GLOBAL STATE

On many occasions, it is useful to know the global state in which a distributed
system is currently residing. The global state of a distributed system consists of
the local state of each process, together with the messages that are currently in
transit, that is, that have been sent but not delivered. What exactly the local state

1

of a process is depends on what we are interested in (Helary, 1989). In the case of
a distributed database system, it may consist of only those records that form part
of the database and exclude temporary records used for computations. In our
example of tracing-based garbage collection as discussed in the previous chapter,
the local state may consist of variables representing markings for those proxies,
skeletons, and objects that are contained in the address space of a process.

Knowing the global state of a distributed system may be useful for many rea-
sons. For example, when it is known that local computations have stopped and
that there are no more messages in transit, the system has obviously entered a
state in which no more progress can be made. By analyzing such a global state, it
may be concluded that we are either dealing with a deadlock (see, for example,
Bracha and Toueg, 1987), or that a distributed computation has correctly ter-
minated. An example of how such an analysis can actually be done is discussed
below. "

A simple, straightforward way for recording the global state of a distributed
system was proposed by Chandy and Lamport (1985) who introduced the notion
of a distributed snapshot. A distributed snapshot reflects a state in which the
distributed system might have been. An important property is that such a snapshot
reflects a consistent global state. In particular, this means that if we have recorded
that a process P has received a message from another process Q, then we should
also have recorded that process Q had actually sent that message. Otherwise, a
snapshot will contain the recording of messages that have been received but never
sent, which is obviously not what we want. The reverse condition (Q has sent a
message that P has not yet received) is allowed, however.

The notion of a global state can be graphically represented by what is called a
cut, as shown in Fig. 5-9. In Fig. 5-9(a), a consistent cut is shown by means of
the dashed line crossing the time axis of the three processes Py, P,, and P;. The
cut represents the last event that has been recorded for each process. In this case,
it can be readily verified that all recorded message receipts have a corresponding
recorded send event. In contrast, Fig.5-9(b) shows an inconsistent cut. The
receipt of message m2 by process P3 has been recorded, but the snapshot contains
no corresponding send event. '

To simplify the explanation of the algorithm for taking a distributed snapshot,
we assume that the distributed system can be represented as.a collection of
processes connected to each other through unidirectional point-to-point communi-
cation channels. For example, processes may first set up TCP connections before
any further communication takes place.

Any process may initiate the algorithm. The initiating process, say P, starts by
recording it8 own local state. Then, it sends a marker along each of its outgoing
channels, indicating that the receiver should participate in recording the global
state.

When a process Q receives a marker through an incoming channel C, its
action depends on whether or not it has already saved its local state. If it has not

2

Consistent cut Inconsistent cut

P1 \ P Time —»
m1 ____! —————— m3
P2 P2
\\\ m2)
P3 P3
Sender of m2 cannot
be identified with this cut

(a) (b)

Figure 5-9, (a) A consistent cut. (b) An inconsistent cut.

already done so, it first records its local state and also sends a marker along each
of its own outgoing channels. If Q had already recorded its state, the marker on
channel C is an indicator that Q should record the state of the channel. This state
is formed by the sequence of messages that have been received by Q since the last
time Q recorded its own local state, and before it received the marker. Recording
this state is shown in Fig. 5-10.

Incoming Qutgoing
message Process State message

— >

Local
filesystem

HM—> - — >
aHbHe» Q N MHdP> Q@ T %ﬂ}D»o

&

[a][b][c][d]
Recorded
state

AEE

(b) {c) (d)

Figure 5-10. (a) Organization of a process and channels for a distributed
snapshot. (b) Process Q receives a marker for the first time and records its local
state. (c) O records all incoming messages. (d) Q receives a marker for ifs in-
coming channel and finishes recording the state of the incoming channel.

3

A process is said to have finished its part of the algorithm when it has
received a marker along each of its incoming channels, and processed each one.
At that point, its recorded local state, as well as the state it recorded for each
incoming channel, can be collected and sent, for example, to the process that ini-
tiated the snapshot. The latter can then subsequently analyze the current state.
Note that, meanwhile, the distributed system as a whole can continue to run nor-
mally.

It should be noted that because any process can initiate the algorithm, the con-
struction of several snapshots may be in progress at the same time. For this rea-
son, a marker is tagged with the identifier (and possibly also a version number), of
the process that initiated the snapshot. Only after a process has received that
marker through each of its incoming channels, can it finish its part in the construc-
tion of the marker’s associated snapshot. .

Example: Termination Detection

As an application of taking a snapshot, consider detecting the termination of a
distributed computation. If a process Q receives the marker requesting a snapshot
for the first time, it considers the process that sent that marker as its predecessor.
When Q completes its part of the snapshot, it sends its predecessor a DONE mes-
sage. By recursion, when the initiator of the distributed snapshot has received a
DONE message from all its successors, it knows that the snapshot has been com-
pletely taken.

However, a snapshot may show a global state in which messages are still in
transit. In particular, suppose a process records that it had received messages
along one of its incoming channels between the point where it had recorded its
local state, and the point where it received the marker through that channel. Then,
clearly, we cannot conclude that the distributed computation is completed, for
those messages may have generated other messages that are not part of the
snapshot. :

What is needed is a snapshot in which all channels are empty. The following
is a simple modification to the algorithm described above. When a process O fin-
ishes its part of the snapshot, it either returns a DONE message to its predecessor,
or a CONTINUE message. A DONE message is returned only when the following
two conditions are met:

1. All of Qs successors have returned a DONE message.

2. Q has not received any message between the point it recorded its
state, and the point it had received the marker along each of its
incoming channels.

In all other cases Q sends a CONTINUE message to its predecessor,

4

Eventually, the original initiator of the snapshot, say process P, will either
receive a CONTINUE message, or only DONE messages from its successors.
When only DONE messages are received, it is known that no regular messages
are in transit, and thus the computation has terminated. Otherwise, process P ini-
tiates another snapshot, and continues to do so until only DONE messages are
eventually returned.

Numerous other solutions to termination detection as discussed in this section
have been developed. See (Andrews, 2000; and Singhal and Shivaratri, 1994) for
further examples and references. An overview and comparison of different solu-
tions can also be found in (Mattern, 1987; and Raynal, 1988).

