current challenges in Service-
oriented Computing [19] with the objective to facilitate the
engineering of SOA applications.

Figure 1 depicts the architecture of the runtime. Services
and associated service metadata [23] are published into the
registry database which is accessed using an ORM layer.
The query engine is used to query all information stored in
this database, whereas the event notification engine is re-
sponsible for publishing events when certain situations oc-
cur (e.g., new service is published, QoS changes, etc.) [14].
The VRESCO core services are accessed either directly us-
ing SOAP or via the client library which provides a sim-
ple API. Furthermore, it offers mechanisms to dynamically
bind and invoke services using the integrated DAIOS frame-
work [11, 12]. Finally, the QoS monitor presented in [24]
has been integrated in order to regularly measure the QoS
attributes (e.g., response time, throughput, etc.) of services.

The overall system is implemented in C#/.NET using the
Windows Communication Foundation (WCF) [13], while
the client library is currently provided for C# and Java. The
VRESCO core services are not described in more detail
here; the interested reader is referred to the referenced pa-
pers for more information.

2.2 Client Authentication

Authentication mechanisms generally aim at confirming
the identity of users or objects. The VRESCO runtime is
not targeted at public Web services but focuses on enter-
prise settings. In such settings, security issues often play
a crucial role since only specific clients should be able to
access internal services and resources. Therefore, it is im-
portant to first authenticate these clients before authoriza-
tion mechanisms can be applied successfully (which is de-
scribed in the following section). Furthermore, this authen-
tication mechanism is required to ensure the integrity of the
service provenance information captured by the service run-
time. If clients are not authenticated then bogus provenance
information could be entered into the system.

For this reason, a dedicated user management service
has been implemented that is responsible for maintaining
all users known to the runtime. In this service, users are as-
signed to specific user groups that allow fine-grained access
control policies. The authentication mechanism is twofold:
Firstly, clients need to provide username and password for
each interaction with the VRESCO core services. On the
server-side, these invocations are intercepted by the access
control layer to validate the provided username and pass-
word. If these credentials do not match the ones stored in
the runtime, access to the invoked core service is not granted
and an exception is returned to the client. Secondly, mes-
sage exchange between clients and the VRESCO runtime is
additionally based on X.509 certificates and can optionally
be encrypted using HTTPS. The certificates are maintained
in the runtime’s certificate store as shown in Figure 1. If
the provided client certificate is not trusted by the server (or
vice versa), the client’s request is aborted. The actual au-
thentication using certificates is provided as built-in func-
tionality by the WCF platform [13].

2.3 Claim-based Authorization

Authentication and authorization for Web services have
been addressed by various research efforts (e.g., [1, 2, 7])
and specifications such as WS-Security [18]. In general, ac-
cess control is often done role-based where different roles
are assigned to users while security privileges are directly
granted according to these roles. In our work, we follow
the concept of claim-based access control that goes one
step further: Claims can be defined on different resources
(for instance, following the well-known CRUD operations
Create, Read, Update & Delete) for users and user groups.
Users are allowed to access these resources if they provide
the needed claim in their credentials. This includes all user
claims that belong to a specific user. Furthermore, users
inherit the claims that are assigned to their user group.

Table 1 shows resources and their claims that have
been implemented in VRESCO. We distinguish between
resource- and instance-level claims: Resource-level claims
apply to all instances of a resource (e.g., Read on all ser-
vices), while instance-level claims refer only to a specific
instance of a resource (e.g., Update on user U1).

Resource Resource-level Instance-level
Category 4

Service 4 4

User 4 4

User Group 4

Claim 4 4

Table 1. Basic Claims

Besides having claims for the core resources Service,
Category, User and User Group, the resource Claim defines
who is allowed to create, modify and delete custom claims.
Therefore, users can dynamically add claims for other re-
sources (e.g., regarding the service metadata model). In
addition, the PermissionManager claim enables to assign
service instance-level claims to other users or groups. This
is of particular interest when service owners want to pass
claims for their services to others. Besides assigning claims
manually, some claims are generated automatically when
users and resources are created.

Similar to users and user groups, claims are also man-
aged by the user management service and stored in the reg-
istry database. The VRESCO core services use the access
control layer (as shown in Figure 1) to verify if the client has
the required claims to invoke the current operation. For in-
stance, the publishing service requires the Create claim on
resource Service, while the query engine requires the Read
claim on the queried resources. If the claims are present the
operation is executed, otherwise an appropriate exception is
returned to the client.

2.4 Event Visibility

In the first version of the VRESCO event notification
engine, events were visible to all users. However, this can
be problematic in business scenarios, especially regarding
service provenance: For instance, consider that a company
allows a partner company to see all events concerning ser-
vice management and QoS, while events related to binding
and invocation of services are only visible for employees.

Mühl et. al. [17] discuss security issues in event-based
systems and present access control techniques such as ac-
cess control lists (ACL), capabilities, and role-based access
control (RBAC). ACLs represent a simple way to define the
permissions of different users for a specific security object.
Capabilities define the permissions of a specific user for dif-
ferent security objects. Finally, RBAC extends capabilities
by allowing users to have several roles which are abstrac-
tions between users and permissions, and grant permissions
directly to these roles. Fiege et. al. [8] use the notion of
scopes to define visibility boundaries for events (i.e., only
subscribers within specific scopes can access events).

Visibility Events are visible to. . .
ALL all users
:GroupName all users within a specific group
GROUP all users within the publisher’s group
Username a specific user only
PUBLISHER the publisher only

Table 2. Event Visibility

In the VRESCO event notification engine, we have inte-
grated an access control mechanism following RBAC which
is similar to the idea of scopes. As mentioned above, users
are divided into different user groups. Access control can
then be defined based on users and user groups according to
the event visibilities shown in Table 2.

It should be noted that in our work the event publisher
is enabled to define the visibility of events. While one pub-
lisher might not want that other users can see her events
(“PUBLISHER”), another might not define any restrictions
on her events (“ALL”). Furthermore, it is possible to grant
only specific users access to events (e.g., “joe”). RBAC is
then introduced by either granting access to all users of a
specific group (e.g., “:admins”), or all users within the same
group as the publisher (“GROUP”).

Besides defining event visibilities for different users and
groups, more fine-grained access control is provided by al-
lowing users to specify event visibilities for different event
types. In VRESCO events are classified in an event type hi-
erarchy. If no event visibility is defined for a specific event
type, the engine takes the visibility of the parent type. If
there is no visibility for any event type the default visibility
is chosen (i.e., “ALL” for the base event type).

Event visibility is enforced by the notification manager.
The notification engine attaches event visibility and pub-
lisher to the event. When events match subscriptions, the
notification manager gets name and user group of the sub-
scriber from the database and extracts publisher name and
event visibility from the notification payload. Based on this
information, the notification manager can verify if the cur-
rent event is visible to the subscriber, and either forward or
discard it. As shown in Figure 1, all events are also per-
sisted into the event database and can later be retrieved by
the query engine.

3 Service Provenance Approach

The previous section introduced the access control and
event visibility mechanisms that are the foundation for our
service provenance approach. In this section, we show
how provenance information is collected, and how it can
be queried, subscribed and visualized.

3.1 Collecting Provenance Information

In the VRESCO runtime, events are published when cer-
tain state changes occur within the runtime (e.g., service is
published, new revision is added, service is invoked, QoS
changes, etc.). In our previous work [14] we show a de-
tailed list of events including the situations in which they are
published, as well as the detailed architecture of the event
notification infrastructure.

For the focus of this paper it is sufficient to know that
events are raised when the VRESCO core services are in-
voked. The service requester is thereby set as event pub-
lisher which is taken into consideration when the visibility
of the event is evaluated. Furthermore, events are persisted
and can later be queried in the event database. Our prove-
nance approach takes advantage of the event database since
it contains plenty of useful information regarding service
provenance.

Besides service management events, most notable are the
QoS events which are generated by the QoS monitor (see
Figure 1). These QoS events capture the current QoS val-
ues such as response time or throughput. The aggregation
of all QoS events then represents the history of a service.
This information can be of great interest for service con-
sumers during service selection. For instance, if there are
multiple alternative services performing the same task, then
one might want to choose the service that had the best per-
formance in the past. Moreover, for the same reason bind-
ing and invocation events are also important. These events
show how often services have been accessed and how many
of these service invocations failed, including the reasons for
the failure. Finally, the rebinding of service proxies from
one service to another is also recorded by these events.

Besides the events stored in the event database, other
provenance information can be retrieved from the service
metadata stored in the registry database. Among others,
this includes information about the service owner and the
different operations provided by the service. Moreover, it
also contains the versioning graph including revision tags
(in VRESCO, services can have multiple revisions [11]).
Additionally, the VRESCO metadata model provides de-
tailed descriptions of the service’s purpose using service
categories (i.e., services in the same domain), features (i.e.,
services performing the same task), as well as service oper-
ations including parameters, pre- and post-conditions [23].

3.2 Provenance Queries

Once provenance information is collected at runtime, the
next issue is how to access and query this information ac-
cordingly. This reaches from simple queries like “Who has
created service X?” to more complex queries like “What
is the average response time of service X?” or “How often
has service X been invoked in the last 24 hours?”.

The provenance query mechanism in VRESCO is based
on the query engine which uses the Vienna Querying Lan-
guage (VQL). VQL provides a generic and type-safe query-
ing language similar to the Hibernate Criteria API [21] and
can be used for querying all kinds of resources such as ser-
vices, events or metadata. Therefore, from a client-side per-
spective the provenance queries are built just like ’normal’
service queries in VRESCO.

� �
1 IVRESCoQuerier q u e r i e r =
2 VRESCoCl ientFac tory . C r e a t e Q u e r i e r (” j o e ” , ”pw”) ;
3

4 / / b u i l d provenance query r e g a r d i n g QoS
5 v a r query1 = new VQuery (t y p e o f (QoSRevis ionEvent)) ;
6 query1 . Add (E x p r e s s i o n . Eq (” R e v i s i o n I d ” , 8 1 5)) ;
7 query1 . Add (E x p r e s s i o n . Eq (” P r o p e r t y ” ,
8 C o n s t a n t s . QOS RESPONSE TIME)) ;
9 query1 . Add (E x p r e s s i o n . Gt (” Value ” , 5 0 0)) ;

10

11 / / b u i l d provenance query r e g a r d i n g i n v o c a t i o n s
12 v a r query2 = new VQuery (t y p e o f (S e r v i c e I n v o k e d E v e n t)) ;
13 query2 . Add (E x p r e s s i o n . Eq (” R e v i s i o n . Id ” , 4 7 1 1)) ;
14 query2 . Add (E x p r e s s i o n . Eq (” P u b l i s h e r ” , ” t e l c o 1 ”)) ;
15 query2 . Add (E x p r e s s i o n . Gt (” Timestamp ” ,
16 new DateTime (2 0 0 9 , 1 , 1))) ;
17 query2 . Add (E x p r e s s i o n . Lt (” Timestamp ” ,
18 new DateTime (2 0 0 9 , 1 , 3 1))) ;
19

20 / / e x e c u t e provenance q u e r i e s
21 v a r r e s u l t s 1 = q u e r i e r . FindByQuery (query1 ,
22 QueryMode . Exac t) a s I L i s t <QoSRevis ionEvent >;
23 v a r r e s u l t s 2 = q u e r i e r . FindByQuery (query2 ,
24 QueryMode . Exac t) a s I L i s t <S e r v i c e I n v o k e d E v e n t >;� �

Listing 1. Provenance Queries

Listing 1 gives two examples for provenance queries.
Initially, the querier (i.e., the proxy to the query engine)
is created using the client library that takes username and
password as input (line 1–2). The certificates are attached
by the client library transparently. The first query (line 5–9)
returns all measuring points (QoSRevisionEvents) where
the response time of service revision 815 was greater than
500 milliseconds. The second query (line 12–18) returns
all service invocations (ServiceInvokedEvents) of ser-
vice revision 4711 from user telco1 that happened between
1.1.2009 and 31.1.2009. After the queries are built, they
are executed using the querier in line 21–24. The query
engine returns all events considering their visibility. For in-
stance, if the event visibility of ServiceInvokedEvents is
sue, the query will return no results for user joe. Internally,
the query engine first builds the result set of the query, then
iterates through the results to check the visibility and finally
returns only the visible events.

3.3 Provenance Subscriptions

Besides using queries on the historic provenance infor-
mation stored in the runtime, the VRESCO event notifi-
cation engine enables users to subscribe to certain events.
Subscriptions are specified in the Esper Event Processing
Language (EPL) [6] which is similar to SQL and supports
complex event processing constructs such as sliding event
windows, statistical functions on event streams, and event
patterns. If such events or event patterns occur, notifications
are sent to the interested subscribers using Web service no-
tifications or emails. This mechanism can now be used to
receive notifications if provenance events of interest occur.

� �
1 IVRESCoSubscr iber s u b s c r i b e r =
2 VRESCoCl ientFac tory . C r e a t e S u b s c r i b e r (” j o e ” , ”pw”) ;
3

4 i n t i d = s u b s c r i b e r . S u b s c r i b e P e r E m a i l (
5 ” s e l e c t ∗ from QoSRevis ionEvent where ” +
6 ” R e v i s i o n I d = 815 and ” +
7 ” P r o p e r t y = ’ ResponseTime ’ and Value > 500 ” ,
8 ” joe@foo . b a r ” ,
9 new DateTime (2 0 1 0 , 1 , 1)) ;� �

Listing 2. Provenance Subscription

Listing 2 gives an example subscription which is seman-
tically equal to the first query shown in Listing 1. If the
response time of revision 815 is greater than 500ms, a noti-
fication email should be sent to the given email address. The
date in line 9 specifies how long the subscription is valid.
Furthermore, the identifier returned in line 4 can be used to
cancel or renew the subscription. The references provide
more details on VRESCO subscriptions [14] and EPL [6].

3.4 Provenance Graphs

Besides querying provenance information, another use-
ful feature is to illustrate this information using provenance
graphs. The aim of these graphs is to give a graphical
overview of relevant provenance information, such as ser-
vice versioning information, service ownership and service
history regarding binding and invocation, as well as QoS at-
tributes. The input of such graphs can either be services/re-
visions or provenance queries. In the first case, the graph
is built with all provenance information that is available for
the requested service or revision. In the second case, the
result of a provenance query (which is a list of events as
shown in Listing 1) is displayed in a graph. This is done
using pre-defined templates that control the graph genera-
tion. These templates are based on the event type returned
by the provenance query (i.e., only the relevant parts of the
provenance graph are shown). Currently, we provide such
templates for QoS events and service invocation events.

Due to the vast amount of information stored in the run-
time, the provenance graphs tend to get oversized. There-
fore, the information inherent to the events is grouped into
several categories such as core service details including the
versioning graph, invocations, QoS attributes, tags, and ser-
vice operations. These groups briefly summarize the infor-
mation of the corresponding events. We show an example
provenance graph in the following section.

The service provenance graphs in VRESCO are built us-
ing the open source graph drawing libraries QuickGraph [4]
and GraphViz [9]. Before such a graph is built, all relevant
provenance information (i.e., events and service metadata)
is retrieved using the query engine which evaluates event
visibility and Read claims on service metadata depending

REVISION

Id=4

Published: 13.01.2009 14:57:33
User=telco1

Owner=telco1
ServiceId=1

OPERATIONS
void PortNumber(int oldNr, int newNr)

bool CheckStatus(string number)

operations

TAGS
v4
alt
wcf

tags

INVOCATIONS

#Invocations=23
#Failures=2

Last invocation: 27.01.2009 17:50:21 (user=admin)
Last failure: 22.01.2009 11:56:11 (user=guest)

invocations

QOS

#QoS events=8
ExecutionTime=43

Latency=27
ResponseTime=97

Throughput=23

qos

PREDECESSOR
Id=2

v2 alt jaxrpc

previous

PREDECESSOR
Id=3

v3 wcf

previous

SUCCESSOR
Id=5

HEAD v5 alt wcf

next

SUCCESSOR
Id=6

LATEST HEAD v6 wcf

next

Figure 2. Service Provenance Graph

on the requesting user. Therefore, these results only contain
the provenance information the user is allowed to access.
The corresponding graph is then generated using this in-
formation while the graph libraries are used to render the
resulting graph according to the user’s preferences (e.g., as
PDF or PNG). The graph image (or a graph representation
as GraphViz’ DOT file [9]) is finally returned to the user.
The overall approach of building provenance graphs is im-
plemented as part of the query engine (see Figure 1).

4 Evaluation

The evaluation in this section is twofold: Firstly, we dis-
cuss the usefulness and advantages of our work and give an
example provenance graph. Then, we show some perfor-
mance results of our approach.

4.1 Discussion and Illustrative Example

First of all, we want to highlight that there are several
use cases for service provenance which are of interest for
both service consumers and service providers. On the one
side, service providers often want to know if their services
perform as expected regarding various QoS attributes (e.g.,
response time, failure rate, etc.). Otherwise, corrective mea-
sures might be taken in order to achieve the expected values.
On the other side, service provenance information is also
of particular importance for service consumers, especially
when it comes to service selection. If there are multiple can-
didate services, service consumers might want to take a look
at the history of these alternatives. If a service had good per-
formance during the last year it might be more trustworthy
than services which have been recently published.

In current approaches, security issues in provenance sys-
tems are often neglected. Therefore, one main concern of
our approach is the integrity of provenance information, as
well as appropriate access control mechanisms. Firstly, we
want to ensure that all provenance information is accurate

which requires that all users within VRESCO are authenti-
cated. Secondly, and this is even more important, only au-
thorized users must be able to access services and metadata
stored in the registry database. This has been implemented
by the claim-based access control mechanism. Finally, con-
sidering provenance information we find it crucial that pro-
ducers of provenance information are able to define who is
authorized to see which piece of information (i.e., differ-
ent clients may have different views of the same service).
Therefore, we introduced the notion of event visibility to
provide fine-grained access control to events.

Figure 2 gives an illustrative provenance graph exam-
ple which was generated by our approach. This graph
shows provenance information of a specific service revision
which is organized in several groups in order to avoid over-
loaded graphs. First of all, parts of the versioning graph are
shown on the top of the graph. This includes both prede-
cessors (edge previous) and successors (edge next) of the
current revision. The revision itself is positioned in the
center and gives information about the corresponding ser-
vice, owner, creation date, and the user that created this
revision. While the first two elements are read from the
metadata of this service, the last two elements are stored in
the RevisionPublishedEvent. The bottom part illustrates
the groups Invocations (e.g., number of successful/failed in-
vocations, last successful/failed invocation, etc.), QoS (i.e.,
QoS events and aggregated QoS information), Tags (e.g.,
“v4”), and Operations (i.e., all operations of this revision).

4.2 Performance Evaluation

The performance of our approach is depicted in Figure 3.
It illustrates how long it takes to generate the graph shown
in Figure 2 depending on the number of events that have
to be considered. The values represent the average of 10
repetitive runs (in milliseconds) that have been measured on
a standard laptop (2 GHz dual core CPU with 2 GB RAM
and 5400 rpm harddisk running on Windows XP).

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5000 10000 15000 20000

Ti
m

e
(in

 m
s)

Number of events

Build Graph
Render Graph

Query (without EV)
Query (EV)

Figure 3. Provenance Performance

The first two lines illustrate how long it takes to build the
graph (i.e., generate the corresponding GraphViz DOT file)
and render it (i.e., transform the DOT file into the desired
format such as PNG) once all necessary information has
been queried. These two lines are almost constant which
is a result of grouping the different events in the graph.

The last two lines depict the query performance by dis-
tinguishing whether event visibility is taken into consider-
ation (i.e., using different query issuers). The graph shows
that our approach scales linearly for several thousands of
events and that the query performs adequate (e.g., around 1s
for 15000 events). Furthermore, it can be seen that the over-
head introduced when considering event visibility is reason-
able (e.g., 11% for 20000 events, and 18% for 50000 events
which is not shown in the figure). All results were mea-
sured on the server-side since the client’s SOAP request to
the query engine heavily depends on the network latency.

5. Related Work

The provenance of electronic data has already been ad-
dressed in various research efforts [16, 25]. In general, the
goal of data provenance is to define the origin and history
of some piece of data. There is also existing work in the
area of provenance in service-based systems [3, 5, 20, 27].
In general, most of these approaches address data prove-
nance which aims at capturing the history of some piece of
data generated by a (business) process. In contrast to that,
in our work we focus on service provenance by maintain-
ing the origin and history of services and associated service
metadata within a service runtime.

Curbera et al. [5] discuss business provenance in or-
der to achieve compliance violation monitoring. The ba-
sic idea is to trace end-to-end business operations by cap-
turing various business events, correlate these events into

a provenance store, and monitor if some compliance goals
are violated. The authors introduce a generic provenance
data model which can be represented in provenance graphs.
These graphs are built based on the event information in the
provenance store, and can be queried for root cause analy-
sis. This work is complementary to ours since the authors
address business provenance using business events, while
we focus on service provenance based on events raised on
the service management level.

Rajbhandari and Walker [20] present a system that in-
corporates provenance into scientific workflows to capture
the history of the produced data items. This history is cap-
tured by the workflow engine and recorded into a prove-
nance database which is structured using RDF schema. Fur-
thermore, a provenance query service is used to query the
provenance information stored into the database. Heinis
and Alonso [10] present another approach to provenance
of scientific data. In their approach, they focus on how
provenance data can be efficiently stored and queried in the
provenance database.

There are several issues when designing provenance in
service-centric systems. Tsai et al. [27] discuss the issues
of data provenance in SOA systems compared to traditional
data provenance techniques. Their main focus is on secu-
rity, reliability and integrity of data routed through such a
system. Tan et al. [26] also address security issues in SOA-
based provenance systems. They use p-assertions [16],
which are specific items documenting parts of a process,
as foundation for their considerations. Similar to our work,
they argue that access control, trust and accountability of
provenance information is crucial. In addition to that, we
also address security issues in SOA runtime environments
which is implemented using claim-based authorization.

6. Conclusion and Future Work

Provenance of electronic data has been an active re-
search area in the past years. In service-oriented systems,
the main focus was on data provenance, meaning the ori-
gin and history of data produced by business processes. In
this work, we have presented an approach for service prove-
nance. Our approach is integrated into the VRESCO run-
time where several security mechanisms have been imple-
mented to guarantee access control and integrity of service
provenance information. Since our work is based on run-
time events, different event visibilities have been introduced
to restrict access to these events. Provenance informa-
tion can be obtained using provenance queries, or as noti-
fications to provenance subscriptions. Furthermore, prove-
nance graphs can be used to visualize the provenance infor-
mation of a service. We have shown the performance and
usefulness of our approach for both service consumers and
service providers based on some illustrative examples.

For our future work, we envision to integrate provenance
information produced by the VRESCO composition engine
which is part of our ongoing research [22]. Furthermore,
in addition to the current graph representation we plan to
visualize provenance information regarding QoS and bind-
ing/invocation in dashboards as often done in business ac-
tivity monitoring.

Acknowledgements We would like to thank Christian
Marek for implementing the claim-based access control.

References

[1] K. Bhargavan, C. Fournet, and A. D. Gordon. A Seman-
tics for Web Services Authentication. In Proceedings of the
31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’04), pages 198–209, New
York, NY, USA, 2004. ACM.

[2] K. Bhargavan, C. Fournet, and A. D. Gordon. Verifying
Policy-Based Web Services Security. ACM Transactions on
Programming Languages and Systems (TOPLAS), 30(6):1–
59, 2008.

[3] L. Chen, X. Yang, and F. Tao. A Semantic Web Service
Based Approach for Augmented Provenance. In Proceed-
ings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence (WI’06), pages 594–600, Washington,
DC, USA, 2006. IEEE Computer Society.

[4] Codeplex. Quickgraph v3.1 Manual, Jan. 2009. http:
//www.codeplex.com/quickgraph.

[5] F. Curbera, Y. N. Doganata, A. Martens, N. Mukhi, and
A. Slominski. Business Provenance - A Technology to In-
crease Traceability of End-to-End Operations. In 16th In-
ternational Conference on Cooperative Information Systems
(CoopIS’08), pages 100–119. Springer, Nov. 2008.

[6] EsperTech. Esper Reference Documentation, 2009. http:
//esper.codehaus.org/.

[7] P. Felix and C. Ribeiro. A Scalable and Flexible Web Ser-
vices Authentication Model. In Proceedings of the 2007
ACM workshop on Secure web services (SWS’07), pages 66–
72, New York, NY, USA, 2007. ACM.

[8] L. Fiege, M. Mezini, G. Mühl, and A. P. Buchmann. En-
gineering Event-Based Systems with Scopes. In Proceed-
ings of the 16th European Conference on Object-Oriented
Programming (ECOOP’02), pages 309–333, London, UK,
2002. Springer-Verlag.

[9] E. R. Gansner and S. C. North. An Open Graph Visual-
ization System and its Applications to Software Engineer-
ing. Software: Practice and Experience, 30(11):1203–1233,
2000. http://www.graphviz.org/.

[10] T. Heinis and G. Alonso. Efficient Lineage Tracking for Sci-
entific Workflows. In Proceedings of the 2008 ACM SIG-
MOD International Conference on Management of Data,
pages 1007–1018, New York, NY, USA, 2008. ACM.

[11] P. Leitner, A. Michlmayr, F. Rosenberg, and S. Dustdar.
End-to-End Versioning Support for Web Services. In Pro-
ceedings of the International Conference on Services Com-
puting (SCC 2008). IEEE Computer Society, July 2008.

[12] P. Leitner, F. Rosenberg, and S. Dustdar. DAIOS – Efficient
Dynamic Web Service Invocation. IEEE Internet Comput-
ing, 13(3):30–38, 2009.

[13] J. Löwy. Programming WCF Services. O’Reilly, 2007.
[14] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar.

Advanced Event Processing and Notifications in Service
Runtime Environments. In Proceedings of the 2nd Inter-
national Conference on Distributed Event-Based Systems
(DEBS’08). ACM, 2008.

[15] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and
S. Dustdar. Towards Recovering the Broken SOA Triangle –
A Software Engineering Perspective. In Proceedings of the
2nd International Workshop on Service Oriented Software
Engineering (IW-SOSWE’07), Dubrovnik, Croatia, 2007.

[16] L. Moreau, P. Groth, S. Miles, J. Vazquez-Salceda, J. Ibbot-
son, S. Jiang, S. Munroe, O. Rana, A. Schreiber, V. Tan, and
L. Varga. The Provenance of Electronic Data. Communica-
tions of the ACM, 51(4):52–58, 2008.

[17] G. Mühl, L. Fiege, and P. Pietzuch. Distributed Event-Based
Systems. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2006.

[18] OASIS. WS-Security v1.1, Feb. 2006. http://www.
oasis-open.org/committees/wss.

[19] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
Service-Oriented Computing: State of the Art and Research
Challenges. IEEE Computer, 40(11):38–45, 2007.

[20] S. Rajbhandari and D. W. Walker. Incorporating Prove-
nance in Service Oriented Architecture. In Proceedings
of the International Conference on Next Generation Web
Services Practices (NWESP’06), pages 33–40, Washington,
DC, USA, 2006. IEEE Computer Society.

[21] Red Hat, Inc. Hibernate Reference Documentation v3.3.1,
2008. http://www.hibernate.org/.

[22] F. Rosenberg, P. Leitner, A. Michlmayr, P. Celikovic, and
S. Dustdar. Towards Composition as a Service - A Quality
of Service Driven Approach. In Proceedings of the First
IEEE Workshop on Information and Software as Service
(WISS’09). IEEE Computer Society, March 2009.

[23] F. Rosenberg, P. Leitner, A. Michlmayr, and S. Dustdar. In-
tegrated Metadata Support for Web Service Runtimes. In
Proceedings of the Middleware for Web Services Workshop
(MWS’08), co-located with the 12th IEEE International Dis-
tributed Object Computing Conference (EDOC’08), Mu-
nich, Germany. IEEE Computer Society, Sept. 2008.

[24] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Per-
formance and Dependability Attributes of Web Services. In
Proceedings of the IEEE International Conference on Web
Services (ICWS’06), Chicago, USA, Sept. 2006.

[25] Y. L. Simmhan, B. Plale, and D. Gannon. A Survey of Data
Provenance in e-Science. SIGMOD Record, 34(3):31–36,
2005.

[26] V. Tan, P. T. Groth, S. Miles, S. Jiang, S. Munroe,
S. Tsasakou, and L. Moreau. Security Issues in a SOA-
Based Provenance System. In Provenance and Annotation of
Data, International Provenance and Annotation Workshop
(IPAW’06), Chicago, IL, USA, pages 203–211, 2006.

[27] W.-T. Tsai, X. Wei, D. Zhang, R. Paul, Y. Chen, and J.-
Y. Chung. A New SOA Data-Provenance Framework. In
Proceedings of the Eighth International Symposium on Au-
tonomous Decentralized Systems (ISADS’07), pages 105–
112, Washington, DC, USA, 2007. IEEE Computer Society.

[28] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and
D. F. Ferguson. Web Services Platform Architecture : SOAP,
WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable
Messaging, and More. Prentice Hall PTR, 2005.

