
W
eb

 S
er

vi
ce

s

72 Published by the IEEE Computer Society 1089-7801/09/$25.00 © 2009 IEEE IEEE INTERNET COMPUTING

S oftware systems built on top
of service- oriented architectures
(SOAs)1 use a triangle of three op-

erations — publish, !nd, and bind — to
decouple roles participating in the sys-
tem. Publish and !nd put requirements
on the service registry and the interface
de!nition language. To publish servic-
es, an expressive and extensible service
de!nition language must be available
and supported by the service registry.2
The bind operation, however, is inde-
pendent from the service registry and
is handled by the service consumer. In
a SOA, consumers must be able to con-
nect to any service they discover during
the !nd step. In addition, they must be
able to change this binding at any time
(speci!cally, at runtime) if the original

target service becomes unavailable or
if the !nd operation discovers services
delivering a more appropriate quality
of service level.

Currently, application developers
generate stubs (service access compo-
nents, which are typically compiled
from a formal service description
such as the Web Services Description
Language [WSDL]) to invoke services.
These stubs handle the actual invo-
cation but are speci!c to a service
provider. If the application invokes a
similar service from a different pro-
vider, it must regenerate the stubs be-
cause services from different providers
in the real world never look quite the
same. Even if the services provide sim-
ilar functionality, they usually differ

Systems based on the service-oriented architecture (SOA) paradigm must be
able to bind to arbitrary Web services at runtime. However, current service
frameworks are predominantly used through precompiled service-access
components, which are invariably hard-wired to a speci!c service provider. The
Dynamic and Asynchronous Invocation of Services framework is a message-
based service framework that supports SOA implementation, allowing dynamic
invocation of SOAP/WSDL-based and RESTful services. It abstracts from the
target service’s internals, decoupling clients from the services they use.

Philipp Leitner,
Florian Rosenberg,
and Schahram Dustdar
Vienna University of Technology

Daios: Ef!cient Dynamic
Web Service Invocation

MAY/JUNE 2009 73

Efficient Dynamic Web Service Invocation

in technical details (such as operations or the
data encoding used). It’s therefore dif!cult to
implement a SOA-based application using client
stubs without falling back to generating and
loading stubs at runtime (for example, using
re"ection facilities). We consider such a solu-
tion to be a workaround, which further demon-
strates the need for stubless service invocation
in SOA scenarios.

Our message-based Dynamic and Asynchro-
nous Invocation of Services (Daios) framework
lets application developers create stubless and
dynamic service clients that aren’t strongly

coupled to a speci!c service provider. Instead,
Daios’s dynamic interface offers a high degree
of provider transparency that lets applications
exchange service providers at runtime.

Dynamic Service Invocation
Dynamic binding isn’t easy with current Web
service client frameworks such as Apache Axis
2 or the Apache Web Services Invocation Frame-
work (WSIF). These frameworks rely on client-
side stubs to invoke services, which are usually
autogenerated at design time. (See the “Related
Work in Web Service Invocation Frameworks”

Related Work in Web Service Invocation Frameworks

The Apache Web Services Invocation Framework (WSIF;
http://ws.apache.org/wsif) was the !rst Java-based Web

service framework to incorporate dynamic service invocation.
The WSIF dynamic invocation interface is intuitive to use if the
client application knows the signature of the WSDL operation
to invoke. This is an unacceptable precondition for loosely cou-
pled service-oriented architectures (SOAs). Client applications
shouldn’t have to know service internals such as the concrete
operation name. In addition, WSIF provides notoriously weak
support for complex XML Schema types such as service param-
eters or return values. An application can use complex types
only if they’re mapped to an existing Java object beforehand,
which is frequently impossible in dynamic invocation scenarios.
These problems, together with the fact that the framework
hasn’t been under active development since 2003 and the rela-
tively bad runtime performance, render WSIF outdated.

The Apache Axis 2 (http://ws.apache.org/axis2) framework
incorporates more SOA concepts than WSIF. It supports cli-
ent-side asynchrony and works more on a document level than
the strictly RPC-based WSIF. Although Axis 2 is still grounded
on the use of client-side stubs, it also supports dynamic invoca-
tions through the OperationClient or ServiceClient
APIs. However, these interfaces expect the client application
to create the invocation’s entire payload (for example, the
SOAP body) itself. In that case, Axis 2 does little more than
transfer the invocation to the server. We expect a higher level
of abstraction from a Web service framework for construct-
ing SOA clients. Still, the Axis 2 SOAP and Representational
State Transfer (REST) stacks are well developed and high per-
forming. We therefore created an Axis 2 service back end as
part of our Dynamic and Asynchronous Invocation of Services
(Daios) prototype. The Axis 2 back end uses Daios’s dynamic
invocation abstraction, but the Axis 2 service stack performs
the actual invocation.

Similar problems arise with other recently introduced ser-
vice frameworks, such as Codehaus XFire (http://x!re.codehaus.
org) or XFire’s successor, Apache CXF (http://cxf.apache.org).

Ultimately, all of these client-side frameworks rely on static
components to access Web services, with little to no support
for truly dynamic invocation scenarios.

The Java API for XML-based Web services is the latest
Java-based Web service speci!cation. JAX-WS, described in
Java speci!cation request (JSR) 224,1 is the of!cial follow-up
to JAX-RPC.2 JAX-WS is implemented, for instance, in the
Apache CXF project, where it exhibits problems similar to
Apache CXF. Although the name change suggests that JAX-WS
is less RPC-oriented than its predecessor, the speci!cation still
focuses on WSDL-to-operation mappings, ignoring the messag-
ing ideas of SOA and Web services. JSR 224 doesn’t explicitly
discuss REST, despite its claims to generally handle XML-based
Web services in Java.

Shinichi Nagano and his colleagues introduce a different ap-
proach to dynamic service invocation.3 They bind static stubs
to generic instead of precise interfaces. Doing so lets them use
the same stubs to invoke any service with a similar interface,
thereby enabling looser coupling between client and provider.
This approach (unlike ours) can achieve static type safety. It has
considerable disadvantages, however. The concept is only fea-
sible for Web services de!ned using a formalized XML inter-
face (few REST-based services have such interfaces), and the
practical implementation of more generic interfaces is often a
hard problem, requiring a lot of domain knowledge. Creating
a generic framework that SOA clients can use in any problem
domain is therefore dif!cult using this approach.

References
D. Kohlert and A. Gupta, “Java API for XML-Based Web Services, Ver-1.

sion 2,” 2007; http://jcp.org/aboutJava/communityprocess/mrel/jsr224/

index2.html.

JSR-101 Expert Group, “Java API for XML-Based RPC, Version 1.1,” 2003; 2.

http://java.sun.com/xml/downloads/jaxrpc.html#jaxrpcspec10.

S. Nagano et al., “Dynamic Invocation Model of Web Services Using Sub-3.

sumption Relations,” Proc. IEEE Int’l Conf. Web Services (ICWS 04), IEEE CS

Press, 2004, p. 150.

Web Services

74 www.computer.org/internet/ IEEE INTERNET COMPUTING

sidebar for a more detailed discussion of these
and other current frameworks.) However, stubs
are invariably hardwired to a speci!c service
provider and can’t be changed at runtime. If
service providers are hardwired into the service
consumers’ application code, producers and con-
sumers can’t be considered loosely coupled. The
use of client stubs doesn’t follow the SOA ideas
because the developer performs both !nd and
bind. A client application relying on precom-
piled stubs can’t implement a SOA. We therefore
conclude that the SOA triangle is broken.2

In addition, Web service client frameworks
such as Apache Axis 2 and Apache WSIF of-
ten suffer from a few further misconceptions.
They’re often built to be as similar as possible to
earlier distributed object middleware systems,3
implying a strong emphasis on RPC-centric and
synchronous Web services. SOAs, on the other
hand, center on the notion of synchronous and
asynchronous exchange of business documents.

We de!ne several requirements for a Web
service invocation framework that supports the
core SOA ideas.

The !rst requirement is stubless service invo-
cation. Given that generated stubs entail a tight
coupling of service provider and service con-
sumer, the invocation framework shouldn’t rely
on static components such as client-side stubs
or data transfer objects. Instead, the framework
should be able to invoke arbitrary Web services
through a single interface using generic data
structures.

Second, a Web service invocation framework
should be protocol independent. Web service
standards and protocols are not yet fully settled.
Discussion continues about the advantages of
the Representational State Transfer (REST)4 ar-
chitecture compared to the more common SOAP
and WSDL-based5,6 approaches to Web services.
The framework should therefore be able to ab-
stract from the underlying Web service proto-
col and support at least SOAP- and REST-based
services as transparently as possible.

Third, the framework must be message driv-
en. Web services are often seen as collections
of platform-independent remote methods. The
framework must be able to abstract from this
RPC style, which usually leads to tighter cou-
pling, and follow a message-driven approach
instead. Additionally, the message-driven inter-
face should be as simple as possible to facilitate
the creation of complex messages.

Next, the framework should support asyn-
chronous communication. In a SOA, services
might take a long time to process a single request.
The prevalent request-response communication
style is unsuitable for such long-running trans-
actions. The framework should therefore support
asynchronous (nonblocking) communication.

Fifth, it must provide acceptable runtime be-
havior. The framework shouldn’t imply sizable
overhead on the Web service invocation. Using
the framework shouldn’t take signi!cantly lon-
ger than using any of the existing Web service
frameworks.

Unfortunately, current Web service frame-
works don’t fully live up to these requirements.

The Daios Solution
Given our requirements for a Web services in-
vocation framework, we designed the Daios
framework and implemented a system proto-
type. Daios is a Web service invocation front
end for SOAP/WSDL-based and RESTful servic-
es. It supports fully dynamic invocations with-
out any static components such as stubs, service
endpoint interfaces, or data transfer objects.

Figure 1 sketches the Daios framework’s gen-
eral architecture. It also shows where the gen-
eral SOA triangle of publish, !nd, and bind !ts
into the framework. The framework consists of
three functional components:

the general Daios classes, which orchestrate
the other components;
the interface parsing component, which pre-
processes the service description (for exam-
ple, WSDL and XML Schema); and
the service invoker, which uses a SOAP or
REST stack to conduct the actual Web ser-
vice invocations.

Clients communicate with the framework
front end using Daios messages (a Daios- speci!c
message representation format). The frame-
work’s general structure is an implementation
of the composite pattern for stubless Web ser-
vice invocation (CPWSI).7 CPWSI separates the
framework’s interface from the actual invoca-
tion back-end implementation and allows for
"exibility and adaptability.

Daios is grounded on the notion of message
exchange. Clients communicate with services
by passing messages to them. Services return
the invocation result by answering with mes-

MAY/JUNE 2009 75

Efficient Dynamic Web Service Invocation

sages. Daios messages are potent enough to en-
capsulate XML Schema complex types but are
still simpler to use than straight XML. Mes-
sages are unordered lists of name-value pairs,
referred to as message !elds. Every !eld has a
unique name, a type, and a value. Valid types
are either built-in types (simple !eld), arrays
of built-in types (array !eld), complex types
(complex !eld), or arrays of complex types
(complex array !eld). Such complex types can
be constructed by nesting messages. Users can
therefore easily build arbitrary data structures
without needing a static type system.

Invoking Services with Daios
Using Daios is generally a three-step procedure:

First, clients !nd a service they want to in-
voke (service discovery phase). The service dis-
covery problem is mostly a registry issue and is
handled outside of Daios.2

Next, the service must be bound (prepro-
cessing phase). During this phase, the frame-
work collects all necessary internal service
information. For example, for a SOAP/WSDL-
based service, the service’s WSDL interface is
compiled to obtain endpoint, operation, and
type information.

The !nal step is the actual service invocation
(dynamic invocation phase). During this phase,
Daios converts the user input message into the
encoding expected by the service (for instance,
a SOAP operation for a WSDL/SOAP-based ser-
vice, or an HTTP get request for REST), and
launches the invocation using a SOAP or REST
service stack. When the service stack receives
the invocation response (if any), it converts it
back into an output message and returns it to
the client.

Once a service is successfully bound, clients
can issue any number of invocations without hav-
ing to rebind. Service bindings must be renewed
only if the service’s interface contract changes or
the client explicitly releases the binding.

Most of Daios’s important processing occurs
in the dynamic invocation phase. For a SOAP in-
vocation, the framework analyzes the given in-
put and determines which WSDL input message
the provided data best matches. For this, Daios
relies on a similarity algorithm. This algorithm
calculates a structural distance metric for the
WSDL message and the user input — that is, how
many parts in a given WSDL message have no
corresponding !eld in the Daios message, where

lower values represent a better match. For !elds
in the user message with no corresponding !eld
in the WSDL message, the similarity is . Daios
invokes the operation whose input message has
the best (that is, lowest) structural distance met-
ric to the provided data. If two or more input
messages are equally similar to the input, the
user must specify which operation to use. If no
input message is suitable — that is, if all input
messages have a similarity metric of to the
input — an error is thrown. Here, the provided
input is simply not suitable for the chosen Web
service. Otherwise, the framework converts the
input into an invocation of the chosen opera-
tion, issues the invocation, receives the result
from the service, and converts the result back
into a message.

The back end used to conduct the actual
invocation is replaceable. The Daios research
prototype offers two invocation back ends. One
uses the Apache Axis 2 stack, the other uses
a custom-built (native) SOAP and REST stack.
Daios emphasizes client-side asynchrony. All
invocations can be issued in a blocking or non-
blocking fashion.

This procedure abstracts most of the RPC-
like internals of SOAP and WSDL. The client-
side application doesn’t need to know about
WSDL operations, messages, end points, or
encoding. Even whether the target service is
implemented as a SOAP- or REST-based ser-
vice is somewhat transparent to the client, al-
though for REST services, clients need to know

Service
registry

Interface
(WSDL) parser

XSD parser

SOAP stack
REST stack

Daios system

<<uses>>

<<wraps>>

<<uses>>

Framework/
front end

Service invoker

Find Publish

Bind

HTTP,
SOAP,

and so on

Daios
message

Service
consumer

Service
provider

Figure 1. The Dynamic and Asynchronous Invocation of Services
(Daios) framework’s overall architecture. The framework supports
the service-oriented architecture publish, !nd, and bind paradigm.

Web Services

76 www.computer.org/internet/ IEEE INTERNET COMPUTING

the endpoint address. Daios handles all of these
service details, so the client application can be
as generic as possible. The service client needs
to know only the names and types of manda-
tory service parameters (for example, WSDL
operation parameters).

For REST invocations, the user can specify
an example request instead of the WSDL inter-
face, or not give further details on the service

interface at all. If the user gives an example
request, Daios uses the example as a template,
which it !lls with the user’s actual input at
invocation time, and issues an HTTP post re-
quest with the !lled template as payload. If no
information about the service interface is given
(that is, neither WSDL description nor example
request), Daios issues an HTTP get request with
URL-encoded parameters.

Figure 2 shows the matching of Daios inputs
to a WSDL description and an example request.
Figure 2a shows a Daios message and a WSDL
message in RPC/encoded style with a structural
distance of 0 (a perfect match). Removing the
First_Name !eld from the Daios message in-
creases the structural distance to 1. Figure 2b
details how the framework !lls an example
template with user input provided as a Daios
message in a REST invocation.

Usage Examples
The message-based Daios client API is easy
to use. Figure 3 shows the Java code neces-
sary to invoke a SOAP/WSDL-based Web ser-
vice. The message in this example corresponds
to the structure depicted in Figure 2. Although
the target service uses nested data structures
(the registrations contain address data), Daios
doesn’t need any static components such as data
transfer objects. All necessary service and type
information is collected during the preprocess-
ing phase (lines 8 to 11). When the actual dy-
namic invocation is !red (lines 26 and 27), the
framework uses this information and converts
the user-provided input to a concrete Web ser-
vice invocation. The example in the !gure uses
a blocking invocation style, but Daios handles
asynchronous communication identically.

The client application doesn’t have to specify
operation name, endpoint address, or WSDL en-
coding style used. Daios abstracts this informa-
tion from the service internals and exposes a
uniform interface, allowing loose coupling be-
tween client and service.

Figure 4 (p. 78) exempli!es the invocation
of a RESTful Web service. In this !gure, a cli-
ent application is accessing the Flickr REST API
and retrieving a list of hyperlinks to the most
interesting photos.

Daios invokes RESTful and SOAP-based
services through the same interface (the code
necessary to access the service is practically
identical for both Web service types). The main

Daios message

Last_Name : String

Address

City : String

Street : String

Door : Integer

Web Services Description Language
(WSDL) operation
<wsdl:part name=“First_Name” type=“xsd:string”
 nillable=“true”>
<wsdl:part name=“Last_Name” type=“xsd:string”
 nillable=“true”>

<wsdl:part name=“Address” type=“addressType”>

<schema>
 <complexType name=“addressType”>
 <sequence>
 <element name=“City” type=“xsd:string”/>
 <element name=“Street” type=“xsd:string”/>
 <element name=“Door” type=“xsd:int”/>
 </sequence>
 </complexType>
</schema>

Representational State Transfer (REST) message

<?xml version=“1.0” encoding=“UTF-8” ?>
<ex:sendData
 xmlns:ex=“http://my.example.com/ns”>
 <ex:FirstName>Philipp</ex:FirstName>
 <ex:LastName>Leitner</ex:LastName>
 <ex:Occupation />
 <ex:Address city=“Vienna”>
 <ex:Door>225</ex:Door>
 <ex:Street>Karlspl.</ex:Street>
 </ex:Address>
</ex:sendData>

First_Name : String

(a)

Daios message

Last_Name : String “Leitner”

Address

City : String : “Vienna”

Street : String “Karlspl”

Door : Integer “225”

First_Name : String : “Philipp”

(b)

Example request

<?xml version=“1.0” encoding=“UTF-8” ?>
<ex:sendData
 xmlns:ex=“http://my.example.com/ns”>
 <ex:FirstName>myname</ex:FirstName>
 <ex:LastName>mylastname</ex:LastName>
 <ex:Occupation>myoccupation</ex:occupation>
 <ex:Address city=“mycity”>
 <ex:Door>1</ex:Door>
 <ex:Street>mystreet</ex:Street>
 </ex:Address>
</ex:sendData>

Figure 2. Matching Daios inputs to service interfaces. (a) A Daios
message and a WSDL operation with a structural distance of 0.
(b) When Daios receives an invocation, it !lls the template (example
request) with user input to produce a valid REST invocation.

MAY/JUNE 2009 77

Efficient Dynamic Web Service Invocation

difference is that no interface de!nition lan-
guage similar to WSDL has yet been established
for RESTful services, so the user must specify
more service details for REST-based invocations
(the endpoint address in the example).

Evaluation
We evaluated our prototype against various
Web service frameworks: Apache WSIF, Apache
Axis 2, Codehaus XFire, and Apache CXF (see
the sidebar). We compared the frameworks
in terms of supported functionality, response
times, and memory consumption. For brevity,
we present only functional aspects and runtime
performance data in this article.

Table 1 (p. 79) shows how well the candidate
frameworks meet our requirements for a Web
service invocation framework. We present the
last of these requirements — acceptable runtime
behavior — later. Current service frameworks
fail to meet these requirements in some im-
portant respects. The core problem is that none

of them embraces SOA’s loosely coupled docu-
ment-centric approach. Rather, they’re based on
an RPC processing model, demanding explicit
knowledge of service internals such as WSDL
encoding styles, operation signatures, and end-
point addresses. Additionally, neither WSIF nor
XFire provide a fully expressive dynamic invo-
cation interface. User-de!ned (complex) types
are dif!cult to use over these interfaces if the
application doesn’t know the types at compile
time. Most interfaces support the REST style of
Web services, but they don’t support a transpar-
ent integration of SOAP and REST. The Daios
prototype solves all these problems. It exposes a
simple messaging interface with which applica-
tions can dynamically invoke arbitrary services
without knowing the service’s implementation
details (including whether the service is imple-
mented as a SOAP- or REST-based service), both
synchronously and asynchronously.

Figure 5 (p. 79) addresses the acceptable run-
time behavior requirement. The !gure compares

 // create a Daios backend1

 ServiceFrontendFactory factory = ServiceFrontendFactory.getFactory2

 (“at.ac.tuwien.infosys.dsg.daiosPlugins.”+3

 nativeInvoker.NativeServiceInvokerFactory”);4

5

 // preprocessing - bind service6

 ServiceFrontend frontend = factory.createFrontend(new URL(7

 “http://vitalab.tuwien.ac.at/”+“orderservice?wsdl”));8

9

 // construct input that we want10

 // to pass to the service11

 DaiosInputMessage registration = new DaiosInputMessage();12

 DaiosMessage address = new DaiosMessage();13

 address.setString(“City”, “Vienna”);14

 address.setString(“Street”, “Argentinierstrasse”);15

 address.setInt(“Door”, 8);16

 registration.setComplex(“Address”, address);17

 registration.setString(“First_Name”, “Philipp”);18

 registration.setString(“Last_Name”, “Leitner”);19

20

 // dynamic invocation21

 DaiosOutputMessage response = frontend.requestResponse(registration);22

23

 // retrieve result24

 String regNr = response.getString(“registrationNr”);25

 // ...26

Figure 3. A Daios SOAP invocation. The application constructs both a new service front end to the SOAP-
based Web service described by a Web Services Description Language contract and an input message in
Daios message format, and issues the invocation using a blocking request response invocation.

Web Services

78 www.computer.org/internet/ IEEE INTERNET COMPUTING

the response times of the candidate frameworks
in simple SOAP-based Web service invocations.
Figure 5a shows the results for RPC/ encoded
invocations, and Figure 5b shows results for
document/literal invocations with wrapped pa-
rameters. We only evaluated RPC/encoded in-
vocations for Daios and WSIF. Axis 2, XFire,
and CXF don’t support this particular WSDL
encoding style. Apache WSIF is well behind in
both test cases; all other candidate frameworks
exhibit similar response times.

We also performed extensive tests using
different types of invocations (with binary or
array payload data), but the general result was
similar for all tests. Additionally, we’ve gath-
ered similar results for REST-based invoca-
tions. We therefore conclude that using Daios
doesn’t imply a relevant performance penalty
over Apache Axis 2, Apache CXF, or Codehaus
XFire, and that our prototype is signi!cantly
faster than Apache WSIF.

I ncreasingly, Web service implementations use
policies to describe the service’s nonfunctional

attributes, such as security policies, transaction-
al behavior, and reliable messaging. Often, these
implementations use the Web Services Policy
framework.8 We plan to add WS-Policy support
to our framework to support policy-enforced in-
teractions. Furthermore, we’ll extend our evalu-
ation of the Daios framework to a more extensive
real-life scenario to get a more accurate picture
of the implementation’s runtime performance
and usability in real business applications.

We recently released the !rst version of our
Daios prototype as an open source project us-
ing Google Code and are currently working on a
.NET port.

Acknowledgments
The European Community’s Seventh Framework Program
(FP7/2007-2013) helped fund the research leading to the re-
sults reported here under grant agreement 215483 (S-Cube).

 String myAPIKey = ... // get an API key from Flickr1
2

 // use the native backend3
 ServiceFrontendFactory factory = ServiceFrontendFactory.getFactory4
 (“at.ac.tuwien.infosys.dsg.daiosPlugins.”+5
 nativeInvoker.NativeServiceInvokerFactory”);6

7
 // preprocessing for REST8
 ServiceFrontend frontend = factory.createFrontend();9

10
 // setting the EPR is mandatory for REST services11
 frontend.setEndpointAddress(12
 new URL(“http://api.flickr.com/services/rest/”));13

14
 // construct message 15
 DaiosInputMessage in = new DaiosInputMessage();16
 in.setString(“method”, “flickr.interestingness.getList”);17
 in.setString(“api_key”, myAPIKey);18
 in.setInt(“per_page”, 5);19

20
 // do blocking invocation21
 DaiosOutputMessage out = frontend.requestResponse(in);22

23
 // convert WS result back24
 // into some convenient Java format25
 DaiosMessage photos = out.getComplex(“photo”);26
 // ... 27

Figure 4. A Daios Representational State Transfer (REST) invocation. The application creates a
Daios service front end to the Flickr photo service’s REST API and retrieves a list of the “most
interesting” photos.

MAY/JUNE 2009 79

Efficient Dynamic Web Service Invocation

References
M.P. Papazoglou et al., “Service-Oriented Computing: 1.
State of the Art and Research Challenges,” Computer,
vol. 40, no. 11, 2007, pp. 38–45.
A. Michlmayr et al., “Towards Recovering the Broken 2.
SOA Triangle: A Software Engineering Perspective,”
Proc. 2nd Int’l Workshop on Service Oriented Software
Eng. (IW-SOSE 07), ACM Press, 2007, pp. 22–28.
W. Vogels, “Web Services Are Not Distributed Ob-3.
jects,” IEEE Internet Computing, vol. 7, no. 6, 2003,
pp. 59–66.

R.T. Fielding, 4. Architectural Styles and the Design of
Network-Based Software Architectures, doctoral disser-
tation, Information and Computer Science Dept., Univ.
of California, Irvine, 2000.
SOAP Version 1.2 Part0: Primer5. , World Wide Web Con-
sortium (W3C) recommendation, 2003; www.w3.org/
TR/soap12-part0.
Web Services Description Language (WSDL) Version 2.0 6.
Part0: Primer, World Wide Web Consortium (W3C) can-
didate recommendation, 27 Mar. 2006; www.w3.org/
TR/2006/CR-wsdl20-primer-20060327.

Table 1. Functional comparison of current Web service invocation frameworks (WSIFs).
Requirement Daios Apache WSIF Apache Axis 2 Codehaus

XFire
Apache CXF

Stubless service invocation

Simple types Yes Yes Yes Yes Yes

Arrays of simple types Yes Yes Yes Yes Yes

Complex types Yes No Yes No Yes

Arrays of complex types Yes No Yes No Yes

Protocol independence

Transparent protocol integration Yes No No No No

SOAP over HTTP support Yes Yes Yes Yes Yes

Representational State Transfer support Yes No Yes No Yes

Message-driven approach

Document-centric interface Yes No No No No

Transparent handling of service internals Yes No No No No

Support for asynchronous communication

Synchronous invocations Yes Yes Yes Yes Yes

Asynchronous invocations Yes No Yes No Yes

Simple API

Simple to use dynamic interface Yes Yes No Yes Yes

1,000

800

600

400

200

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
Payload size (Kbytes)

In
vo

ca
tio

n
tim

e
(m

s)

1,000

800

600

400

200

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800
Payload size (Kbytes)

In
vo

ca
tio

n
tim

e
(m

s)

Daios
Apache WSIF

Daios
Apache WSIF
Apache Axis2
Codehaus XFire
Apache CXF

(a) (b)

Figure 5. Comparison of invocation response times. (a) RPC/encoded invocations and (b) document/literal invocations
with wrapped parameters. Only Daios and the Web Services Invocation Framework (WSIF) support RPC/encoded.

Web Services

80 www.computer.org/internet/ IEEE INTERNET COMPUTING

P. Buhler et al., “Preparing for Service-Oriented Com-7.
puting: A Composite Design Pattern for Stubless Web
Service Invocation,” Proc. Int’l Conf. Web Eng., LNCS
3140, Springer, 2004, p. 763.
J. Schlimmer et al., “Web Services Policy Framework 8.
(WS-Policy),” joint speci!cation by IBM, BEA Sys-
tems, Microsoft, SAP AG, Sonic Software, and Veri-
Sign, 2006; www.ibm.com/developerworks/library/
speci!cation/ws-polfram.

Philipp Leitner is a PhD student in the Distributed System
Group at the Vienna University of Technology. His re-
search interests include general issues of distributed
computing, especially service-oriented computing,
service-oriented architectures, Web services, peer-to-
peer computing, and network management. Leitner has
a master’s degree in business informatics from the Vi-
enna University of Technology. Contact him at leitner@
infosys.tuwien.ac.at.

Florian Rosenberg is a PhD candidate in the Distributed

System Group at the Technical University Vienna.
His research interests include software composition,
service-oriented architectures, and software engi-
neering. Rosenberg has a master’s degree in software
engineering from the Upper Austria University of
Applied Sciences. Contact him at "orian@infosys.
tuwien.ac.at.

Schahram Dustdar is a full professor of computer science,
director of the Vienna Internet Technologies Advanced
Research Lab, head of the Distributed Systems Group of
the Information Systems Institute at the Vienna Uni-
versity of Technology, and honorary professor of infor-
mation systems in the Department of Computer Science
at the University of Groning, the Netherlands. His
research interests include service-oriented architec-
tures and computing, mobile and ubiquitous comput-
ing, complex and adaptive systems, and context-aware
computing. Dustdar has a PhD in business informatics
from the University of Linz, Austria. He’s a member of
the IEEE Computer Society and the ACM. Contact him
at dustdar@infosys.tuwien.ac.at.

PURPOSE: The IEEE Computer Society is the world’s largest association
of computing professionals and is the leading provider of technical
information in the !eld.
MEMBERSHIP: Members receive the monthly magazine Computer,
discounts, and opportunities to serve (all activities are led by volunteer
members). Membership is open to all IEEE members, af!liate society
members, and others interested in the computer !eld.
COMPUTER SOCIETY WEB SITE: www.computer.org
OMBUDSMAN: Email help@computer.org.

Next Board Meeting: 5 June 2009, Savannah, GA, USA

EXECUTIVE COMMITTEE
President: Susan K. (Kathy) Land, CSDP*
President-Elect: James D. Isaak;* Past President: Rangachar Kasturi;*
Secretary: David A. Grier;* VP, Chapters Activities: Sattupathu V.
Sankaran;† VP, Educational Activities: Alan Clements (2nd VP);* VP,
Professional Activities: James W. Moore;† VP, Publications: Sorel
Reisman;† VP, Standards Activities: John Harauz;† VP, Technical &
Conference Activities: John W. Walz (1st VP);* Treasurer: Donald F.
Shafer;* 2008–2009 IEEE Division V Director: Deborah M. Cooper;†
2009–2010 IEEE Division VIII Director: Stephen L. Diamond;† 2009
IEEE Division V Director-Elect: Michael R. Williams;† Computer Editor in
Chief: Carl K. Chang†

*voting member of the Board of Governors †nonvoting member of the Board of Governors

BOARD OF GOVERNORS
Term Expiring 2009: Van L. Eden; Robert Dupuis; Frank E. Ferrante; Roger
U. Fujii; Ann Q. Gates, CSDP; Juan E. Gilbert; Don F. Shafer
Term Expiring 2010: André Ivanov; Phillip A. Laplante; Itaru Mimura; Jon
G. Rokne; Christina M. Schober; Ann E.K. Sobel; Jeffrey M. Voas
Term Expiring 2011: Elisa Bertino, George V. Cybenko, Ann DeMarle,
David S. Ebert, David A. Grier, Hironori Kasahara, Steven L. Tanimoto

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Director, Business & Product
Development: Ann Vu; Director, Finance & Accounting: John Miller;
Director, Governance, & Associate Executive Director: Anne Marie
Kelly; Director, Information Technology & Services: Carl Scott;
Director, Membership Development: Violet S. Doan; Director,
Products & Services: Evan Butter!eld; Director, Sales & Marketing:
Dick Price

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036
Phone: +1 202 371 0101; Fax: +1 202 728 9614; Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314
Phone: +1 714 821 8380; Email: help@computer.org
Membership & Publication Orders:
Phone: +1 800 272 6657; Fax: +1 714 821 4641; Email: help@computer.org
Asia/Paci!c: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo
107-0062, Japan

Phone:
Email: tokyo.ofc@computer.org

IEEE OFFICERS
President: John R. Vig; President-Elect: Pedro A. Ray; Past President:
Lewis M. Terman; Secretary: Barry L. Shoop; Treasurer: Peter W.
Staecker; VP, Educational Activities: Teo!lo Ramos; VP, Publication
Services & Products: Jon G. Rokne; VP, Membership & Geographic
Activities: Joseph V. Lillie; President, Standards Association Board
of Governors: W. Charlton Adams; VP, Technical Activities: Harold L.
Flescher; IEEE Division V Director: Deborah M. Cooper; IEEE Division
VIII Director: Stephen L. Diamond; President,
IEEE-USA: Gordon W. Day

revised 5 Mar. 2009

