
Communication in Distributed Systems –

Fundamental Concepts

Hong-Linh Truong  

Distributed Systems Group, 

Vienna University of Technology

truong@dsg.tuwien.ac.at
dsg.tuwien.ac.at/staff/truong

1DS WS 2014

Distributed Systems, WS 2014Distributed Systems, WS 2014



What is this lecture about?

 Understanding basic terminologies in 

communication in distributed systems

 Understanding key concepts in communication 

in distributed systems

DS WS 2014 2



Learning Materials

 Main reading:

 Tanenbaum & Van Steen, Distributed Systems: 

Principles and Paradigms, 2e, (c) 2007 Prentice-Hall

 Chapters 3 & 4 

 George Coulouris, Jean Dollimore, Tim Kindberg, 

Gordon Blair„Distributed Systems – Concepts and 

Design“, 5nd Edition

 Chapters 2,3, 7.

 Craig Hunt, TCP/IP Network Administration, 3edition, 

2002, O‘Reilly.

 Test the examples in the lecture
 Some code http://www.infosys.tuwien.ac.at/teaching/courses/VerteilteSysteme/exs/

DS WS 2014 3



Outline

 Communication entities, paradigm, 

roles/responsibilities

 Key issues in communication in distributed 

systems

 Protocols

 Processing requests

 Summary

DS WS 2014 4



COMMUNICATION ENTITIES, 

PARADIGM, AND ROLES

DS WS 2014 5



Hardware, software layer, programs

Hardware (CPU, Memory, 
Network)

Operating Systems

Middleware/Libaries/Runtime
systems

Applications

DS WS 2014 6

Software layer

Programs/Programming 

Languages

 C/C++/Java, Python, 

…

 Different types of 

programs: systems 

versus applications; 

sequential versus 

parallel ones; clients 

versus 

servers/services 

EthernetHardware heterogeneity



System Layers and Core OS 

functionality

DS WS 2014 7

Appl ications, services

Computer & 

Platform

Middleware

OS: kernel ,

l ibraries & 

servers 

network hardware

OS1

Computer & 

network hardware

Node 1 Node 2

Processes, threads,

com munication, ...

OS2

Processes, threads,

com munication, ...

Communica tion

manager

Thread manager Memory m anager

Supervisor

Process m anager

Source: Coulouris, Dollimore, Kindberg

and Blair,  Distributed Systems: Concepts 

and Design   Edn. 5 

Core OS functionality

Different OSs with

a common

middleware layer



Process versus thread

DS WS 2014 8

Within a non distributed OS

 Process – the program being 

executed by the OS

 Threads within a process

 Switching thread context 

is much cheaper than that 

for the process context 

 Blocking calls in a thread do 

not block the whole process

Program

executed

P P

PP P

Distributed 

processes of the

same service

(coded in the same 

program)

Thread of

execution

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed 

Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed 

Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Communication NetworksCommunication Networks

Communication entities

DS WS 2014 9

OS ProcessesOS Processes

Middleware 1 
Processes

Middleware 1 
Processes

Application 1 
Processes

Application 1 
Processes

Application 2 
processes

Application 2 
processes

Middleware2 
Processes

Middleware2 
Processes

Middleware3 
Processes

Middleware3 
Processes

Application n 
Processes

Application n 
Processes

OS ProcessesOS Processes

Middleware 1 
Processes

Middleware 1 
Processes

Application 1 
Processes

Application 1 
Processes

Application 2 
processes

Application 2 
processes

Middleware 2 
Processes

Middleware 2 
Processes

Application
Processes
Application
Processes

Communication in distributed systems

 between processes within a single application/middleware/service

 among processes belonging to different applications/middleware/services

 Among computing nodes which have no concept of processes (e.g. sensors)

Q:  Identify some concrete types of communication entities in real-world 

distributed systems (e.g., in a parallel cluster system) 

Q:  Identify some concrete types of communication entities in real-world 

distributed systems (e.g., in a parallel cluster system) 



Space and Time in communication

DS WS 2014 10

The 

same 

time

At 

different 

times

Known

receiver

Unknown

receiver

Space

Time

Q:  why is understanding time and space uncoupling important for implementing 

communication in distributed systems?

Q:  why is understanding time and space uncoupling important for implementing 

communication in distributed systems?



Communication Paradigm

 Interprocess communication

 Low-level message-based communication, e.g., 

when communication entities are processes

 Remote invocation

 (direct) calling of remote functions (of

services/objects)

 Indirect communication

 Communication carried out through third parties

DS WS 2014 11



Communication roles and 

responsibilities 

 Several terms indicating communication entities

 Objects, components, processes  or services, clients, 

servers

 forms versus roles/responsibilities

 Roles

 Client/Server: client requests  - server serves!

 Sender/Receiver: w.r.t send/receive operation

 Service:   w.r.t. offering functionality

 Network service, software-as-a-service, 

DS WS 2014 12

Q:  Can a service have multiple servers placed in different machines? Q:  Can a service have multiple servers placed in different machines? 



Communication networks in 

distributed systems

 Maybe designed for specific types of environments

 High performance computing, M2M (Machine-to-Machine), 

building/home/city management, etc.

 Events, voices, documents, image data, etc.

 Distributed, different network spans

 Personal area networks (PANs), local area networks (LANs), 

campus area networks (CANs), metropolitan area networks 

(MANs), and wide area networks (WANs) 

 Communication entities are placed in different locations

 Different layered networks for distributed systems

 Physical versus overlay network topologies (virtual network 

topologies atop physical networks)

DS WS 2014 13



Communication 

Networks

Communication 

Networks

Layered communication

DS WS 2014 14

End-to-end process-to-process 

communication

e.g., email abc@tuwien.ac.at to 

ab@gmail.com

P1 P2

sender/client receiver/server

message

In the view of P1 and P2

Pk

Holistic system view
Pm

End-to-end process-to-

process communication

mailto:abc@tuwien.ac.at
mailto:ab@gmail.com


Communication Patterns

DS WS 2014 15

P1

P2

P3

P4

P1 P2

Q:  What are the benefits of group communication? Give some concrete 

examples (e.g., in P2P and social networks).

Q:  What are the benefits of group communication? Give some concrete 

examples (e.g., in P2P and social networks).

One-to- one/client-server

Group communication

sender/client receiver/server

P1

P2

P3

P4



Identifiers of entities  participating 

in communication 

 Communication cannot be done without knowing  

identifiers (names) of participating entities 

 Local versus global identifier

 Individual versus group identifier

 Multiple layers/entities  different forms of identifiers

 Process ID in an OS

 Machine ID: name/IP address 

 Access point: (machine ID, port number)

 A unique communication ID in a communication network

 Emails for humans

 Group ID 

DS WS 2014 16



Examples of communication

patterns (1)

 A User Agent  wants to find a Service Agent

 Different roles and different communication patterns

 Get http://jslp.sourceforge.net/ and play samples to see 

how it works

DS WS 2014 17

Service Location Protocol

http://tools.ietf.org/html/rfc2608

User AgentUser Agent Service AgentService Agent
listenmulticast

Network

one-to-one

Service AgentService Agent

listen

http://jslp.sourceforge.net/


Communication worldCommunication world

Examples of communication

patterns (2)

 MPI (Message 

Passing

Interface)

DS WS 2014 18

http://geco.mines.edu/workshop/cla

ss2/examples/mpi/c_ex04.c

source

MPI_Comm_size(MPI_COMM_WORLD,&numprocs);

MPI_Comm_rank(MPI_COMM_WORLD,&myid);

source=0;

count=4;

if(myid == source){

for(i=0;i<count;i++)

buffer[i]=i;

}

MPI_Bcast(buffer,count,MPI_INT,source,MPI_COMM_WORLD);$sudo apt-get install mpich

$mpicc c_ex04.c

$mpirun –np 4 ./a.out



Connection-oriented or connection

less communication

DS WS 2014 19

P1 P2

Connection-oriented communication between P1 and P2

requires the setup of communication connection between

them first – no setup in connectionless communication

Connection-oriented communication between P1 and P2

requires the setup of communication connection between

them first – no setup in connectionless communication

The message: „there is a party tonight“

Write the message in a letter

Go to the post office

Send the letter to P2

Find the phone number of P2

Call P2

Tell P2 the message

Q: What are the pros/cons of connection-oriented/connectionless 

communications? Is it possible to have a connectionless communication 

between (P1,P2) through some connection-oriented connections? 

Q: What are the pros/cons of connection-oriented/connectionless 

communications? Is it possible to have a connectionless communication 

between (P1,P2) through some connection-oriented connections? 



Blocking versus non-blocking 

communication calls

DS WS 2014 20

Send 

operation

Send 

operation

Sending message buffer

msg

Receiving message buffer

Receive 

operation

Receive 

operation

 Blocking: the process/thread 

execution is suspended until 

the message transmission 

finishes 

 Non-blocking: the 

process/thread execution 

continues without waiting until  

the finish of the message 

transmission  

Send: transmitting a message is finished, it does not necessarily mean 

that the message reaches its final destination.

Individual process/machine boundary Individual process/machine boundary

Q: Analyze the benefits of non-blocking communication. How does non-

blocking receive() work?

Q: Analyze the benefits of non-blocking communication. How does non-

blocking receive() work?



Persistent and transient 

communication

 Persistent communication

 Messages are kept in the communication system 

until they are delivered to the receiver

 Often storage is needed 

 Transient communication

 Messages are kept in the communication temporary 

only if both the sender and receiver are live

DS WS 2014 21



Asynchronous versus 

synchronous communication

 Asynchronous: the process continues after as 

soon as sending messages have been copied to 

the local buffer  

 Non blocking send; receive may/may not be blocking

 Callback mechanisms 

 Synchronous: the sender waits until it knows the 

messages have been delivered to the receiver

 Blocking send/blocking receive

 Typically utilize connection-oriented and keep-alive 

connection

 Blocking request-reply styles 

DS WS 2014 22



Different forms of communication

DS WS 2014 23

Q: How can we achieve the „persistent communication“? What are 

possible problems if a server sends an accepted/ACK message  before 

processing the request?  

Q: How can we achieve the „persistent communication“? What are 

possible problems if a server sends an accepted/ACK message  before 

processing the request?  

Source: Andrew S. Tanenbaum and

Maarten van Steen, Distributed Systems 

– Principles and Paradigms, 2nd Edition, 

2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and

Maarten van Steen, Distributed Systems 

– Principles and Paradigms, 2nd Edition, 

2007, Prentice-Hall 



Stateful versus Stateless Server

DS WS 2014 24

P1 P2

sender/client receiver/server

P1 P2

sender/client receiver/server

req1

req2

P2 has no information 

about P1 before

Does P2 keep 

information about P1 

from the previous 

request?

Stateless server Soft State Stateful Server

Does not keep client‘s 

state information

Keep some limited 

client‘s state information 

in a limited time

Maintain client‘s state 

information   

permanently 

T0

T1

Q: Give an example of a stateless communication built atop stateless communication. 

Analyze “web cookie” w.r.t. stateless/stateful support. 

Q: Give an example of a stateless communication built atop stateless communication. 

Analyze “web cookie” w.r.t. stateless/stateful support. 



Handling out of band data

DS WS 2014 25

P1 P2

sender/client receiver/server

Req2, Req1
All messages come to 

P2 in the same port, no 

clear information about 

priority 

Normal case

P1 P2

sender/client receiver/server

Req1

Out of band

data with a 

separate 

transmission port

Req2

Out-of-band data 

and communication 

channel for 

important data

Q: How can out-of-band data and normal data be handled by using  the 

same transmission channel?

Q: How can out-of-band data and normal data be handled by using  the 

same transmission channel?



COMMUNICATION 

PROTOCOLS

DS WS 2014 26



Some key questions – Protocols

DS WS 2014 27

P1 P2

A  communication protocol will describe rules 

addressing  these issues

The message: „there is a party“ tonight

 Communication patterns

Can I use a single sending command to send the message 

to multiple people?

 Identifier/Naming/Destination

How do I identify the guys I need to send the message

 Connection setup

Can I send the message without setting up the connection

 Message structure

Can I use German or English to write the message

 Layered communication

Do I need other intermediators to relay the message?

...



Applications and Protocols

DS WS 2014 28

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 

Application-specific protocols Application-independent protocols



Layered Communication Protocols

 Complex and open communication requires 

multiple communication protocols

 Communication protocols are typically organized 

into differ layers: layered protocols/protocol 

stacks

 Conceptually: each layer has a set of different 

protocols for certain communication functions

 Different protocols are designed for different 

environments/criteria

 A protocol suite: usually a set of protocols  used 

together in a layered model

DS WS 2014 29



OSI – Open Systems 

Interconnection Reference Model

DS WS 2014 30

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 



OSI Layers

Application • Support  application-specific needs• Support  application-specific needs

Presentation
• Process  information format and deliver the 

information for the application layer (e.g., serializing 
and encryption)

• Process  information format and deliver the 
information for the application layer (e.g., serializing 
and encryption)

Session
• Manage communication sessions between 

applications
• Manage communication sessions between 

applications

Transport
• Provide an end-to-end communication for 

applications by delivering data among applications
• Provide an end-to-end communication for 

applications by delivering data among applications

Network • Route data packets among senders/receivers• Route data packets among senders/receivers

Data Link
• Deal with sending data frames (units of bits) and 

detecting/correcting data frames
• Deal with sending data frames (units of bits) and 

detecting/correcting data frames

Physical Layer
• Transfer binary  data (bits) over physical interfaces 

(e.g., fiber optics)
• Transfer binary  data (bits) over physical interfaces 

(e.g., fiber optics)

DS WS 2014 31



How layered protocols work –

message exchange

DS WS 2014 32

 Principles of constructing messages/data 

encapsulation

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 



Examples of Layered Protocols

DS WS 2014 33

IEEE 802.3
(Ethernet)

IEEE 802.3
(Ethernet)

Ethernet 
CSMA/CD
Ethernet 

CSMA/CD

IPIP

TCPTCP

FTPFTP

BACNetBACNet

BACNetBACNet

CSMA/CACSMA/CA

LonWorksLonWorks

PL-20PL-20

P-persistent 
CSMA

P-persistent 
CSMA

ModBusModBus KNX (Konnex)KNX (Konnex)

KNX (Konnex)KNX (Konnex)

TPTP

Application

Layer

Presentation

Layer

Session Layer

Transport 

Layer

Network Layer

Data Link

Layer

Physical 

Layer
ZigBeeZigBee

IEEE 802.11 
(Wifi) 

IEEE 802.11 
(Wifi) 

X.21 X.21 ATMATM

RUDPRUDPUDPUDP SCTPSCTP

CoAPCoAPHTTPHTTP



TCP/IP

 The most popular protocol suite used in the 

Internet

 Four layers

DS WS 2014 34

http://tools.ietf.org/html/rfc1122http://tools.ietf.org/html/rfc1122

Link Layer

Internet Layer

Transport Layer

Application Layer

Most network
hardware

Internet Protocol (IP)

UDP, TCP

SMTP, HTTP, Telnet, 
FTP, etc.

Protocol suite



Internet Protocol (IP)

 Defines the datagram as the 

basic data unit 

 Defines the Internet address 

scheme

 Transmits data between the 

Network Access Layer and 

Transport Layer

 Routes datagrams to 

destinations

 Divides and assembles 

datagrams

DS WS 2014 35

Figure source: 

http://en.wikipedia.org/wiki/Internet_protocol_suite



TCP/IP – Transport Layer

 Host-to-host transport features

 Two main protocols: TCP (Transmission Control 

Protocol) and UDP (User Datagram Protocol)

DS WS 2014 36

Layer\Protocol TCP UDP

Application layer Data sent via 

Streams

Data sent in 

Messages

Transport Layer Segment Packet

Internet Layer Datagram Datagram

Link Layer Frame Frame

Note: pay attention with the terms „packet/datagram“ in TCP/IP versus that in the OSI modelNote: pay attention with the terms „packet/datagram“ in TCP/IP versus that in the OSI model



TCP operations

$sudo nast -d -T iptest >ip.out

$wget www.tuwien.ac.at

$sudo nast -d -T iptest >ip.out

$wget www.tuwien.ac.at

DS WS 2014 37

---[ TCP ]-----------------------------------------------------------

192.168.1.7:46023(unknown) -> 128.130.35.76:80(http)

TTL: 64 Window: 14600 Version: 4 Length: 60

FLAGS: -S----- SEQ: 3308581872 - ACK: 0

Packet Number: 16

---[ TCP ]-----------------------------------------------------------

128.130.35.76:80(http) -> 192.168.1.7:46023(unknown)

TTL: 54 Window: 14480 Version: 4 Length: 60

FLAGS: -S--A-- SEQ: 3467332359 - ACK: 3308581873

Packet Number: 17

---[ TCP ]-----------------------------------------------------------

192.168.1.7:46023(unknown) -> 128.130.35.76:80(http)

TTL: 64 Window: 115 Version: 4 Length: 52

FLAGS: ----A-- SEQ: 3308581873 - ACK: 3467332360

Packet Number: 18

---[ TCP ]-----------------------------------------------------------

192.168.1.7:46023(unknown) -> 128.130.35.76:80(http)

TTL: 64 Window: 115 Version: 4 Length: 166

FLAGS: ---PA-- SEQ: 3308581873 - ACK: 3467332360

Packet Number: 19

---[ TCP Data ]------------------------------------------------------

GET / HTTP/1.1

---[ TCP ]-----------------------------------------------------------

128.130.35.76:80(http) -> 192.168.1.7:46023(unknown)

TTL: 54 Window: 114 Version: 4 Length: 52

FLAGS: ----A-- SEQ: 3467332360 - ACK: 3308581987

Packet Number: 20

---[ TCP ]-----------------------------------------------------------

128.130.35.76:80(http) -> 192.168.1.7:46023(unknown)

TTL: 54 Window: 114 Version: 4 Length: 1500

FLAGS: ----A-- SEQ: 3467332360 - ACK: 3308581987

Packet Number: 21

---[ TCP Data ]------------------------------------------------------

HTTP/1.1 200 OK

---[ TCP ]-----------------------------------------------------------

192.168.1.7:46023(unknown) -> 128.130.35.76:80(http)

TTL: 64 Window: 14600 Version: 4 Length: 60

FLAGS: -S----- SEQ: 3308581872 - ACK: 0

Packet Number: 16

---[ TCP ]-----------------------------------------------------------

128.130.35.76:80(http) -> 192.168.1.7:46023(unknown)

TTL: 54 Window: 14480 Version: 4 Length: 60

FLAGS: -S--A-- SEQ: 3467332359 - ACK: 3308581873

Packet Number: 17

---[ TCP ]-----------------------------------------------------------

192.168.1.7:46023(unknown) -> 128.130.35.76:80(http)

TTL: 64 Window: 115 Version: 4 Length: 52

FLAGS: ----A-- SEQ: 3308581873 - ACK: 3467332360

Packet Number: 18

---[ TCP ]-----------------------------------------------------------

192.168.1.7:46023(unknown) -> 128.130.35.76:80(http)

TTL: 64 Window: 115 Version: 4 Length: 166

FLAGS: ---PA-- SEQ: 3308581873 - ACK: 3467332360

Packet Number: 19

---[ TCP Data ]------------------------------------------------------

GET / HTTP/1.1

---[ TCP ]-----------------------------------------------------------

128.130.35.76:80(http) -> 192.168.1.7:46023(unknown)

TTL: 54 Window: 114 Version: 4 Length: 52

FLAGS: ----A-- SEQ: 3467332360 - ACK: 3308581987

Packet Number: 20

---[ TCP ]-----------------------------------------------------------

128.130.35.76:80(http) -> 192.168.1.7:46023(unknown)

TTL: 54 Window: 114 Version: 4 Length: 1500

FLAGS: ----A-- SEQ: 3467332360 - ACK: 3308581987

Packet Number: 21

---[ TCP Data ]------------------------------------------------------

HTTP/1.1 200 OK

Source: Andrew S. Tanenbaum and Maarten 

van Steen, Distributed Systems – Principles

and Paradigms, 2002, Prentice-Hall, Inc.

Source: Andrew S. Tanenbaum and Maarten 

van Steen, Distributed Systems – Principles

and Paradigms, 2002, Prentice-Hall, Inc.

http://www.tuwien.ac.at/
http://www.tuwien.ac.at/


Communication protocols are not 

enough

 We need more than just communication 

protocols

 E.g., resolving names, electing a communication 

coordinator, locking resources, and synchronizing 

time

 Middleware 

 Including a set of general-purpose but application-

specific protocols, middleware communication 

protocols,  and other specific services. 

DS WS 2014 38



Middleware Protocols

DS WS 2014 39

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd 

Edition, 2007, Prentice-Hall 



HANDLING COMMUNICATION

MESSAGES/REQUESTS

DS WS 2014 40



Where communication tasks take

place?

 Message passing – send/receive

 Processes send and receive messages

 Sending process versus receiving process

 Communication is done by using a set of functions for 

communication implementing protocols

 Remote method/procedure calls

 A process calls/invokes a (remote) procedure in 

another process

 Local versus remote procedure call, but in the same manner

 Remote object calls

 A process calls/invokes a (remote) object in another 

process

DS WS 2014 41



NetworkNetwork

Basic send/receive communication

DS WS 2014 42

# Echo client program

import socket

HOST = 'daring.cwi.nl'    # The remote host

PORT = 50007              # The same port as 

used by the server

s = socket.socket(socket.AF_INET, 

socket.SOCK_STREAM)

s.connect((HOST, PORT))

s.send('Hello, world')

data = s.recv(1024)

s.close()

print 'Received', repr(data)

# Echo server program

import socket

HOST = ''                 # Symbolic name meaning the 

local host

PORT = 50007              # Arbitrary non-privileged 

port

s = socket.socket(socket.AF_INET, 

socket.SOCK_STREAM)

s.bind((HOST, PORT))

s.listen(1)

conn, addr = s.accept()

print 'Connected by', addr

while 1:

data = conn.recv(1024)

if not data: break

conn.send(data)

conn.close()

Python source: http://docs.python.org/release/2.5.2/lib/socket-example.html



Remote procedure calls 

DS WS 2014 43

void

hello_prog_1(char *host)

{

CLIENT *clnt;

char * *result_1;

char *hello_1_arg;

#ifndef DEBUG

clnt = clnt_create (host, HELLO_PROG, HELLO_VERS, "udp");

if (clnt == NULL) {

clnt_pcreateerror (host);

exit (1);

}

#endif /* DEBUG */

result_1 = hello_1((void*)&hello_1_arg, clnt);

if (result_1 == (char **) NULL) {

clnt_perror (clnt, "call failed");

}

#ifndef DEBUG

clnt_destroy (clnt);

#endif /* DEBUG */

printf("result is: %s\n",(*result_1));

}

int

main (int argc, char *argv[])

{

char *host;

if (argc < 2) {

printf ("usage: %s server_host\n", argv[0]);

exit (1);

}

host = argv[1];

hello_prog_1 (host);

exit (0);

}

char **

hello_1_svc(void *argp, struct svc_req *rqstp)

{

static char * result ="Hello";

/*

* insert server code here

*/

return &result;

}

NetworkNetwork

Procedure in a remote server



Remote object calls

DS WS 2014 44

public class ComputePi {

public static void main(String args[]) {

if (System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());

}

try {

String name = "Compute";

Registry registry = LocateRegistry.getRegistry(args[0]);

Compute comp = (Compute) registry.lookup(name);

Pi task = new Pi(Integer.parseInt(args[1]));

BigDecimal pi = comp.executeTask(task);

System.out.println(pi);

} catch (Exception e) {

System.err.println("ComputePi exception:");

e.printStackTrace();

}

}   

}

public interface Compute extends Remote {

<T> T executeTask(Task<T> t) throws RemoteException;

}

….

public class ComputeEngine implements Compute {

public ComputeEngine() {

super();

}

public <T> T executeTask(Task<T> t) {

return t.execute();

}

public static void main(String[] args) {

if (System.getSecurityManager() == null) {

System.setSecurityManager(new SecurityManager());

}

try {

String name = "Compute";

Compute engine = new ComputeEngine();

Compute stub =

(Compute) UnicastRemoteObject.exportObject(engine, 0);

Registry registry = LocateRegistry.getRegistry();

registry.rebind(name, stub);

System.out.println("ComputeEngine bound");

} catch (Exception e) {

System.err.println("ComputeEngine exception:");

e.printStackTrace();

}

}

}

Java  source: 

http://docs.oracle.com/javase/tutorial/rmi

/overview.html

Java  source: 

http://docs.oracle.com/javase/tutorial/rmi

/overview.html

Objects in a remote server



Processing multiple requests

 How to deal with multiple, concurrent messages 

received?

 Problems:

 Different roles: clients versus servers/services

 A large number of clients interact with a small number of 

servers/services

 A single process might receive a lot of messages at the 

same time

 Impacts 

 performance, reliability, cost, etc.

DS WS 2014 45



Iterative versus concurrent

processing

DS WS 2014 46

Receive a 
request

Process the
request

Return the
result

Request handling flow

Receive a 
request

Ask another 
process/thre
ad to process 
the request

Wait for new 
requests

Request handling flow

Process the request Return the result

Iterative 

processing

Concurrent 

processing



Using replicated processes

DS WS 2014 47

Often load 

balancing 

mechanisms are 

needed

Q: How does this model help to improve performance and fault-tolerance? 

What would be a possible mechanism to reduce costs based on the number of 

client requests?

Q: How does this model help to improve performance and fault-tolerance? 

What would be a possible mechanism to reduce costs based on the number of 

client requests?

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems – Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Example

DS WS 2014 48

HAProxyHAProxy

SimpleHelloHTTPServer

(ID=tuwien)

SimpleHelloHTTPServer

(ID=tuwien)

SimpleHelloHTTPServer

(ID=univie)

SimpleHelloHTTPServer

(ID=univie)

SimpleHelloHTTPServer

(ID=uibk)

SimpleHelloHTTPServer

(ID=uibk)

http://haproxy.1wt.eu/

 Get a small test

Download haproxy, e.g.

$sudo apt-get install haproxy

 Download SimpleHelloHTTPServer.java and haproxy configuration

 http://bit.ly/19xFDRC

 Run 1 haproxy instance and 3 http servers

 Modify configuration and parameters if needed

 Run a test client



Using multiple threads

DS WS 2014 49

Q: Compare this architectural model with the super-server model?Q: Compare this architectural model with the super-server model?

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems 

– Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems 

– Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Using message brokers/space

repository

DS WS 2014 50

TupleSpaceTupleSpace

ObjObj
ObjObj

ObjObj

ObjObjObjObj

P1

put

P2

get

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems 

– Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 

Source: Andrew S. Tanenbaum and Maarten van Steen, Distributed Systems 

– Principles and Paradigms, 2nd Edition, 2007, Prentice-Hall 



Example

DS WS 2014 51

cloudamqp.com

Test senderTest sender

 Get a free instance of RabbitMQ from cloudamqp.com

 Get code from: https://github.com/cloudamqp/java-amqp-example

 First run the test sender, then run the receiver

Test receiverTest receiver

channel.queueDeclare(QUEUE_NAME, false, false, false, null);

for (int i=0; i<100; i++) {

String message = "Hello distributed systems guys:  "+i;

channel.basicPublish("", QUEUE_NAME, null, message.getBytes());

System.out.println(" [x] Sent '" + message + "'");

new Thread().sleep(5000);

}

while (true) {

QueueingConsumer.Delivery delivery = consumer.nextDelivery();

String message = new String(delivery.getBody());

System.out.println(" [x] Received '" + message + "'");

}

Note: i modified the code a bit

https://github.com/cloudamqp/java-amqp-example


Summary

 Complex  and diverse communication patterns, 

protocols and processing models

 Choices are based on communication 

requirements and underlying networks 

 Understand their pros/cons

 Understand pros and cons of their technological 

implementations 

 Dont forget to play with some simple examples 

to understand existing concepts

DS WS 2014 52



53

Thanks for 
your attention

Hong-Linh Truong

Distributed Systems Group

Vienna University of Technology

truong@dsg.tuwien.ac.at

http://dsg.tuwien.ac.at/staff/truong

DS WS 2014


