
Towards Cross-Blockchain Smart Contracts
Marten Sigwart∗, Philipp Frauenthaler∗, Christof Spanring†, Stefan Schulte∗

∗ Distributed Systems Group
TU Wien, Vienna, Austria
{m.sigwart, p.frauenthaler,

s.schulte}@dsg.tuwien.ac.at

† Pantos GmbH
Vienna, Austria

contact@pantos.io

Abstract—Today, the development of cross-blockchain appli-
cations involves a lot of complexity regarding the underlying
cross-blockchain communication. In an ideal world, developers
are able to completely focus on writing application logic instead
of dealing with passing data between blockchains.

In this white paper, we present a framework enabling cross-
blockchain smart contract invocations between Ethereum-based
blockchains. With just two lines of code, developers can invoke
smart contracts deployed on other blockchains, e.g., they can
deploy a contract on the Ethereum blockchain that calls smart
contracts on the Ethereum Classic blockchain.

I. INTRODUCTION

The Token Atomic Swap Technology (TAST) research
project1 investigates possible means of interconnecting mul-
tiple blockchains [2]. In particular, we explore different kinds
of cross-blockchain applications and protocols, e.g., cross-
blockchain token transfers [11, 12], or atomic swaps [9].
Typically, such applications involve various invocations of
smart contracts deployed on different blockchains. That is,
some action on blockchain A triggers another action on
blockchain B.

Today, when devising cross-blockchain applications and
protocols, developers usually have to deal with a lot of com-
plexity regarding the underlying cross-blockchain communi-
cation. As different blockchains cannot natively communicate
with each other [4], developers have to rely on off-chain clients
passing information between blockchains. Ideally, off-chain
clients are able to participate at any time without having to
request permission from a centralized authority [4]. While this
preserves the decentralized nature of blockchains, developers
have to account for malicious clients joining and corrupting
the system [7].

Furthermore, off-chain clients passing information from one
blockchain to another incur cost, e.g., transaction fees. To
compensate off-chain clients for their services, developers
need to come up with an incentive structure. The incentives
must reward honest and penalize dishonest behavior.

Hence, before being able to focus on writing the application
logic, developers have to solve a variety of challenging tasks.
As developers typically come up with a specific solution
for their applications, various systems for cross-blockchain
communication exist with many of them basically providing
the same service [1, 3, 6, 12]. As operating such systems may

White Paper, TU Wien; May 2020, version 1.0.
1http://www.dsg.tuwien.ac.at/projects/tast/

Blockchain BBlockchain A

ContractOnA ContractOnB

User

Figure 1: Interaction between two contracts residing on two different
blockchains.

be expensive [7], it may be more profitable to operate a generic
system that is utilized by many different applications.

Hence, a generic framework is desirable that enables smart
contracts on some blockchain A to communicate with con-
tracts on some other blockchain B and vice versa. Ide-
ally, developers can call smart contracts deployed on other
blockchains the same way they would call contracts residing
on the same blockchain without taking care of the underly-
ing cross-blockchain communication. In the next section, we
present a framework for such cross-blockchain smart contract
invocations.

II. CROSS-BLOCKCHAIN SMART CONTRACTS

As mentioned in Section I, a framework facilitating cross-
blockchain smart contracts enables a contract on some block-
chain A to invoke smart contracts on some other blockchain B
and vice versa. Figure 1 shows the basic interaction of a
cross-blockchain smart contract call. A user calls ContractOnA
which initiates a call of ContractOnB (i.e., the remote con-
tract). After the execution of ContractOnB, the result is
reported back to ContractOnA for further processing. As a
first step, we provide a proof of concept implementation of the
framework for Ethereum-based blockchains which is available
as open-source software on GitHub2. In the following, we
discuss the inner workings of the framework.

A. Architecture

The framework is based on Remote Procedure Calls (RPCs).
RPCs follow the request-response paradigm. A client initiates

2https://github.com/pantos-io/x-chain-smartcontracts

http://www.dsg.tuwien.ac.at/projects/tast/
https://github.com/pantos-io/x-chain-smartcontracts

Blockchain BBlockchain A

ContractOnA RPCProxy

RelayContract

RPCServer ContractOnB

RelayContract

Off-chain clientsUser

1.a

1.b

1.c

2.a

2.b

3.a

3.b

3.c

3.d

4.a

4.b

4.c

4.d

Figure 2: Interaction between two contracts residing on two different blockchains.

an RPC by sending a request to a known remote server. The
server executes the specified procedure and returns a response
to the client where the application continues to process.

Similarly, our framework consists of two main components
provided as smart contracts: RPCProxy and RPCServer, two
smart contracts that are deployed on the calling blockchain
and the remote blockchain, respectively. Consider Figure 2.
ContractOnA wants to call some function of ContractOnB.
ContractOnA initiates the function call by calling contract
RPCProxy which also resides on blockchain A. The RPCProxy
contract encodes the request and sends it via a set of off-
chain clients to a specialized contract on blockchain B,
the RPCServer. The RPCServer decodes the request and
calls the specified function of ContractOnB (the remote con-
tract). After execution, the response is provided back to the
RPCProxy on blockchain A which forwards the result back to
ContractOnA (the calling contract).

As mentioned above, the actual cross-blockchain communi-
cation is handled by a set of off-chain clients since blockchains
cannot natively communicate with each other [4]. The call
requests and responses are encoded as Ethereum transactions
and the off-chain clients just relay these transactions between
the involved blockchains. For instance, the transaction that
initiated the call request from ContractOnA is relayed to the
RPCServer on blockchain B, which routes the request to the
requested smart contract (i.e., ContractOnB).

Of course, ContractOnB should only execute the call, if
the request is valid. That is, if the transaction containing the
request is actually included and confirmed on blockchain A.
For that, a further component is required, a so-called block-
chain relay [7]. Blockchain relays provide the ability for one
blockchain to verify whether certain transactions are included
and confirmed on some other blockchain without relying on
trust in a single party. As such, before forwarding the call
request to ContractOnB, the RPCServer calls the respective
relay to check that the request is indeed valid. Similarly, the

RPCProxy calls a relay to verify that the provided response
is a valid response that was returned by ContractOnB (i.e.,
the respective transaction is included and confirmed in block-
chain B). Note that we treat the relay contract as a black box.
Given a transaction, the relay contract provides an answer, true
or false, whether the transaction is included and confirmed on
the other blockchain or not. Details of how blockchain relays
operate under the hood can be found in [7].

B. Behind the Scenes

With the different components of the framework introduced,
this section discusses what happens behind the scenes when a
remote contract is invoked.

1) Cross-chain Call Preparation: Consider Figure 2 again.
Some user calls a function of ContractOnA on block-
chain A which contains a cross-blockchain call, i.e., a call
of some function of ContractOnB on blockchain B (Step 1.a).
ContractOnA “prepares” the cross-blockchain call by calling
the RPCProxy (Step 1.b). When ContractOnA makes a cross-
chain call using the RPCProxy, the RPCProxy emits a Call-
Prepared event which is recognized by the off-chain clients
(Step 1.c).

2) Cross-chain Call Request: We need to make sure that
cross-chain calls are only successful if they are initiated by
the correct RPCProxy contract. In Ethereum, transactions only
contain the address of the contract that has been invoked first.
If this contract calls other contracts as part of its execution,
these subsequent calls are not encoded in the transaction.
Hence, the RPCServer would not be able to know whether
the correct RPCProxy prepared the call request when pars-
ing transactions from blockchain A as the transactions only
contain ContractOnA’s address and not the address of the
RPCProxy. The RPCServer contract would have no way of
knowing whether ContractOnA subsequently called the right
RPCProxy or just a fake one. Thus, two further steps are
necessary.

After the off-chain client is informed about a pending cross-
chain call via the CallPrepared event on blockchain A, it
can create a cross-chain call request by directly calling the
RPCProxy (Step 2.a). This time, the address of RPCProxy
is encoded in the corresponding transaction. Thus, when the
transaction is forwarded to the RPCServer on blockchain B,
the RPCServer can verify that it was the correct RPCProxy
which requested the call and not a fake one. If this verification
is successful, the RPCServer can trust the encoded call request
data. Otherwise, it would be possible to invoke contracts on
blockchain B which have never been called by some contract
on blockchain A.

When the off-chain client calls the RPCProxy, it emits a
CallRequested event (Step 2.b). This indicates that the call
can now be relayed to the RPCServer on blockchain B.

3) Cross-chain Call Execution: Again, an off-chain client
receives the CallRequested event. It now relays the call to
the RPCServer on blockchain B by forwarding the transaction
encoding the contract call (Step 3.a). When the RPCServer
receives the transaction, the following two steps are executed.

Before the call encoded in the transaction can be executed,
RPCServer needs to check that the received transaction is
actually included and confirmed in blockchain A. For that,
it forwards the transaction to the RelayContract (Step 3.b).
Further, the RPCServer needs to verify that the received trans-
action called the correct RPCProxy contract on blockchain A
to be sure that the call request can be trusted.

After the RPCServer is sure that the call request actually
exists on blockchain A (RelayContract returned true), it can
now forward the call to ContractOnB as indicated by the
request (Step 3.c). After the call is executed by ContractOnB,
the RPCServer emits a CallExecuted event encoding the result
value from the call execution. When an off-chain client rec-
ognizes the CallExecuted event, it knows that the call request
has been executed (Step 3.d).

4) Cross-chain Call Acknowledgment: After recognizing
the event, the off-chain client forwards the transaction encod-
ing the response to the RPCProxy on blockchain A (Step 4.a).
Before the call response can be extracted from the transac-
tion and returned to ContractOnA (call acknowledgment), the
RPCProxy needs to check that the received transaction is in-
cluded and confirmed in blockchain B. For that, it forwards the
transaction to the RelayContract on blockchain A (Step 4.b).
Further, RPCProxy verifies that the received transaction was
submitted to the correct RPCServer on blockchain B to prevent
fake responses.

After the RPCProxy is sure that the call response can be
trusted (corresponding transaction is confirmed on blockchain
B and correct RPCServer contract was called on B), it can
now execute the acknowledgment (step 4.c). The RPCProxy
looks up the stored callback function for the call and calls
this function of ContractOnA. After the callback is executed
by ContractOnA, the RPCProxy contract emits a CallAc-
knowledged event. When the off-chain clients receive the
CallAcknowledged event, they know that the remote contract
call has been completed.

C. Calling a Remote Contract

The provided framework hides the complexity involved in
making cross-blockchain contract calls. Developers of appli-
cations do not have to take care of the underlying cross-
blockchain communication anymore. Instead, they can con-
centrate on the application logic.

Listing 1 shows how a Solidity smart contract calls a remote
contract deployed on another blockchain. The function of
ContractOnB is called remoteFunction, takes two parameters
and returns an unsigned integer. Lines 5-6 show how to call
the function from within ContractOnA. The function signature
is packed together with the parameter values into a byte array
and passed via the callContract function to the RPCProxy.
Along with the call data, the caller has to pass the address of
the remote contract (contractOnB), a call identifier, and the
name of the callback function (“callback”) that will receive
the call acknowledgment. The callback function takes the call
identifier, the result of the remote call, and a boolean indicating
whether the call has been successful or not as arguments.

As you can see, the developer only needs to know about
the RPCProxy and can call a remote contract in just two
lines of code. The details of the underlying cross-blockchain
communication remain hidden.

III. DISCUSSION & FUTURE WORK

The presented framework for cross-blockchain smart con-
tracts can be beneficial for developers implementing cross-
blockchain applications as the framework hides a lot of com-
plexity involved in building cross-blockchain applications such
as the underlying means of cross-blockchain communication,
encoding and decoding of transactions, and security aspects.
The framework in its current state can be considered a proof
of concept. To provide a fully-fledged solution, several aspects
still have to be explored in further detail. We discuss these
aspects in the following subsections.

A. Incentive Structure

The framework relies on a set of off-chain clients to contin-
uously monitor the RPCProxy and RPCServer for new events
to transfer the necessary transactions between blockchains.
Submitting transactions causes cost which off-chain clients
are currently not compensated for. An incentive structure is
necessary to encourage participation. Furthermore, incentives
should be aligned so that honest behavior is rewarded while
malicious behavior is penalized.

Such an incentive structure likely involves callers of cross-
blockchain smart contracts to pay a small fee that is then paid
out to the off-chain clients that handle the underlying cross-
blockchain communication. The fee can be paid out in the
native currency of the invoking blockchain or in a currency that
exists on multiple blockchains contemporaneously, e.g., [5].
Furthermore, off-chain clients might have to provide a stake
before being able to participate. In case malicious behaviour
by an off-chain client is detected, its corresponding stake is

Listing 1: Calling a remote contract in Solidity
1 c o n t r a c t ContractOnA {
2 . . .
3
4 f u n c t i o n c a l l R e m o t e F u n c t i o n (a d d r e s s param1 , u i n t param2) p u b l i c {
5 b y t e s memory c a l l D a t a = a b i . e n c o d e W i t h S i g n a t u r e (" r e m o t e F u n c t i o n (a d d r e s s , u i n t 2 5 6) " , param1 , param2) ;
6 r p c P r o x y . c a l l C o n t r a c t (con t rac tOnB , c a l l I d e n t i f i e r , c a l l D a t a , " c a l l b a c k ") ;
7 }
8
9 f u n c t i o n c a l l b a c k (u i n t c a l l I d e n t i f i e r , b y t e s memory r e s u l t , boo l s u c c e s s) p u b l i c {

10 . . .
11 }
12 }
13
14 c o n t r a c t Contrac tOnB {
15 . . .
16
17 f u n c t i o n r e m o t e F u n c t i o n (a d d r e s s param1 , u i n t param2) p u b l i c r e t u r n s (u i n t) {
18 . . .
19 }
20 }

slashed or rewarded to the client that detected the wrongdo-
ing. This way, off-chain clients are disincentivized to behave
dishonestly and incentivized to report malicious activities.

B. Support for Reads

In its current form, the framework supports cross-blockchain
invocations of functions that alter the state of the remote
contract. Calling functions that merely read a value from the
remote contract and provide it back to the calling contract is
only supported by means of wrappers where reading the value
is wrapped in a function that alters the remote contract’s state
in some way, e.g., by emitting an event. Hence, calling remote
functions that only read a value causes some overhead for the
framework as the caller has to make sure a corresponding
wrapper exists. In future work, it needs to be examined if
and how read functions can be natively supported by the
framework.

C. Synchronous Calls

At the moment, the framework provides asynchronous
cross-blockchain smart contract invocations. When the remote
contract is called, its result is not immediately provided back
to the calling contract. Instead the result of the remote call is
provided back to the calling contract later on via a callback
function. In this paradigm, cross-blockchain application logic
is spread out over a series of calling and callback functions
where the next remote call is triggered in the previous call’s
callback function and so on. Depending on the number of
remote calls, this can lead to a deeply nested and complex
call structure.

In future work, it may be of interest to explore the pos-
sibility of providing synchronous remote calls where the
result of the remote call is provided back to the calling
function immediately, eliminating the need for a callback
function. While first attempts at synchronous cross-blockchain
smart contract invocations exist, so far they are restricted to
permissioned blockchains and require modifications of the
blockchain core [10]. However, modifications of the core of a

public, permissionless blockchain are not easily implemented
as each change has to be accepted and approved by the block-
chain’s community. Therefore, it remains unclear whether
synchronous remote calls are possible in public blockchains
without requiring modifications of the involved blockchains’
core implementations.

D. Nested Calls

Similarly to synchronous calls, the proof of concept only
provides limited support for nested calls, i.e., a remote contract
call that itself calls a remote contract. When the callback for
a remote call is invoked it does not contain any information
about the success of subsequent remote calls. This creates
a challenge for smart contracts that rely on the results of
subsequent remote calls.

In future work, we will investigate whether it is possible to
guarantee that before the callback of the first remote call is
invoked, all subsequent remote calls were executed as well.

E. Integration of further Blockchains

The proof of concept presented in this work enables cross-
blockchain smart contracts for Ethereum-based blockchains.
The given framework, for instance, provides the ability for
a smart contract on the Ethereum blockchain to call smart
contracts deployed on the Ethereum Classic blockchain. In
future work, other blockchains should be analyzed and inte-
grated. The existing framework will likely have to be adjusted
to account for the intricacies of the other blockchains. For
instance, Ethereum-based blockchains require the encoding of
the remote call request in two separate transactions due to
the fact that an Ethereum transaction does not contain the
complete call chain but only the first contract that is invoked
by the transaction. If a blockchain provides the complete call
chain, these two transactions can be merged.

IV. CONCLUSION

The approach presented in this paper provides cross-
blockchain smart contract invocations for Ethereum-based

blockchains. For instance, the framework enables smart con-
tracts on Ethereum to invoke contracts deployed on Ethereum
Classic and vice versa. By taking away the complexity of the
underlying cross-blockchain communication such as encoding,
decoding, security, and data transfer between blockchains,
developers can focus completely on writing application logic.
As we have shown, developers only need to write two lines of
code to initiate a cross-blockchain smart contract call. Apart
from reducing complexity, the proposed approach may also
make blockchain interoperability economically more viable as
the cost of maintaining such an interoperability platform can
be spread across all applications relying on it.

DISCLAIMER

Information provided in this paper is the result of research,
partly based on publicly available resources of varying qual-
ity. Popular use of cryptocurrencies includes investment and
speculation on price developments of currencies and assets.
The goal of this paper is to describe technical aspects relevant
for the TAST research project. Economic considerations or
future price developments are therefore not discussed. Tech-
nologies are described from a purely technical point of view.
Therefore, the information in this paper is provided for general
information purposes only and is not intended to provide
advice, information, predictions, or recommendations for any
investment. We do not accept any responsibility and expressly
disclaim liability with respect to reliance on information or
opinions published in this paper and from actions taken or not
taken on the basis of its contents.

ACKNOWLEDGMENT

The work presented in this paper has received funding from
Pantos GmbH within the TAST research project.

REFERENCES

[1] Autonomous Software. Metronome: Owner’s Manual. Version
0.99 (Last Updated 2019-08-15). Accessed 2020-07-31. 2018.
URL: https://github.com/autonomoussoftware/documentation/
blob/master/owners_manual/owners_manual.md.

[2] M. Borkowski et al. Cross Blockchain Technologies: Review,
State of the Art, and Outlook. 2019. URL: http://dsg.tuwien.
ac.at/projects/tast/pub/tast-white-paper-4.pdf. White Paper,
Technische Universität Wien. Version 1.0. Accessed 2020-02-
06.

[3] M. Borkowski et al. “DeXTT: Deterministic Cross-Blockchain
Token Transfers”. In: IEEE Access 7 (2019), pp. 111030–
111042.

[4] V. Buterin. Chain Interoperability. https : / / allquantor . at /
blockchainbib /pdf /vitalik2016chain .pdf. Accessed 2020-02-
10.

[5] P. Frauenthaler et al. Advanced Cross-Chain Tokens Transfers.
2020. URL: https://www.dsg.tuwien.ac.at/projects/tast/pub/
tast-white-paper-9.pdf. White Paper, Technische Universität
Wien. Version 1.0. Accessed 2020-07-29.

[6] P. Frauenthaler et al. Leveraging Blockchain Relays for Cross-
Chain Token Transfers. 2020. URL: https://www.dsg.tuwien.
ac.at/projects/tast/pub/tast-white-paper-8.pdf. White Paper,
Technische Universität Wien. Version 1.0. Accessed 2020-04-
20.

[7] P. Frauenthaler et al. Testimonium: A Cost-Efficient Blockchain
Relay. 2020. URL: https://arxiv.org/abs/2002.12837.

[8] J. Heiss et al. “From oracles to trustworthy data on-chaining
systems”. In: 2019 IEEE International Conference on Block-
chain (Blockchain). IEEE. 2019, pp. 496–503.

[9] M. Herlihy. “Atomic cross-chain swaps”. In: Proceedings
of the 2018 ACM symposium on Principles of Distributed
Computing. 2018, pp. 245–254.

[10] P. Robinson et al. “Atomic Crosschain Transactions for
Ethereum Private Sidechains”. In: (2019). URL: https://arxiv.
org/abs/1904.12079.

[11] M. Sigwart et al. Decentralized Cross-Blockchain Asset Trans-
fers. 2020. URL: https://arxiv.org/abs/2004.10488.

[12] A. Zamyatin et al. “XCLAIM: Trustless, Interoperable,
Cryptocurrency-Backed Assets”. In: IEEE Symposium on Se-
curity and Privacy (S&P). 2019, pp. 193–210.

https://github.com/autonomoussoftware/documentation/blob/master/owners_manual/owners_manual.md
https://github.com/autonomoussoftware/documentation/blob/master/owners_manual/owners_manual.md
http://dsg.tuwien.ac.at/projects/tast/pub/tast-white-paper-4.pdf
http://dsg.tuwien.ac.at/projects/tast/pub/tast-white-paper-4.pdf
https://allquantor.at/blockchainbib/pdf/vitalik2016chain.pdf
https://allquantor.at/blockchainbib/pdf/vitalik2016chain.pdf
https://www.dsg.tuwien.ac.at/projects/tast/pub/tast-white-paper-9.pdf
https://www.dsg.tuwien.ac.at/projects/tast/pub/tast-white-paper-9.pdf
https://www.dsg.tuwien.ac.at/projects/tast/pub/tast-white-paper-8.pdf
https://www.dsg.tuwien.ac.at/projects/tast/pub/tast-white-paper-8.pdf
https://arxiv.org/abs/2002.12837
https://arxiv.org/abs/1904.12079
https://arxiv.org/abs/1904.12079
https://arxiv.org/abs/2004.10488

	Introduction
	Cross-blockchain Smart Contracts
	Architecture
	Behind the Scenes
	Cross-chain Call Preparation
	Cross-chain Call Request
	Cross-chain Call Execution
	Cross-chain Call Acknowledgment

	Calling a Remote Contract

	Discussion & Future Work
	Incentive Structure
	Support for Reads
	Synchronous Calls
	Nested Calls
	Integration of further Blockchains

	Conclusion

