
Introduction to Introduction to Symbian Symbian OSOS

Marco Aiello
VITALab --- TUW ien (A)

&
DIT --- Universita’ di Trento (I)

aiellom@ieee.org

Material based on original material from the author, from the http://www.symbian.com website, and from the book Symbian OS Explained by Jo
Stichbury, Wiley (2005).

2 Aiello ©2005Symbian OS

Symbian Symbian OSOS

 Introduction to Symbian OS
 Characteristics of Symbian v.7.0s
 Enhancements in Symbian v.9.2
 Leaves vs. Exceptions
 Event-drive multitasking using Active Objects
 Active Objects scheduler
 Threads and Processes

3 Aiello ©2005Symbian OS

Symbian OSSymbian OS
 An operating system for mobile devices with limited resources,

multitasking needs and soft real time requirements. Based on a
modular, layered, micro-kernel approach.

 Requirements:
 Resilient power-management
 Careful use of memory resources
 Multi-tasking (e.g, phone calls, messages, alarms, games, wap browser,

camera, bluetooth app, etc.)
 Soft Real-Time (e.g., incoming phone call)
 Robust

 Symbian OS was designed for mobile devices, from its earliest incarnation as
EPOC32 in the Psion Series 5.

 Symbian OS is a consortium formed in 1998 and owned by Psion,
Nokia, Sony Ericsson, Panasonic (Matsushita), and Siemens.

 The shareholders are licensees of Symbian OS. In addition, because
Symbian OS is an open platform, any manufacturer can license it.

4 Aiello ©2005Symbian OS

Symbian OS on the following HWSymbian OS on the following HW
Motorola A1000
FOMA F880iES
Nokia 3230
BenQ P30
FOMA F900iC
Nokia 7710
Sony Ericsson P910
FOMA F901iC
Arima U300
Nokia 7610
Panasonic X700
Lenovo P930
FOMA F900i
FOMA F900iT

FOMA F900iC
Nokia 7710
Sony Ericsson P910
FOMA F901iC
Lenovo P930
FOMA F900i
FOMA F900iT
Panasonic X800
kia 6600
FOMA F700i
Motorola A1010
Nokia N-Gage QD

and many more…

From http://www.symbian.com/phones/ April 2005

5 Aiello ©2005Symbian OS

Layers in Symbian OS v 7.0sLayers in Symbian OS v 7.0s

6 Aiello ©2005Symbian OS

Key features of Symbian OS v 7.0sKey features of Symbian OS v 7.0s
Rich suite of application engines

the suite includes engines for contacts, schedule, messaging, browsing,
utility and system control; OBEX for exchanging objects such as
appointments (using the industry standard vCalendar) and business
cards (vCard); integrated APIs for data management, text, clipboard and
graphics

Browsing
a WAP stack is provided with support for WAP 1.2.1 for mobile browsing

Messaging
multimedia messaging (MMS), enhanced messaging (EMS) and SMS;

internet mail using POP3, IMAP4, SMTP and MHTML; attachments; fax
Multimedia

audio and video support for recording, playback and streaming; image
conversion

Graphics
direct access to screen and keyboard for high performance; graphics

accelerator API

7 Aiello ©2005Symbian OS

Key features of Symbian OS v 7.0sKey features of Symbian OS v 7.0s
Communications protocols

wide-area networking stacks including TCP/IP (dual mode IPv4/v6) and
WAP, personal area networking support include infrared (IrDA),
Bluetooth and USB; support is also provided for multihoming capabilities
and link layer Quality-of-Service (QoS) on GPRS/UMTS

Mobile telephony
Symbian OS v7.0s is ready for the 3G market with support for GSM circuit

switched voice and data (CSD and EDGE ECSD) and packet-based
data (GPRS and EDGE EGPRS); CDMA circuit switched voice, data
and packet-based data (IS-95, cdma2000 1x, and WCDMA); SIM, RUIM
and UICC Toolkit; Other standards can be implemented by licensees
through extensible APIs of the telephony subsystem.

International support
conforms to the Unicode Standard version 3.0

Data synchronization
over-the-air (OTA) synchronization support using SyncML; PC-based

synchronization over serial, Bluetooth, Infrared and USB; a PC
Connectivity framework providing the ability to transfer files and
synchronize PIM data.

8 Aiello ©2005Symbian OS

Key features of Symbian OS v 7.0sKey features of Symbian OS v 7.0s

Security
full encryption and certificate management, secure protocols

(HTTPS, WTLS and SSL and TLS), WIM framework and
certificate-based application installation

Developing for Symbian OS
content development options include: C++, Java (J2ME) MIDP 2.0

and PersonalJava 1.1.1a (with JavaPhone 1.0 option), and
WAP; tools are available for building C++ and Java applications
and ROMs with support for on-target debugging

User Inputs
generic input mechanism supporting full keyboard, 0-9*# (numeric

mobile phone keypad), voice, handwriting recognition and
predictive text input 2.1

9 Aiello ©2005Symbian OS

MultiMedia FrameworkMultiMedia Framework

10 Aiello ©2005Symbian OS

MultiMedia FrameworkMultiMedia Framework
 The Multimedia Framework (MMF) provides a lightweight,

multi-threaded framework for handling multimedia data. The
framework provides audio recording and playback, audio
streaming and image related functionality. Support is provided
for video recording, playback and streaming.

 The image conversion library is a lightweight, optionally
multithreaded, client-side framework for still image codecs and
conversion; Plug-ins supplied by Symbian include JPEG, GIF,
BMP, MBM, SMS, WBMP, PNG, TIFF, WMF and ICO.

 Third party plug-ins are enabled through the extensible nature of
the framework.

 Camera support: An onboard camera API providing a consistent
interface to basic camera functions.

11 Aiello ©2005Symbian OS

Java Micro EditionJava Micro Edition

Java can run also on small devices. But a full Java
Virtual Machine is not implementable. Therefore, a
subset of the Java Virtual Machine is implemented
called Micro Edition.

12 Aiello ©2005Symbian OS

Java flavorsJava flavors

13 Aiello ©2005Symbian OS

J2ME ArchitectureJ2ME Architecture

 KVM - Kilobyte Virtual Machine
 40 – 80 KB in size
 For devices with 160 KB of memory and 16 or 32-bit RISC/CISC

microprocessors

OEM Specific API

14 Aiello ©2005Symbian OS

J2ME Architecture (cont.)J2ME Architecture (cont.)

 CLDC - Connected Limited Device Configuration
 Provides core lower level functionality

 Bare minimum IO and utilities
 Currently consists of java.io, java.lang, java.util, java.microedition.io

OEM Specific API

15 Aiello ©2005Symbian OS

J2ME Architecture (cont.)J2ME Architecture (cont.)

 MIDP – Mobile Information Device Profile
 MIDP provides the core application functionality for mobile devices

Network connectivity, data storage, and user interfaces

OEM Specific API

16 Aiello ©2005Symbian OS

J2ME and MIDPJ2ME and MIDP

 The Mobile Information Device Profile (MIDP) is a key element
of the Java 2 Platform, Mobile Edition (J2ME). When combined
with the Connected Limited Device Configuration (CLDC), MIDP
provides a standard Java runtime environment.

 The MIDP specification defines a platform for dynamically and
securely deploying optimized, graphical, networked applications.

 CLDC and MIDP provide the core application functionality
required by mobile applications, in the form of a standardized
Java runtime environment and a rich set of Java APIs.

17 Aiello ©2005Symbian OS

J2ME ApplicationsJ2ME Applications

 A J2ME app is called a Midlet

Midlet life cycle

18 Aiello ©2005Symbian OS

Java Micro EditionJava Micro Edition
 Minimal memory requirements:

 128 kilobytes of non-volatile1 memory is available for the Java virtual
machine and CLDC libraries

 at least 32 kilobytes of volatile2 memory is available for the Java runtime
and object memory

 Main differences with ordinary Java and JVM:
 No floating point support (since floating point HW is often missing)
 No finalization (Object.finalize())
 Smaller set of exception types
 Java Native Interface (JNI): is platform dependent
 No support for user defined class loaders
 No reflection
 No support for Thread groups and deamon thread
 No support for weak references
 More lightweight class verifier

19 Aiello ©2005Symbian OS

Java virtual machine on SymbianJava virtual machine on Symbian

20 Aiello ©2005Symbian OS

Java on Symbian OSJava on Symbian OS
 The Symbian OS v7.0s implementation provides MIDP 2.0, CLDC 1.0

with Sun's CLDC HI Java VM, Bluetooth 1.0, and Wireless Messaging
1.0. It also includes PersonalJava with the JavaPhone APIs.

 J2ME CLDC/MIDP2.0 provides a fast Java environment, has a tight
footprint, and provides a framework that scales smoothly from
constrained smartphones to more capable ones.

 supports the OTA recommended practice document for MIDlet
installation mandated by the MIDP 2.0 specification

 heap size, code size, and persistent storage are unconstrained, allowing
larger, more compelling MIDlets to be run

 MIDlets look and behave very much as native applications: they use the
native application installer and launcher, and native UI components

 supports native color depth (4096 colors)
 Generic Connection Framework implementation including sockets,

server sockets, datagram sockets, secure sockets , HTTP and HTTPS
 provides debugging support
 implements Bluetooth (excluding push and OBEX)
 implements Wireless messaging

21 Aiello ©2005Symbian OS

Personal Java on Symbian OSPersonal Java on Symbian OS

 PersonalJava on Symbian OS implements the 1.1.1a
PersonalJava Application Environment specification.

support for Unicode across the Host Porting Interface
support for ARM JTEK (Jazelle) technology for Java hardware

acceleration and ARM VTK (VMA technology kit) for Java
software acceleration

JVMDI for remote debugging (TCP/IP over the serial link)
Symbian OS SDK for Java tools. Runtime customization tools

22 Aiello ©2005Symbian OS

JavaPhone on Symbian OSJavaPhone on Symbian OS
 The JavaPhone component delivers a set of APIs that extend the

PersonalJava runtime to access important native functionality including
telephony, agenda, contacts, messaging and power monitoring.
Symbian OS provides the JavaPhone 1.0 reference implementation.

 JavaPhone APIs: address book (based on the contacts application
engine), calendar (based on the agenda application engine), user
profile, network datagram, and power monitor (minimal implementation).

 optional PersonalJava interfaces: serial communications, secure socket
communications (HTTPS is supported, javax.net.ssl is not implemented)

 Java Telephony API: JTAPI Core package
 Java Telephony API (mobile): Java Mobile API Core interfaces,

MobileProvider, MobileProviderEvent, MobileProviderListener,
MobileAddress, MobileTerminal, MobileNetwork, MobileRadio,
MobileRadioEvent and MobileRadioListener

23 Aiello ©2005Symbian OS

Enhancements in Symbian v.9.2Enhancements in Symbian v.9.2

 Java support
 latest Java standards: including MIDP 2.0, CLDC 1.1, JTWI

(JSR185), Mobile Media API (JSR135), Java API for Bluetooth
(JSR082), Wireless Messaging (JSR120), Mobile 3D Graphics
API (JSR184) and Personal Information Management and
FileGCF APIs (JSR075)

 Hardware support
supports latest CPU architectures, peripherals and internal and

external memory types
 Graphics

direct access to screen and keyboard for high performance;
graphics accelerator API; increased UI flexibility (support for
multiple simultaneous display, multiple display sizes and
multiple display orientation)

24 Aiello ©2005Symbian OS

Enhancements in Symbian v.9.2Enhancements in Symbian v.9.2
 Platform security

 proactive system defence mechanism based on granting and monitoring
application capabilities through Symbian Signed certification.
Infrastructure to allow applications to have private protected data stores.

 In addition, full encryption and certificate management, secure protocols
(HTTPS, SSL and TLS) and WIM framework

 Communications protocols
 wide area networking stacks including TCP/IP (dual mode IPv4/v6) and

WAP 2.0 (Connectionless WSP and WAP Push), personal area
networking support including infrared (IrDA), Bluetooth and USB;
support is also provided for multihoming and link layer Quality-of-Service
(QoS) on GPRS and UMTS networks

 Developing for Symbian OS
 native system and application development in C++, supported by

CodeWarrior and (from 2005H2) Eclipse-based IDEs. Java MIDP 2.0
supported by all mainstream Java tools. PC-hosted emulator for general
development. Reference boards for general development, 2G, 2.5G and
3G telephony, supported by a range of JTAG probes and OEM
debuggers

25 Aiello ©2005Symbian OS

Enhancements in Symbian v.9.0Enhancements in Symbian v.9.0

C++ basics in SymbianC++ basics in Symbian

27 Aiello ©2005Symbian OS

Fundamental typesFundamental types

 Fundamental built-in types:
 TIntX and TUIntX (X=8,16,32,64) signed and unsigned integers

of increasing bit size
 TReal32 and TReal (=TReal64) for single and double precision

float (operations are slower than int operations)
 TText8 and TText16 for characters, corresponding to integers
 TAny* is a pointer to any object
 TBool foor booleans (ETrue=1 and EFalse=0 integers, any non

zero value is considered true!)

The above typdefined types are guaranteed to be compiler-
independent.

28 Aiello ©2005Symbian OS

Class name conventionsClass name conventions

 T Classes (T is for type as they are similar to
fundamental types)
 must not have a destructor (removed when the function is

removed from the stack)
 can also be created on the heap, but should be moved to the

stack before potentially leaving code is executed
 can exists without constructors, with constructors this can’t

be done:
TMyPODClass local = {2003, 2004, 2005}

29 Aiello ©2005Symbian OS

Class name conventionsClass name conventions

 C Classes (classes derived from CBase)
 CBase has a virtual destructor, so C Classes can be delated

through a CBase pointer (but if TAny this is not invoked!)
 The new operator initializes to zero the new objects
 Objects of C class must always be allocated on the heap

30 Aiello ©2005Symbian OS

Class name conventionsClass name conventions

 R Classes (representing Resource handles)
 It doesn’t derive, so constructor and destrucotr must be

defined
 Usually small classes invoking open(), create(),
initialize() in the constructor and close(),
resent() on destruction

 Closing a stream is never done automatically, so care must
be taken in writing the destructor

31 Aiello ©2005Symbian OS

Class name conventionsClass name conventions

 M Classes
 Mix-ins classes used to add “flavor” to a base class

 Abstract interface class equivalent of Java interfaces

 Use: inherited by a base class. Multiple inheritance is possible

 Structure:

 No member data

 No constructor (and no destructor, of course)

Leaves and ExceptionsLeaves and Exceptions

33 Aiello ©2005Symbian OS

Leaves: Symbian lightweight exceptionsLeaves: Symbian lightweight exceptions

 Exceptions increase code robustness, but also increase the
length of the code and the run-time RAM overheads

 Try, catch, throw are not part of the C++ syntax for a
Symbian compiler

 In Symbian there is a more lightweight alternative: Leaves

34 Aiello ©2005Symbian OS

Leaves basicsLeaves basics

 A leave may occur:

 Calling a leaving function

 Invoking a system call function to cause a leave

 When a leave occurs the corresponding error value is
propagated through the call stack until it is caught

 Leaves are caught by a trap harness where the exception can be
correctly handled

 From the implementation point of view, leaves are similar to the
C setjmp and longjmp mechanisms

35 Aiello ©2005Symbian OS

Leaves mechanisms and conventionsLeaves mechanisms and conventions

 A function can leave (leaving function) if

1. It calls code that can leave without surrounding that code with a
trap harness

2. Calls system functions User::Leave() or User::LeaveIfError()

3. Uses operator new (ELeave), overloaded operator that leaves when
no memory available

 The name of a leaving function must be suffixed with “L”

36 Aiello ©2005Symbian OS

Leaves and objects life cycleLeaves and objects life cycle

 General rule: constructors and destructors should not leave

 Take the construction code

 CExample *foo = new CExample();

 Allocates memory on the heap

 Invokes the constructor

 What if allocation goes fine, but the constructor leaves? Memory
leak!

 Solution: two-phase construction

37 Aiello ©2005Symbian OS

Two-phase constructionTwo-phase construction

 If need to perform leaving code in the initialization or destruction
phase, use the-phase idiom:

 Provide non-leaving constructor: CExample()

 Isolate leaving code in a function and expose that function to the
clients: ConstructL()

 Require clients to first call the leaving function and, if needed,
handle leaves, or

 Wrap both phases in a static function that take care of everything:
NewL() or NewLC()

38 Aiello ©2005Symbian OS

Trapping leaves: mechanismsTrapping leaves: mechanisms

 Two macros allows to trap leaves:
 TRAP
 TRAPD (allows to store error code in a local variable)

39 Aiello ©2005Symbian OS

Trapping leaves: under the hoodTrapping leaves: under the hood

 Entry and exit of a TRAP macro result in a kernel executive call
(system call):
 TTrap::Trap()

 TTrap::UnTrap()

 A struct is allocated at runtime to hold the current content of the
stack and allow unwinding in case of a leave

 Therefore, trapping leaves may be expensive: try to minimize
trap calls (e.g., if you have a series of calls to leaving functions,
don't trap each of the calls, but combine them into one call and
one trap)

The Cleanup StackThe Cleanup Stack

41 Aiello ©2005Symbian OS

Memory management andMemory management and
the cleanup stackthe cleanup stack

 Interactions of leaves management and memory management
can be error-prone

 If a local variable points to an object in the heap and a leave occurs,
the stack is unwinded without calling the object destructor: memory
leak!

 (Non optimal) solution: trap all leaving code to execute cleanup
operations

 Need for a pattern that allows to consistently and easily handle
memory when leaves can occur: the cleanup stack

42 Aiello ©2005Symbian OS

Cleanup stackCleanup stack

 Objects that are not leave-safe should be placed on the cleanup
stack before calling leaving code

 In case of an event, the cleanup stack manages the deallocation
of the objects it contains

 The cleanup stack knows the type of objects it is dealing with and
takes the appropriate actions (calls the appropriate cleanup
functions/destructors)

43 Aiello ©2005Symbian OS

Cleanup stack: APICleanup stack: API

 Push object on the stack:
static void PushL(TAny* aPtr);

static void PushL(CBase* aPtr);

static void PushL(TCleanupItem anItem);

 Pop objects from the stack
static void Pop();

static void Pop(TInt aCount);

 Pop and destroy objects

static void PopAndDestroy();

static void PopAndDestroy(TInt aCount);

44 Aiello ©2005Symbian OS

How objects are cleaned byHow objects are cleaned by
the cleanup stackthe cleanup stack

 If the item on the stack is a CBase* pointer, the object is
destroyed with delete

 If the item on the stack is a TAny* pointer, the memory occupied
by the object is freed with User::Free(), a rather limited form of
cleanup — not even the C++ destructor is called

 If the item on the stack is a cleanup item, i.e., an object of type
TCleanupItem, the cleanup operation defined during construction
of the TCleanupItem object is invoked

45 Aiello ©2005Symbian OS

PushL: What if it leaves?PushL: What if it leaves?

 PushL is a leaving function

 So a leave may happen when pushing an object on the cleanup
stack. In that case, does a memory leak occur?

 No! The cleanup stack has always store to save a pushed object.
If, after storing an object, there are no more free spots, it tries to
allocate more memory. If the memory allocation fails, a leave is
thrown. But our objects have all been safely stored on the stack
and can be cleaned up. Therefore, they are not leaked

Event-driven multitasking usingEvent-driven multitasking using
Active ObjectsActive Objects

47 Aiello ©2005Symbian OS

Costs of Context SwitchingCosts of Context Switching
 Process context switching represents a substantial cost to the

system in terms of CPU time and can, in fact, be the most costly
operation on an operating system

 Thread context switching reduces the costs by requiring that less
run-time information is switched, but it is still a costly operation

 In Symbian there are processes, threades, but also active-objects
within threads which have there own scheduling mechanism

 In Symbian OS, threads are scheduled pre-emptively by the kernel,
which runs the highest priority thread eligible
 Threads can be suspended, waiting for an event
 Time-sliced thread scheduling

48 Aiello ©2005Symbian OS

Active-ObjectsActive-Objects

 Efficient event-handling model with low response times and
appropriate ordering

 Especially important for user-driven events
 Active-Object context switch can be 10 times faster than a

thread context switch
 Space overhead may be few hundred bytes vs. 4-8KB for

threads
 In practice, a Symbian application will be a main event-handling

thread having a set of active-objects each representing a task
 Active-objects cannot be preempted, therefore should not be

used for real-time tasks!

49 Aiello ©2005Symbian OS

Active ObjectsActive Objects

Process Context

Thread
context

Thread
context

Thread
context

Ac
tiv

e
sc

he
du

le
r

50 Aiello ©2005Symbian OS

CactiveCactive
 An active object class must derive from the CActive class
Class CActive : public CBase

{

public:

enum TPriority

{

EPriorityIdle=-100,

EPriorityLow=-20,

EPriorityStandard=0,

EPriorityUserInput=10,

EPriorityHigh=20

};

public:

IMPORT_C ~CActive();

IMPORT_C void Cancel();

IMPORT_C void SetPriority(TInt aPriority);

…

protected:

IMPORT_C CActive(TInt aPriority);

IMPORT_C void SetActive();

virtual void RunL() =0;

virtual void DoCancel()=0;

IMPORT_C virutal TInt RunError(TInt aError);

…

};

51 Aiello ©2005Symbian OS

Life-cycleLife-cycle
 On construction the priority is set (not for preemption, but for

scheduling)
 Active-Objects typically `own’ objects to which they issue requests

asynchronously
 Each Active-Object has at most one outstanding request per owned

object
 panic: if a request is made twice due to programming error
 refuse: if the multiple request is legal
 cancel the outstanding request and deliver the new one

 RunL() must be implemented to handle the event (first method called
when object is scheduled to handle an event)

 Cancel() calles DoCancel() (which must be implemented) which
calls the cancellation of the owned object

 RunError() called if a leave occurs in the RunL()
 Destruction of an active objects by invoking Cancel()

52 Aiello ©2005Symbian OS

Active Object
Asynchronous Service

Provider

(1) Issues request

passing iStatus

(3) Calls SetActive()

on itself

(2) Sets iStatus=KRequestPending

and starts the service

(4) Service completes.

Service provider uses
RequestComplete() to

notify the Active Scheduler

and post a completion result
(5) Active Scheduler calls

RunL() on the active

object to handle the event

RunL() resubmits
another request or stops

the Active Scheduler

RunL() cannot be pre-

empted

PROCESS OR

THREAD

BOUNDARY

53 Aiello ©2005Symbian OS

Threads and Active SchedulersThreads and Active Schedulers

 Most threads have an active scheduler created implicitly

 But user defined threads don’t and creating and starting one
may be necessary

 Some threads do not have active schedulers intentionally:
 The Java implementation
 The C standard Library thread
 OPL

54 Aiello ©2005Symbian OS

Event Handling RolesEvent Handling Roles

Process Context

Thread
context

Thread
context

Thread
context

Ac
tiv

e
sc

he
du

le
r

Process Context

Thread
context

Thread
context

Asynchronous
Service
Provider

Process with
asynchronous
multi-tasking
event
handling

55 Aiello ©2005Symbian OS

Executable Active Object Active Scheduler
Asynchronous Service

Provider

Create and Install the

Active Scheduler

Create Active Object

(with appropriate priority)

and add it to the Active

Scheduler

Issue a request to the

Active Object

Start the Active

Scheduler if it is not

already started

Make a request to the Asynchronous

Service Provider, passing in iStatus

Call SetActive()

RunL() handles the

completed event and

resubmits another

request or stops the

Active Scheduler

CActiveScheduler::Stop()

Sets iStatus=KRequestPending

and starts the service

Service completes and uses

RequestComplete() to

notify the Active Scheduler (by

signalling its thread

semaphore) and to post a

completion result

PROCESS OR

THREAD

BOUNDARY

Wait Loop

CActiveScheduler::Start()

Calls RunL() on the Active

Object with

iStatus!=KRequestPen

ding and iActive=ETrue

56 Aiello ©2005Symbian OS

Responsabilities of an Active ObjectResponsabilities of an Active Object
 Sets its own priority. Usually set to standard at 0. Can change

dinamically
 At least one method to initiate a request then passing a iStatus object
 After submitting a request call SetActive() on itself setting the

iActive flag (used by the active scheduler)
 Have only one outstanding request per time
 Pass the iStatus to the service provider, also used by the active

scheduler to determine what to do with the active object
 Must implement the virtual methods RunL(), DoCancel()
 Not be destroyed while is waiting for the completion of a request. By

calling Cancel() if this is not the case the thread panics
 Objects passed to the provider must live at least as long as the

completion of the request
 If a leave can occur in RunL(), the class should override the default

RunError()

57 Aiello ©2005Symbian OS

Responsabilities of an AsynchronousResponsabilities of an Asynchronous
Service ProviderService Provider

 Set the KRequestPending to TRequestStatus (i.e.,
iStatus) to indicate to the scheduler that the request is
ongoing

 Upon completion set KRequestPending to a result code and
then call RequestComplete()

 RequestComplete() must be called only once for each
request, otherwise there will be a panic in the thread with the
requesting active object

 Must provide a cancellation method for each asynchronous
request, which acts immediately and sets
TRequestStatus.KErrCancel

58 Aiello ©2005Symbian OS

Responsabilities of an Active SchedulerResponsabilities of an Active Scheduler
 Suspend the thread calling User::WaitForAnyRequest()

When an event is generated it resumes the thread and searches
for the active object that handles it

 Ensure that each request is handled once and only once. It
resets the iActive flag of an active object before calling RunL()

 Place a TRAP harness around RunL() from which it calls the
active objects RunError() if it leaves

 Raise a panic if it can’t find an object for an event, i.e., one with
iActive set and the TReqeustStatus indicating it has
completed

59 Aiello ©2005Symbian OS

Active SchedulerActive Scheduler
 The active scheduler’s wait loop is started by a call to Cactive-

Scheduler::Start() most often done automatically
 Otherwise done by

CActiveScheduler* scheduler = new(Eleave) CActiveScheduler;

CleanupStack::PushL(scheduler);

CActiveScheduler::Install(Scheduler);

scheduler.start()

 When the first active objects makes a request,
User::WaitForAnyRequest() is called

 The scheduler is stopped with

scheduler.stop()

60 Aiello ©2005Symbian OS

Customizing The Active SchedulerCustomizing The Active Scheduler

 The active scheduler can be customized to the program’s need

 This is achieved by subclassing the class CActiveScheduler
and overwriting the Error() and WaitForAnyRequest()
methods

61 Aiello ©2005Symbian OS

CancellationCancellation

 Every request to an active object must complete exactly once
 If Cactive::Cancel() is called, then determine if there is any

outstading request, if yes DoCancel() is called
 The service provider must provide request a cancellation method
 DoCancel() should be fast because Cancel() is a synchronous

operation
 Cancel() resets the iActive flag

When an active object request is cancelled by a call to Cancel(),
the RunL() event handler does not run. This means that any
post cancellation cleanup must be performed in DoCancel()
rather than in RunL()

62 Aiello ©2005Symbian OS

Executable Active Object Active Scheduler
Asynchronous Service

Provider

Create and Install the

Active Scheduler

Create Active Object

(with appropriate priority)

and add it to the Active

Scheduler

Issue a request to the

Active Object

Start the Active

Scheduler if it is not

already started

Make a request to the Asynchronous

Service Provider, passing in iStatus

Call SetActive()

RunL() handles the

completed event and

resubmits another

request or stops the

Active Scheduler

CActiveScheduler::Stop()

Sets iStatus=KRequestPending

and starts the service

Service completes and uses

RequestComplete() to

notify the Active Scheduler (by

signalling its thread

semaphore) and to post a

completion result

PROCESS OR

THREAD

BOUNDARY

Wait Loop

CActiveScheduler::Start()

Calls RunL() on the Active

Object with

iStatus!=KRequestPen

ding and iActive=ETrue

Processes and ThreadsProcesses and Threads

64 Aiello ©2005Symbian OS

Processes and ThreadsProcesses and Threads
 Active Objects live within threads which are scheduled with a priority

based preemptive scheuling policy
 Data of threads within the same process is shared and thus must be

protected with the usual synchronization primiteves such as
semaphores

 Threads are manipulated via the RThread class
 Typical operations are

 Suspend
 Resume
 Panic
 Kill or Terminate

 Each thread has its own independent heap and stack
 The size of the stack is limited upon creation RThread::Create()
 Each thread has a unique identifier, returned by RThread::Id()
 Threads can be handled by RThread::Open(identifer)

65 Aiello ©2005Symbian OS

Thread PrioritiesThread Priorities
 Threads are pre-emptively scheduled and the currently running thread

is the highest priority thread ready to run
 If there are more thread in the above situation, then they are time-sliced

on a round-robin basis
 Is starvation possible?
 Priority can be dynamically changed RThread::SetPriority()
 A thread has a relative and an absolute priority
 The absolute priority is either a function of the process priority, or

independent from it
 All threads are created with EPriorityNormal by default and put into

a suspended state, it runs when RThread::Resume() is called
 A thread is stopped with Suspend() or with Kill() and Terminate().

Panic() also stops a thread and gives a programming error
 It is possible to receive a notification when a thread dies

66 Aiello ©2005Symbian OS

PanicsPanics

 When a thread is panicked the code in it stops running
 There is no recovery from a panic
 Unlike a leave, a panic can’t be trapped
 A panic in a system thread will result in a reboot of the device!
 A panic in any other thread results in a “Program Closed”

message box showing: the process name, panic category and
an error code

 If one is working on an emulator one can break into the code
causing the panic: just-in-time debugging

 One thread can panic another one:
 Used by a server when a client passes a badly formed request
 To prevent bugs, but also as self-defense (against denial-of-service

attacks)

67 Aiello ©2005Symbian OS

Error typesError types

 Faults
Raised if a critical error occurs such that the OS cannot continue. It
reboots the device. It can only occur in system’s code. Also known
as system panic

 Leaves
Occur under exceptional conditions, such as out of memory, or
communication error. It should always be trapped by a function on
the calling stack. If this is not the case it will generate a panic

 Panics
An exception in the thread that causes the halting of the execution.
It cannot be trapped and may cause the device’s reboot.

68 Aiello ©2005Symbian OS

ProcessesProcesses
 Processes are handled as threads, with one main difference,

there is no suspend method
 RProcess

 Processes are not scheduled! Threads are scheduled across
process boundaries. Process are used to protect memory
space, rather as units of multi-tasking.

 The kernel server process is a special process that contains two
thread which run at supervisor privilege level:
 The kernel server thread: the first thread to run, the highest priority

of all threads
 The Null thread: lowest priority of all threads, used to swith the

processor into idle mode to save power, by calling a callback
function to shut down part of the hardware. To allow for this thread
to run, threads performing input/output should wait on events rather
than polling

69 Aiello ©2005Symbian OS

Inter-Thread Data TransferInter-Thread Data Transfer

 Pointer’s can’t be transferred between threads running on
different processes. Why?

 The data transfer can be done with a dedicated API called
RMessagePtr

 RThread::WriteL() on the thread’s handle
 RThread::ReadL() to read data on the running thread

ReferencesReferences

71 Aiello ©2005Symbian OS

The slides are based on the followingThe slides are based on the following
material:material:

 Symbian OS Explained by Jo Stichbury, Wiley (2005)

 Symbian official website: http://www.symbian.com:
 Symbian OS Version 7.0s, Functional Description; By Kevin Dixon,

(June 2003)

 Java official website: http://java.sun.com

