Agreement in Faulty Systems

Organizing replicated processes into a group helps to increase fault tolerance.
As we mentioned, if a client can base its decisions through a voting mechanism,
we can even tolerate that k out of 2k + 1 processes are lying about their result.
The assumption we are making, however, is that processes do not team up to pro-
duce a wrong result.

In general, matters become more intricate if we demand that a process group
reaches an agreement. Agreement is nceded In many cases. Some examples are:
electing a coordinator, deciding whether or not to commit a transaction, dividing
up tasks among workers, and synchronization. When the communication and
processes are all perfect, reaching such agreement is often straightforward, but
when they are not, problems arise.

The general goal of distributed agreement algorithms is to have all the non-
faulty processes reach consensus on some issue, and to establish that consensus

within a finite number of steps. Different cases are possible depending on system
parameters, including whether or not communication is reliable, or the crash-
failure semantics for processes.

Before considering the case of faulty processes, let us look at the “easy” case
of perfect processes but where communication lines can lose messages. There is a
famous problem, known as the two-army problem, which illustrates the diffi-
culty of getting even two perfect processes to reach agreement about 1 bit of
information. The red army, with 5000 troops, is encamped in a valley. Two blue
armies, each 3000 strong, are encamped on the surrounding hillsides overlooking
the valley. If the two blue armies can coordinate their attacks on the red army,
they will be victorious. However, if either one attacks by itself it will be
slaughtered. The goal of the blue armies is to reach agreement about attacking.
The catch is that they can only communicate using an unreliable channel: sending
a messenger who is subject to capture by the red army.

Suppose that the commander of blue army 1, General Alexander, sends a mes-
sage to the commander of blue army 2, General Bonaparte, reading: “I have a
plan—let’s attack at dawn tomorrow.” The messenger gets through and Bonaparte
sends him back with a note saying: “Splendid idea, Alex. See you at dawn tomor-
row.” The messenger gets back to his base safely, delivers his messages, and
Alexander tells his troops to prepare for battle at dawn.

However, later that day, Alexander realizes that Bonaparte does not know if
the messenger got back safely and not knowing this, may not dare to attack. Con-
sequently, Alexander tells the messenger to go tell Bonaparte that his
(Bonaparte’s) message arrived and that the battle is set.

Once again the messenger gets through and delivers the acknowledgement.
But now Bonaparte worries that Alexander does not know if the acknowledge-
ment got through. He reasons that if Bonaparte thinks that the messenger was cap-
tured, he will not be sure about his (Alexander’s) plans, and may not risk the
attack, so he sends the messenger back again.

Even if the messenger makes it through every time, it is easy to show that
Alexander and Bonaparte will never reach agreement, no matter how many
acknowledgements they send. Assume that there is some protoco] that terminates
in a finite number of steps. Remove any extra steps at the end to get the minimum
protocol that works. Some message is now the last one and it is essential to the
agreement (because this is the minimum protocol). If this message fails to arrive,
the war is off. "

However, the sender of the last message does not know if the last message
arrived. If it did not, the protocol did not complete and the other general will not
attack. Thus the sender of the last message cannot know if the war is scheduled or
not, and hence cannot safely commit his troops. Since the receiver of the last mes-
sage knows the sender cannot be sure, he will not risk certain death either, and
there is no agreement. Even with nonfaulty processes (generals), agreement be-
tween even two processes 1s not possible in the face of unreliable communication.

2

Now let us assume that the communication is perfect but the processes are
not. The classical problem here also occurs in a military setting and is called the
Byzantine generals problem. In this problem the red army is still encamped in
the valley, but n blue generals all head armies on the nearby hills. Communication
is done pairwise by telephone and is instantaneous and perfect, but m of the gen-
erals are traitors (faulty) and are actively trying to prevent the loyal generals from
reaching agreement by feeding them incorrect and contradictory information (to
model malfunctioning processes). The question is now whether the loyal generals
can still reach agreement.

For the sake of generality, we will define agreement in a slightly different
way here. Each general is assumed to know how many troops he has. The goal of
the problem is for the generals to exchange troop strengths, so that at the end of
the algorithm, each general has a vector of length n corresponding to all the
armies. If general [is loyal, then element / is his troop strength; otherwise, it is
undefined.

A recursive algorithm was devised by Lamport et al. (1982) that solves this
problem under certain conditions. In Fig. 7-4 we illustrate the working of the
algorithm for the case of n =4 and m = 1. For these parameters, the algorithm
operates in four steps. In step one, every general sends a (reliable) message to
every other general announcing his troop strength. Loyal generals tell the truth,;
traitors may tell every other general a different lie. In Fig. 7-4(a) we sce that gen-
eral 1 reports 1K troops, general 2 reports 2K troops, general 3 lies to everyone,
giving x, y, and z, respectively, and general 4 reports 4K troops. In step 2, the
results of the announcements of step 1 are collected together in the form of the
vectors of Fig. 7-4(b). '

1 Got(1,2,x, 4) 1 Got 2 Got 4 Got

2 Got(1.2.y. 4) A,2.v4) {2 x4 2 x4)
3 Got(1,2, 3,4) (a, b! C,d) (ex f, g,h) (192! y34)
4 Got(1.2 z 4) (1.2.2,4) (1.2, 2.4) (i.] k1)

Faulty process

(a) (b) ()

Figure 7-4. The Byzantine generals problem for three loyal generals and one
traitor. (a) The generals announce their troop strengths (in units of 1 kilosol-
diers). (b) The vectors that each general assembles based on (a). (c) The vec-
tors that each general receives in step 3.

Step 3 consists of every general passing his vector from Fig. 7-4(b) to every
other general. Each general gets three vectors, one from each other general. Here,

3

too, general 3 lies through his teeth, inventing 12 new values, a through /. The
results of step 3 are shown in Fig. 7-4(c). Finally, in step 4, each general exam-
ines the ith element of each of the newly received vectors. If any value has a
majority, that value is put into the result vector. If no value has a majority, the
corresponding element of the result vector is marked UNKNOWN. From Fig. 7-
4(c) we see that generals 1, 2, and 4 all come to agreement on

(1, 2, UNKNOWN, 4)

which is the correct result. The traitor cannot corrupt the information from the
loyal generals; he was not able to gum up the works.

Now let us revisit this problem for n =3 and m = 1, that is, only two loyal
generals and one traitor, as illustrated in Fig. 7-5. Here we see that in Fig. 7-5(¢c)
neither of the loyal generals sees a majority for element 1, element 2, or element
3, so all of them are marked UNKNOWN. The algorithm has failed to produce
agreement.

Faulty process

(@) (b) (c)

Figure 7-5. The same as Fig. 7-4, except now with two loyal generals and one
traitor,

In their paper, Lamport et al. (1982) proved that in a system with m faulty
processes, agreement can be achieved only if 2m + 1 correctly [functioning
processes arc present, for a total of 3m + 1. Put in slightly different terms, agree-
ment is possible only if more than two-thirds of the processes are working prop-
erly. ‘
Another way of looking at this problem, is as follows. Basically, what we
need to achieve is a majority vote among a group of loyal generals regardless of
whether there are also traitors among their midsts. If there are traitors, we need
to ensure that their vote, along with that of any loyalists who have been mislead
by the traitors, still corresponds to the majority vote of the loyalists. With 2im + 1
loyalists, this can be achieved by requiring that agreement is reached only if more
than two-thirds of the votes are the same. In other words, if more than two-thirds
of the generals agree on the same decision, this decision corresponds to the same
majority vote by the group of loyal generals.

Unfortunately, reaching agreement can be even worse. Fischer et al. (1985)
proved that in a distributed system in which messages cannot be guaranteed to be

4

delivered within a known, finite time, no agreement is possible if even one pro-
cess 1s faulty (albeit if that one process fails silently). The problem with such sys-
tems is that arbitrarily slow processes are indistinguishable from crashed ones.
Many other theoretical results are known about when agreement is possible and
when 1t is not. Surveys of these results are given in (Barborak et al., 1993; and
Turek and Shasha, 1992).

