
An Evaluation of Reverse Engineering Tool Capabilities

BERNDT BELLAY and HARALD GALL
�

Distributed Systems Group, Technical University of Vienna, A-1040 Vienna, Austria, Europe

SUMMARY

Reverse engineering tools support software engineers in the process of analyzing and
understanding complex software systems dur ing maintenance, reengineering, or rearchitecting.
The functionali ty of such tools var ies from editing and browsing capabili ties to the generation of
textual and graphical repor ts. There are several commercial reverse engineering tools on the
market providing different capabili ties and supporting specific source code languages. We
evaluated four reverse engineering tools that analyze C source code: Refine/C, Imagix4D,
SNiFF+, and Rigi. We investigated the capabili ties of these tools by applying them to a real-
wor ld embedded software system as a case study. We identified benefits and shor tcomings of
these tools and assessed their applicabili ty for embedded software systems, their usabili ty, and
their extensibility. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: reverse engineering; tool evaluation; reverse engineering tools

1. INTRODUCTION

Tool-support during maintenance, reengineering, or rearchitecting activities has become important
to decrease the software engineers’ time of manual source code analysis and to help focus on
important program understanding issues. The size and complexity of commercial software systems
requires automated reverse engineering support to facilit ate the generation of textual and graphical
reports (e.g. function reports, call trees) of the software system under study. But reverse engineering
tools can only partly automate the program understanding process: Design recovery or architecture
recovery activities still require the expertise of an engineer (Biggerstaff , 1989) and (Biggerstaff ,
Mitbander and Webster, 1994).

We evaluated four reverse engineering tools1, each of which represents a different category of
reverse engineering tools:

� Refine/C2 is an extensible, interactive workbench for reverse engineering C programs. Refine/C
is used to understand, evaluate, and redocument existing C code. It provides an API to use its

�

 Correspondence to: H. Gall, Distributed Systems Group, Technical University of Vienna, Argentinierstraße 8/184-1, A-
1040 Vienna, Austria, Europe. E-mail: gall@infosys.tuwien.ac.at
1 Refine/C Version 1.1a, Imagix 4D Release 2.7, Rigi V (Rigiparse V 5.4.3, Rigiedit V 5.4.3), SNiFF+ for C/C++ Version
2.3.1.
2 Refine/C and Software Refinery are trademarks of Reasoning, Inc.

reverse engineering features to build customized analysis tools. Refine/C also provides
programming access to its C parser and printer enabling to make extensions to the C domain
model, grammar, or lexical analyzer. A customization of Refine/C through its API requires
Software Refinery.

� Imagix 4D3 is a comprehensive program understanding tool for C and C++ programs. It
provides views to rapidly check and systematically study software at any level ranging from
high-level design to the details of its build, class, and function dependencies. Imagix 4D
presents this key information on software in a 3D-graphical format which enables the user to
quickly focus on particular areas of interest.

� Rigi is a public domain tool developed in the Rigi Research Project at the University of Victoria
(Hausi A. Müller). The main component is an editor called rigiedit. It is written in RCL, an
extended version of Tcl/Tk, and supports viewing of parsed C, C++, PL/AS, COBOL, and
LaTeX code (Wong, 1994). A C parser for generating the representation used in the Rigi system,
called Rigi Standard Format (RSF), is also available. Rigiedit shows the correspondences of the
entities that are generated by parsing the application and allows to edit these representations.

� SNiFF+ for C/C++ 4 is not a classical reverse engineering tool. It is an open, extensible and
scaleable programming environment for C and C++ which also supports reverse engineering
activities. SNiFF+ provides an eff icient and portable environment with a comfortable user
interface.

We investigated the capabiliti es of the above reverse engineering tools and identified their benefits
and shortcomings in terms of applicabilit y for embedded software, usabilit y, and extensibilit y. The
main focus was on the tool capabiliti es to generate graphical reports such as call trees, data and
control flow graphs. For a more detailed presentation of the reverse engineering tools see (Bellay and
Gall, 1996). This paper presents revised and enhanced results of (Bellay and Gall, 1997).

The experimental framework for evaluating software technology presented in (Brown et al., 1996)
states that a technology evaluation depends on the understanding of: 1) how the evaluated technology
differs from other technologies; and 2) how these differences address the needs of specific usage
contexts. In our case, the usage context was the recovery of architectural information from embedded
software systems (Gall et al., 1996, Eixelsberger et al., 1997, 1998). For the evaluation we chose four
significantly different representatives of reverse engineering tools to cover a wide spectrum of tools.

The paper is organized as follows: In Section 2 we give a brief overview of the case study. In
Section 3 we define the tool assessment criteria and assess each tool in these terms. In Section 4 we
present our results regarding the achievable software views, operating system dependencies, and
shortcomings/benefits of reverse engineering tools. In Section 5 we draw some conclusions.

2. THE CASE STUDY

The evaluation was based on a part of a Train Control System that is a real-world embedded
software system provided by an industrial partner. The system under study is one version of a family
of systems which are safety-criti cal and have strong timing considerations. The software is

3 Imagix 4D is a trademark of Imagix Corporation.
4 SNiFF+ is a trademark of TakeFive Software GmbH.

programmed in two languages (C, Assembler) and has to run on different development and target
environments. The system controls high speed train movement and realizes precision stops in metro
stations.

The code size is approximately 150K LOC (Lines of Code), with the software implemented as state
automatons as described in the SDL specifications of the system. Time criti cal parts are implemented
in Assembler, while the rest of the software is implemented in C. The source code is well commented
and the software documentation of the studied parts of the system were available for our evaluation.

3. TOOL ASSESSMENT

In this section, we define a set of evaluation criteria to be used in assessing the four reverse
engineering tools. The definition of the criteria is based on our experience in applying these reverse
engineering tools to the commercial case study.

3.1. Assessment Criteria for Reverse Engineering Tools

We introduce the following functional categories to assess the reverse engineering tools: analysis,
representation, editing/browsing and general capabiliti es. In the following we describe each of these
categories.

3.1.1.Analysis

The parser is the core subsystem of every reverse engineering tool. The result of the parsed source
code, i.e. the representation from which all the views are created, depends on the abiliti es of the
parser. Parts of the source code that are not parsed or parsed incorrectly will affect all the generated
views (Murphy, Notkin and Lan, 1996). The following is a li st of criteria to be considered for a
reverse engineering tool parser:

Source types and project definition:

1) Parsable source languages: Define which source codes can be parsed. The most common are C
(ANSI C and K&R C), C++, COBOL, and FORTRAN.

2) Other importable sources: These represent other importable sources that can be used in the
reverse engineering tool (e.g. test coverage-results which can be used for test verifications of the
source code).

3) Project definition types: This represents how a project can be defined in the reverse engineering
tool. Three methods of definition can be distinguished: file, directory, and makefile.

4) Ease of project definition: gives a measure of how easily a project can be defined.

Parser functionality:

1) Incremental parsing: Incremental parsing should be supported for systems that are changing
during the reverse engineering phase (e.g. under development or maintenance). It provides the
ability to parse only the parts that changed, thereby reducing the parse time.

2) Reparsing: Sometimes it is important to reparse the whole source code (e.g. when new macros are
defined).

3) Fault tolerant parser: A fault tolerant parser provides the abilit y to parse incomplete, syntactically
incorrect and uncompilable source code. This abilit y helps to parse source code fast and without
changes, but has the disadvantage of not knowing if the parsed result represents the application
generated by a compiler.

4) Define and undefine: The define and undefine preprocessor commands are important for parsing
source code and should be supported by the parser. Two types of support can be distinguished:
one is define and undefine only per project and the other one is additionally on a per file basis.

5) Preprocessor command configurable
6) Support for additional compiler switches: In addition to macros, compiler switches—such as

include directories—should also be supported.

Parsing functionality:

1) Quality of parse error statements: The description of the parse error should help identify the
source of the error and the reason why an error occurred.

2) Parse abortable, parse errors viewable during parsing, parse continued at error: These criteria can
help reduce the time to parse the source code without errors to generate the representation in the
reverse engineering tool.

3) Point and click movement from parse results to source code: This also helps to speed up the
parsing process, but has to rely on the quality of the parse errors to enable the user to find errors.

4) Parsing results: The parsing results of the parser represent the correctness, completeness and type
of information of the resulting representation of the source code in the reverse engineering tool.

5) Parse speed

3.1.2.Representation

Representations are divided into textual and graphical reports, and properties of these reports, and
are assessed based on their usability. For both kinds several general properties have to be considered.

Textual (tabular, formatted, etc.):

This provides a list with different textual reports, which are evaluated for each tool on their
usability and completeness.

Graphical (2-, 3-dimensional):

This provides a list with different graphical reports, which are evaluated for each tool on their
usability and completeness.

General report properties:

1) Speed of generation: The speed of generation of textual reports mostly depends on the amount of
information to be shown. Graphical reports also depend on the layout algorithm used by the
reverse engineering tool. Depending on the type and content of the reports, creation times up to a
few minutes are very possible.

2) Filters, scopes, grouping: These three properties help to simpli fy the graph by showing only the
part of interest. This is essential because graphical representations of applications are huge and
therefore not useful in their complete representation. Filters are used to limit the view of a
generated report (postprocessing) in contrast to scopes which limit the view of the report to be

generated (preprocessing). The grouping function is important to simpli fy the graph without
losing the effect of the grouped entities on the rest of the view.

3) Point and click movement between reports allows easy navigation between reports based on a
specific entity (e.g. function name, variable name).

4) Point and click movement from reports to source code allows to access the source code
representation of a specific entity in a report. The browsing of the source code can be seen as
switching the abstraction level and is done often during code comprehension.

5) Annotations help to remember certain aspects of the software directly where it is required without
rebrowsing the part and also help to store the knowledge already acquired.

6) Static/dynamic views: This refers to the abilit y of reports to dynamically reflect the changes made
to the source code inside the reverse engineering tool. An intelli gent parser is required that is
capable of parsing sources incrementally. In contrast, static reports have to be regenerated
completely after reparsing the source code to reflect the changes.

7) External functions/variables: Functions and variables that are declared as external should be
parsed and included in the reports.

Textual report properties:

1) Sorting: Textual reports may get huge and therefore should be sortable by user-specified criteria
(e.g. name, file, or type).

Graphical report properties:

The following properties improve usability and readability of graphical reports.
1) Layout algorithms: Special layout algorithms can make a graph more readable; for example,

minimizing the crossings of the arcs, showing the cohesion, or coupling of program elements.
2) View editable: Sometimes a view can be made more readable by manually editing it. This

includes moving and deleting of entities that are currently not of interest (e.g. error routines).
Grouping and filtering are further methods of editing a graph but are separate properties and
therefore not included here.

3) Layered view: If a grouping of entities can be done recursively, a layered hierarchy is generated.
A layered view of such a hierarchy can be shown either in one window (e.g. SHriMP view) or
each layer of the hierarchy is displayed in a separate window.

4) A fisheye view helps to make a graph with a fixed size more readable by zooming in or out parts
of the graph similar to a fisheye lens (Furnas, 1986).

5) SHriMP views (Simple Hierarchical Multi Perspective view) are a combination of layered views
and the fisheye lens paradigm, enabling to show the layered structure in one view with the detail
depending on the degree of interest.

3.1.3.Editing/browsing

The editing/browsing capabiliti es are essential because the user often switches the abstraction level
from the generated views to the actual source code. The text editor/browser should therefore provide
means to facilitate browsing the source code.
1) Integrated text editor/browser addresses whether the reverse engineering tool provides an internal

text editor/browser. Normally the integrated text editor/browser provides a better functionality
with respect to the needs in a reverse engineering tool.

2) External editor/browser addresses whether external editors/browsers are supported by the tool.
3) Intelli gent control of text editor/browser: For integrated editors an intelli gent control is easier to

provide but should also be supported for external editors. Intelli gent control here means things,
such as positioning at the appropriate line, opening a file for browsing or editing, etc.

4) Highlighting of the source code (e.g. currently active element)
5) Visualization functions facilitate the browsing of source code.
6) Speed of text editor
7) Search function: The text editor should provide a search function to find occurrences of patterns

and easy methods to navigate among them.
8) The user interface should facilit ate the browsing of the source code by providing short cuts or

buttons for the functions most often used.
9) A history of the browsed locations should exist in the text editor. This is especially important if

the text editor provides hypertext capabilities.
10) Hypertext capabiliti es: To browse the source code eff iciently, the text editor should provide

hypertext capabilities to jump to elements within or across source files.

3.1.4.General capabilities

General capabiliti es span a wide range from supported platforms to online-help. We subdivide
them into the following aspects:
1) Supported platforms
2) Multi -user support: Multi -user support for reverse engineering is not of such importance as in

development tools because the application normally does not change and only one person may
reverse engineer it. The need for multi -user support of course also depends on the size of the
system under study.

3) Toolset extensibilit y: Most reverse engineering tools provide a fixed set of capabiliti es which
cannot be extended. Although such a set might be quite large, it cannot foresee completely what
different users may need and what new technologies may evolve. An open system often provides
only a few composable operations and mechanisms for user-defined extensions. A closed system
should provide a large set of built -in faciliti es and offers no possibilit y to extend the set. Reverse
engineering tools can be extended either by extending the tool itself or by constructing integrated
applications from a set of tools. Reverse engineering tools usually can be extended in the
following directions: parser, user interface, and functionality. For constructing extensible
integrated applications from a set of tools there are two basic approaches: tool integration and tool
composition.

4) Storing capabilities: parsed source code, edited representation, tool state, selections, and views.
5) Output capabiliti es can roughly be grouped into printing, exporting, and automatic generation of

documentation. The printing capabiliti es are important for the documentation process to show the
results after applying the reverse engineering tool i f the tool is not available. Furthermore it is
important that the printing capabiliti es are intelli gent (e.g. banner printing, scaling of graphics,
usage of different line styles when no color is available, etc.) to produce useful results. The export
capabiliti es are useful to be able to generate other results with the created representation of the
source code (e.g. to create an entity relationship diagram in a case tool). The documentation
capabilit y can be seen as the creation of other views. Some tools provide the documentation of the

parsed source code automatically and others semi-automatically (e.g. macros for the generation).
The output format can provide hypertext functionality to ease the use of the documentation.

6) History of browsed locations: A history of browsed locations not only for the text editor but also
for all the other elements of a reverse engineering tool (e.g. reports) helps to go back to
interesting parts already shown.

7) The search facilit y of a reverse engineering tool is an essential part: It can facilit ate the task of
creating groups of items (selections) and finding parts that are of interest. Not only patterns
should be supported by the search engine but also properties of the entities used in the reverse
engineering tool (e.g. scope of a function, location, size and other metrics).

8) Online-help

3.2. Assessment of the four Reverse Engineering Tools

The assessment for all criteria is done using one of three methods:

1. An enumeration of possible types,

2. Yes or no to classify the availabilit y of a functionality, where no further classification is
needed, or

3. A simple four-level scale, where the scale indicates whether a tool provides a functionality

++ excellent,
+ good,
o acceptable, or
- not at all.

In addition to these, a “ / ” is used if a functionality cannot be assessed. Table 1 shows the results
for the four reverse engineering tools.

Table 1 Assessment of the four reverse engineering tools

4. EVALUATION RESULT S

This section gives an overview of the achievable software views provided by the four evaluated
reverse engineering tools and briefly compares the call graph view of these tools. Afterwards a
comparison of the tools and their extensibilit y is presented. The section concludes with general
shortcomings of reverse engineering tool views, problems with reverse engineering tools due to
operating system dependencies of the system under study, and some more general benefits and
shortcomings of reverse engineering tools.

4.1. Achievable Software Views

The views that can be generated with the different reverse engineering tools are shown in Table 1
under “Representation.” What is not shown, is that—although the evaluated reverse engineering tools
provide similar kind of views—the representations and the possible manipulations, and thus the
finally achievable views, differ quite a lot across the evaluated tools.

The figures used for ill ustrating the tools are from the case study, but had to be anonymized due to
confidentiality reasons.

The views in Refine/C are either tabular reports or 2-dimensional graphs. All views can be focused
on the interesting part of an application by selecting the scope of a view. Scope selection can only be
done manually by selecting all i nteresting parts of the application shown in one view and then creating
the other view. These selections get lost after creating a new view and no possibilit y exists to save a
set of selections. Additionally, it is only possible to select the entities for the scope of the view in
exactly one report and it is not possible to use a thus limited report to generate a new view (this is
because the default scope is always the whole application).

The 2-dimensional graphs in Refine/C can be manipulated by moving the nodes. Nothing can be
deleted or grouped together. This frequently results in very broad graphs if the whole application is
viewed (see Figure 1). The views then are very large and have to be zoomed to identify the part of
interest resulting in a loss of context. In such cases, the boxes are too small to view the whole names
of entities making it impossible to distinguish entities with identical prefixes.

The views in Imagix 4D provide a 3-dimensional graph (except the control flow graph) and a text
window viewing additional information and structure (see Figure 2).

By using three dimensions the graph does not get that broad. Using the rotate and zoom functions
the graph can be viewed from all sides and the entities can be identified. The disadvantage of this
smaller graph is that highly connected graphs get complicated and unreadable. The graphs can either
be viewed top-down or bottom-up and the views are layered according to this selection. All entities
viewed in the graph are also shown in context to the files and directories in the text window.

The graph can be manipulated by hiding or isolating selections made and also by grouping of the
selected entities to one entity. This grouping function is very useful because functional groups can be
combined to one entity and can then be observed in interaction with the rest of the graph. Another
advantage is that such groupings help to make the graph smaller and more understandable. In contrast
to Rigi, Imagix 4D does not provide layered views based on these groupings and these groupings
cannot be saved between sessions. Selections can be made in any of the views and then used to limit
the scope in the next created view (e.g. selecting a C file in the file view and hiding it creates a call
graph without the functions in this file).

The selections can be made in many different ways ranging from manual selection of entities,
automatic use of the UNIX command grep, automatic selection of all called entities starting from a
particular entity, to a find function with many options. The selections cannot be saved, only one
selection can be saved temporarily during one session. Created views made by using this functionality
of Imagix 4D can only be saved temporarily during one session but get lost between sessions. In
addition to these views inside Imagix 4D, reports can be created as part of the automated
documentation process, which are formatted documents or hypertext documents (HTML).

Rigi creates 2-dimensional graphs that can be arranged either top-down, bottom-up or with two
special algorithms: Sugiyama and Spring-layout. The Sugiyama-layout algorithm has a layered, tree-
like layout that tries to minimize the crossings. The Spring-layout algorithm models the arcs as
springs so that highly connected nodes tend to pull each other together and more isolated nodes tend
to push each other apart (see Figure 3).

The graph can be edited manually, using filters and by searching and then deleting or hiding
entities from the view. Together with the special layout algorithms well readable views can be

generated. Rigi also supports layered views and SHriMP (see Figure 4) views. Rigi allows to save
both the edited representation of the source and the created views.

SNiFF+ can create 2-dimensional graphical views (see Figure 5) and textual views which can be
browsed. The graphical views show all the entities that one entity refers-to or is referred-by. This view
is limited in the sense that connections can only go in one direction from an entity, therefore, resulting
in many representations of one item (e.g. function) if the item is referenced somewhere else. These
items are then marked in a special way. Because of this limitation of the views, highly connected
entities cannot be identified and the reading of the views can get complicated with large graphs.

The entities in the graph can be filtered but no real manipulation of them is possible. The views
created cannot be saved but remain the same until a new view is created or the tool to generate the
view is terminated.

The achievable software views, as we have shown, are quite different. But they do not only differ
in the kind of views that can be generated but also views of the same type can differ quite a bit
between the reverse engineering tools. The next subsection gives an example of the possible diversity
of software views based on the call graph.

4.1.1.Call graph

Two functional views which usually can be generated by a reverse engineering tool are the
functions report as a textual view and the call graph for graphical representation. These views show
the functional coherence of the system under study. The call graph shows the call relations among a
set of functions. Each function is represented by an item that has outgoing arrows to the function it
calls, and incoming arrows from the functions that call it.

The call graph in Refine/C is called “structure chart.” To show functions that are defined as
external (functions that are either programmed in Assembler or are part of a standard library) the call
graph is created with the option “show externals” activated. Thus the resulting call graph is very
broad. This is due to many functions that are either not called directly from the C source code or from
functions in the standard libraries.

To view the entities in a readable form the call graph has to be zoomed (see Figure 1). As can be
seen in the figure the entities are labeled with the initial substring that fits in the graphical label and
thus cannot be distinguished.

Figure 1. Refine/C call graph zoomed

The call graph in Imagix 4D is smaller because of the use of the third dimension. The disadvantage
here is that functions that are highly interconnected hide some of the information behind them. To see
the entities that are at the “back side” of the call graph it has to be rotated. In large call graphs it
sometimes is not possible to identify the functions in the middle of the graph (especially the
connections to other functions). In the text window (on the right side of the call graph, see Figure 2)
the entities are viewed in relation to the files and directories were they are defined. Functions that are
not in one of the files are defined externally.

To create a more readable graph the view can be manipulated. The graph shown in Figure 2 has
been created by hiding functions that are either not connected to any other function or are part of error
routines.

Figure 2. Imagix 4D filtered call graph

The call graph in Rigi is created by viewing the graphical representation without the variables. This
can be done by filtering or deleting them. The external functions (i.e. Assembler code) are not shown
in the call graph, resulting in a smaller graph with less information. To create the call graph with the
Spring-layout algorithm the functions that are not connected to the graph had to be deleted (the
algorithm can be applied only to connected graphs).

The thus created call graphs show a grouping around the error functions. Resulting from this
centering around the error routines, the call graphs are not showing the interesting parts clearly. The
following graph (see Figure 3) was created by filtering these error routines. In this view, the centering
around the main function and the module structure of the source code can be identified easily.

Rigi also provides the capabilit y to generate layered (Harel, 1988) and SHriMP views. The layered
views allow the grouping of functions (or any other type) into one entity. The result is a hierarchy of
entities with the leaf nodes being the actual functions. The SHriMP view —Simple Hierarchical Multi
Perspective view (Storey and Müller, 1995)— is a combination of nested graphs and the fisheye view
paradigm (Furnas, 1986). The fisheye view used by SHriMP has the following features:

� Highly interactive zooming
� When one node is enlarged, the other nodes smoothly decrease in size to make room for the

selected node
� Different areas of the graph may be inspected without permanently altering the graph
� A user may zoom multiple focal points and focal areas in the graph

The SHriMP views show the complete nested graph allowing to zoom-in or out of composite nodes
down to the level of the atomic nodes. To create a SHriMP view the entities that were not of interest
had all to be hidden first then a layered view was created of the case study. Figure 4 shows this
SHriMP view after some nodes have been zoomed at different levels.

Figure 3. Rigi call graph, filtered (Spring-layout algorithm)

Figure 4. Rigi SHriMP view of the Train Control System

SNiFF+ has no view which is a call graph only, but the cross referencer can be reduced to a call
graph view by filtering the functions from all the symbols (see Figure 5). As stated before, the graph is
viewed by starting at one entity and viewing all the entities that are either referred-to or referred-by
this entity (to a given depth). To generate the call graph the “main” function, i.e. the one that calls
most of the other functions has to be identified. Starting from this function all the functions that are
called by it are shown. The graph is small because the external functions cannot be shown. It is
interesting that the fan-in of functions cannot be identified well and since many references to a
function are shown multiple times some information gets lost.

Figure 5. SNiFF+ call graph

4.2. Comparison of the evaluated reverse engineering tools

In contrast to the common assumption that reverse engineering tools have basically the same
capabiliti es this was not the case for the four evaluated reverse engineering tools, at least with the
exception that all tools provided a call graph.

Further, no evaluated tool provided all the functionality of the others or at least a majority. In fact
the tools provided very different sets of capabiliti es, which may be partly due to the selection of the
tools to represent a wide spectrum. Hence, none of the tools can be declared as the best or most useful
reverse engineering tool in general. Every tool provided at least one advantage over the other tools.

4.2.1.Refine/C

Refine/C provides an excellent parser in terms of the results of the internal representation
(augmented abstract syntax tree). Especially in addition with Software Refinery it provides a good
basis to extend Refine/C for specific applications. This is one reason why it is often used in the
reverse engineering community. The generation of the projects, although it has to be done either
manually or by a simple tool provided by Reasoning Systems, is flexible (e.g. define and undefine per
file, exclusion of f iles, etc.). One major problem of parsing programs in Refine/C is that after a project
has been parsed it cannot be reparsed, which sometimes is needed if changes to the project definition
file have to be made during a session.

The user interface of the Refine/C workbench is restrictive (e.g. allows only one representation of
each view, representations can only be placed on specific screen parts, etc.). Especially missing are
capabilities such as a search engine, or an integrated editor, to ease the task of the reverse engineer.

The views that can be generated are the most important ones and only Imagix 4D provides more
views.

The major drawback of Refine/C is the missing support to save scopes created or at least
generating views from already limited ones. Also the manipulation of the graphical views should be
supported in a better way (only the movement of the entities and browsing through the view is
supported).

4.2.2.Imagix 4D

Imagix 4D, li ke Refine/C, provides an excellent parser and the generation of projects is well
supported by the tool (e.g. project definition by file, directory, makefile, reparse and incremental
parsing, etc.).

The tool has a good user interface and is easy to use. The context sensitive online help and the
tutorials contributed to make the learning curve a lot steeper than in the other tools. It provides the
most number of views of all the evaluated tools and it owns the best set of supporting capabiliti es (e.g.
search engine, integrated editor with highlighting and great browsing capabilities, etc.).

The generated views were sometimes too big and complex to be of real use, but because of a lot of
capabiliti es to manipulate them (e.g. filters, scopes, groups, etc.) they could be well tailored to the task
or problem at hand. Additionally the views could be saved during a session to be used for further
reference or to be the starting point for a new view (the views can be used to save selections).
Especially the queries for the source code that are provided proved very useful (e.g. to comprehend the
program faster).

Another capabilit y that is only provided by Imagix 4D is the automatic generation of
documentation from the source code: It allows to generate HTML documentation which can then be
browsed. What is also only provided by Imagix 4D is the import of additional data sources (graph
profile data - gprof and test coverage data - tcov) that can then be related to the views (e.g. to show the
test coverage results in a call graph).

Two major capabiliti es that are missing are a way to extend the tool and to generate graphical
views that are also useful in printed form.

4.2.3.Rigi

The major drawback of Rigi is the provided parser which can only parse functions and struct data
types. This limits the views that can be generated mainly to functional views (call graph). Another
problem is that the tool —because it is a research prototype— is not too stable.

The major advantages of the tool are that it features new technologies (e.g. layered views, SHriMP
view, layout algorithms, etc.). The tool provides supporting capabiliti es (e.g. filters, metrics, groups,
etc.) and it is extensible in some way. The created views are of good quality, partly due to the possible
manipulations (e.g. filters, moving of entities) and the two layout algorithms which show additional
information (e.g. cohesion and coupling). Rigi is the only tool that allows to save the generated views
and representations.

4.2.4.SNiFF+

The fast and fault tolerant parser in SNiFF+ is great when parsing source code that is incomplete or
syntactically incorrect. But if correctness of the source code is of interest the fault tolerant parser can
be a disadvantage. Only missing files are reported and this information can be found in a file. Also the
generation of the projects in SNiFF+ turns out as rather inflexible: All the files have to be in one
directory.

The main achievable view is the graphical cross referencer. The structure of this view is suitable
for printing, but not for comprehension (entities can be found more than once in the cross referencer,
but are then at least marked). SNiFF+ also provides good printing capabilities (e.g. banner printing).

The integrated text editor is almost as good as the one from Imagix 4D. It supports syntax
highlighting and point and click movement which makes browsing the source code very easy. SNiFF+
is the only tool that also supports browsing between all generated views which comes in handy
sometimes.

4.3. Tool extensibility

Tool extensibilit y is an important feature of many types of tools. This is also the case for reverse
engineering tools, in which additional functionality often needs to be integrated to meet the specific
constraints of a reverse engineering activity. In our case study it was important to extract information
from the tool database to be integrated into another tool or with other recovered system information
based on the Assembler source code. The following gives a short overview of the extensibilit y of the
evaluated tools.

Refine/C provides an API to use its reverse engineering features to build customized analysis tools,
such as by (Kontogiannis et al., 1995) and (Whitney, et al., 1995). Further, it provides programming
access to its C parser and printer, to enable extensions to the C domain model, grammar, or lexical
analyzer. A customization of Refine/C through its API requires Software Refinery. Furthermore, for
small extensions, the output of the reports is customizable and can be converted easily.

Imagix 4D provides a scripting language to generate queries based on the capabiliti es provided by
Imagix 4D (the auto queries are based on this). To use the information generated by Imagix 4D in

other tools, the output generated by the documentation functionality may be used, but the other tools
need to cope with truncated long identifiers and the special format of the output.

Rigi (rigiedit) is programmable through a scripting language (RCL, an extended version of Tcl/Tk)
and provides a customizable user interface (Whitney et al., 1995). The separate parser can be replaced
with another one based on the Rigi Standard Format (RSF) triples, that are binary relations
representing the database.

SNiFF+ is not extensible for reverse engineering tasks. It provides an interface for control
integration via an API or an executable command.

4.4. System dependencies

The diff iculties in reverse engineering the case study mainly resulted from two aspects which to
some extent are typical for embedded software systems:

First, embedded software systems are usually programmed in more than one programming
language. In the case study both C and Assembler were used. The reverse engineering tools examined
are not able to parse Assembler code, so only the C parts could be parsed and studied, which results in
incomplete views of the application. Furthermore, the C code contained externally defined functions
and variables which are defined and instantiated in the Assembler part. As a result, some reverse
engineering tools do not include these variables and functions in the generated reports. The exclusion
of these variables caused problems because they are used for the main data flow in our case study.

Secondly, the case study was created for different development and target environments and was
reverse engineered in again another environment. This resulted in some diff iculties when parsing the
C source code: Platform dependent parts of the application had to be supplied (e.g. header files) and
platform properties had to be taken into account (e.g. file naming conventions, interrupt usage).
Furthermore, application-specific knowledge was required to parse the application in a useful way,
because macro definitions and additional files were used to generate different versions of the software
(e.g. debugging, different application properties, etc.).

4.5. Shortcomings of achievable software views

Independent of the reverse engineering tool that generates views of the system, tool-generated
views have—as manually generated views—some shortcomings.

Especially the graphical views can only show a part of the system tracing a specific problem. This
is due to the fact that the view of the complete application is not usable in most cases, mainly because
of the size of the system under study. The complete view of the system is typically unreadable and
clustered (if the complete view is shown on the screen) or cannot be comprehended well (if only a part
of the view is shown). To make the automatically generated views more readable and to relate them to
a specific problem, quite some effort is required. Additionally, application-specific knowledge (e.g.
which parts of the application are currently of interest) and domain knowledge (e.g. in this application
domain the error routines are not of high importance and can, therefore, be excluded from the view)
are important.

Many real-world systems hinder the generation of the complete views of the system (e.g. multi -
language development, client-server applications, etc.). These views have to be generated either
manually or by completion of the partly tool-generated view.

Another shortcoming of generated software views is that almost no focus on essential elements is
possible across the different views. Specific problems cannot be traced easily across the views,
because of the part of application shown and the different kind of information represented in the
different views. The reverse engineer has to combine the different types of information shown by the
views to generate the intended view of the application manually (e.g. recovered architecture,
recovered design, etc.).

A further shortcoming of the achievable software views is the missing support of different layout
algorithms for the graphical views (such as specific layout algorithms for printing, showing cohesion
and/or coupling).

4.6. Benefits/shortcomings of reverse engineering tools

Many shortcomings of reverse engineering tools are due to the size of the system under study. The
result are representations that get confusingly large. Especially the graphical views do not only grow
in their size, they also get less readable (clustered, incomplete labels, etc.). Graphical views often need
an unacceptable amount of time to be generated because of the layout algorithms.

Reverse engineering tools can generate several views, but to get a comprehensive “picture” of the
application, these views are not suff icient. The tool-generated views often have to be completed
manually because of different problems of reverse engineering tools: the inabilit y to parse all source
languages; client-server code cannot be related to each other automatically, etc. Supplemental
manually generated views have to be created (some views simply cannot be generated by reverse
engineering tools yet and others are either not supported by the individual tool or insuff iciently
generated, e.g. state transition diagrams).

Manually generated views cannot be created for all the specific problems or parts of the application
traced (in contrast to the automatically generated views where this is at least possible). This makes it
more diff icult to relate the information found in the automatically generated views to the manually
generated views.

Though it is said that applying reverse engineering tools to an application is an easy task, it requires
application-specific knowledge (e.g. macros used for generating different versions of the software
under study) and domain knowledge (e.g. safety criti cal systems) for many tasks during reverse
engineering (e.g. parsing the source code, generating useful software views, etc.) making it not as easy
and simple as it may seem.

Although some reverse engineering tools provide the abilit y to parse more than one programming
language, they are not capable of mixed language support. Therefore, they cannot create projects or
views with different source code languages.

The views only represent static information that can be found automatically in the source code.
Additional application knowledge, therefore, is not included. A tool-support to include external
application- and domain knowledge would enrich the views significantly.

Support for component identification, redundancy detection, and dynamic system analysis activities
would also be desirable capabilities of reverse engineering tools.

5. CONCLUSIONS

There is no single tool that could be declared as the best of our evaluation. The reverse engineering
tools evaluated are all quite different with varying strengths and weaknesses. They all provide good
reverse engineering capabiliti es in different usage contexts. Figure 6 shows a final classification of the
evaluated reverse engineering tools based on usability (for our task) and extensibility.

Figure 6. Classification of reverse engineering tools

Refine/C provides an excellent parser in terms of the results of the internal representation
(augmented abstract syntax tree). Especially together with Software Refinery it provides a good basis
to extend Refine/C for special applications, which is one reason why it is often used in the reverse
engineering community. The views that can be generated are the ones of major interest, but support in
manipulating the graphical views more easily as well as in searching or saving selections are missing.

Imagix 4D provides a large set of capabiliti es with a number of achievable views and also the
capabilit y to create documentation from the source code. The queries that are provided help to
comprehend a program faster. Possibiliti es to extend the tool and to generate graphical views that are
also useful in printed form should be included.

Rigi features a lot of new technology, such as layered views, SHriMP view, layout algorithms, etc.
and can be extended. One shortcoming is that the parser can only parse functions and data of type
struct. This limits the views that can be generated mainly to functional views (call graph).

SNiFF+´s main view is the graphical cross referencer, which—due to its structure—is well -suited
for printing. SNiFF+ provides also good printing capabiliti es. The fast and flexible fault-tolerant
parser allows to parse incomplete or even syntactically incorrect source code. A shortcoming of
SNiFF+ is that only the cross referencer can be seen as a software view of the system.

For the purpose of customizing a tool for a specific application Refine/C or Rigi (if the parser for C
code is extended) can be recommended. To speed up program comprehension and to generate
documentation and several views, Imagix 4D provides optimal capabiliti es. SNiFF+ is well -suited for
software systems that are not completely parsable, for creating printable views and for browsing the
system under study.

As a more general result, our tool evaluation showed that the performance and capabiliti es of a
reverse engineering tool are dependent on the case study and its application domain as well as the
analysis purpose. The study discovered that embedded software systems are diff icult to analyze with
current tool technology. Further, it showed that especially the graphical views and layouts require
significant improvement and that a multi-language support is required for real-world applications.

Acknowledgements

We are grateful to Wolfgang Eixelsberger, Lasse Warholm and Haakon Beckman for their support
in analyzing the case study.

This work was supported by the European Commission within the ESPRIT Framework IV project
ARES (Architectural Reasoning for Embedded Systems), project no. 20477.

References

Bellay, B. and Gall , H. (1996) An Evaluation of Reverse Engineering Tools (TUV-1841-96-01), Distributed Systems
Department, Technical University of Vienna, 39 pp.

Bellay, B. and Gall , H. (1997) ‘A Comparison of four Reverse Engineering Tools’ , in Proceedings of the 4th Working
Conference on Reverse Engineering, IEEE Computer Society Press, Los Alamitos CA, pp. 2-11.

Biggerstaff, T. J (1989) ‘Design recovery for maintenance and reuse’, IEEE Computer, 22(7),36-49.
Biggerstaff , T. J., Mitbander, B. G. and Webster, D. E. (1994) ‘Program understanding and the concept assignment

problem’, Communications of the ACM, 37(5),72-83.
Brown, A. W. and Wallnau, K. C. (1996) ‘A framework for evaluating software technology’, IEEE Software, 13(5),39-49.
Eixelsberger, W., Warholm, L., Klösch, R., and Gall , H. (1997) ´Software Architecture Recovery of Embedded Softwarè ,

in Proceedings of the 19th International Conference on Software Engineering, IEEE Computer Society Press, Los
Alamitos CA, pp. 558-559.

Eixelsberger, W., Ogris, M., Gall , H., and Bellay, B. (1998) ´Software Architecture Recovery of a Program Family`, in
Proceedings of the 20th International Conference on Software Engineering, IEEE Computer Society Press, Los
Alamitos CA, pp.508-511.

Furnas, G. W. (1986) ‘Generalized fisheye views’ , in Proceedings of ACM CHI 86, Association of Computing Machinery,
NewYork N.Y., pp. 16-23.

Gall , H., Jazayeri, M., Klösch, R., Lugmayr, W. and Trausmuth, G. (1996) ‘Architecture recovery in ARES’, in Joint
Proceedings of the SIGSOFT '96 Workshops - Second International Software Architecture Workshop ISAW-2,
Association of Computing Machinery, NewYork N.Y., pp. 111-115.

Harel, D. (1988) ‘On visual formalisms’, Communications of the ACM, 31(5),514-530.
Kontogiannis, K., Galler, M., DeMori, R., Bernstein, M. and Merlo, E. (1995) ‘Pattern matching for design concept

localization’ , in Proceedings of the 2nd Working Conference on Reverse Engineering (WCRE '95), IEEE Computer
Society Press, Los Alamitos CA, pp. 96-103.

Murphy, G. C., Notkin, D., Lan, E .S.-C. (1996) ‘An empirical study on static call graph extractors’ , in Proceedings of the
18th International Conference on Software Engineering, IEEE Computer Society Press, Los Alamitos CA, pp. 90-99.

Reasoning Systems (1990) Dialect User's Guide.
Reasoning Systems (1990) Refine User's Guide.
Reasoning Systems (1991) Intervista User's Guide.
Reasoning Systems (1994) Refine/C User's Guide.
Reasoning Systems (1995) Refine/C Programmer's Guide.
TakeFive Software GmbH (1997) SNiFF+ for Unix.
TakeFive Software GmbH (1997) SNiFF+ User's Guide.
TakeFive Software GmbH (1997) SNiFF+ Tutorial Guides.
TakeFive Software GmbH (1997) SNiFF+ Reference Guide.
Storey, M.- A. D. and Müller, H. A. (1995) ‘Manipulating and documenting software structures using SHriMP views’ , in

Proceedings of the International Conference on Software Maintenance, IEEE Computer Society Press, Los Alamitos
CA, pp. 275-84.

Whitney, M., Kontogiannis, K., Johnson, J. H., Bernstein, M., Corrie, B., Merlo, E., McDaniel, J., DeMori, R., Müller, H.,
Mylopoulos, J., Stanley, M., Till ey, S. and Wong, K. (1995) ‘Using an Integrated Toolset for Program
Understanding’ , in Proceedings of the 1995 IBM CAS Conference (CASCON ´95), IBM Canada Ltd., Toronto ON,
pp. 262-274.

Wong, K. (1996) Rigi User's Manual V 5.4.3, Part of the Rigi distribution package, pp. 161.

Authors’ biographies:

Berndt Bellay is currently a research assistant in the Distributed Systems Group at the Technical
University of Vienna, where he investigates architecture recovery issues within the ESPRIT project
ARES (Architectural Reasoning for Embedded Systems) and does his Ph.D. He received his M.Sc. in
computer science from the Technical University of Vienna in 1997. His research interests are software

engineering, reverse engineering, software architectures, and programming languages. E-mail:
bellay@infosys.tuwien.ac.at

Harald Gall received the M.S. and Ph.D. degrees in computer science from the Technical University
in Vienna, Austria. He is currently Assistant Professor in the Distributed Systems Group at the
Technical University of Vienna. His research interests are directed toward software architecture,
architecture recovery and reverse engineering, and software evolution. Dr. Gall i s a member of the
IEEE and the Austrian Computer Society (OeCG). E-mail: gall@infosys.tuwien.ac.at

APPENDIX A: TOOL INFORMATION

Refine/C and Software Refinery
Reasoning Systems, Inc.
3260 Hillview Avenue Palo Alto, CA 94304, USA
Phone: (415) 494-6201; Fax: (415) 494-8053
E-mail: info-requests@reasoning.com
Internet: http://www.reasoning.systems

Software Version
Refine/C Version 1.1
Refine Version 4.0

Manuals
Refine User's Guide (Revised May 25, 1990)
Intervista User's Guide (Revised March 4, 1991)
Dialect User's Guide (Revised July 6, 1990)
Refine/C User's Guide (Revised May 2, 1994)
Refine/C Programmer's Guide (Revised June 13, 1995)

Imagix 4D
Imagix Corp.
3800 SW Cedar Hills Blvd., Ste 227 Beaverton, OR 97005-2035, USA
Phone: 1-503-644-4905
E-mail: info@imagix.com
Internet: http://www.imagix.com

Software Version
Imagix 4D Version 2.7

Manuals
Context-sensitive online help

Rigi
Hausi A. Müller, Department of Computer Science,
University of Victoria, P.O.Box 3055, Victoria BC, Canada
Phone: (604) 721-7630; Fax: (604) 721- 7292
E-mail: hausi@csr.uvi.ca
Internet: http://www.uvic.ca/rigi

Software Version
Rigiedit V 5.4.3
Rigiparse V 5.4.3

Manuals
Rigi User's Manual V 5.4.3 (Postscript)

Rigi User's Manual V 5.4.1 (HTML)
Rigi Command Language (RCL) V 5.4.3 (HTML)
Rigi C-Language Parser (HTML)

SNiFF+
TakeFive Software GmbH, 5020 Salzburg, Austria or
TakeFive Software, Inc., Cupertino, CA
E-mail: info@takefive.co.at or info@takefive.com
Internet: http://www.takefive.com

Software Version
SNiFF+ Version 2.3.1

Manuals (Postscript and HTML)
SNiFF+ for Unix
SNiFF+ User's Guide
SNiFF+ Tutorial Guides
SNiFF+ Reference Guide

Table 2. Assessment of the four reverse engineering tools

Assessment Criteria Refine/C Imagix 4D Rigi SNiFF+

General capabilities o o o o

Supported platforms Sun Sparc;
HP 9000/7xx;
IBM RS/6000

Sun Sparc;
HP 9000/7xx;

SGI

Sun Sparc;
IBM RS/6000;
Pentium PC

Sun Sparc;
HP9000/7xx;
HP9000/8x7;

IBM RS/6000;
IBM Power PC

DEC Alpha;
SGI; SNI RM;

NCR; PC

Multi-user support o o - ++

Toolset extensibility
tool integration - - o -
tool composition - - o o
parser ++ - + -
user interface + - ++ -
functionality ++ - ++ -

Storing capabilities
parsed source code storable + always always always

edited representation storable - - + o
tool state storable - - - +
selections storable - - - -
views storable - o + -

Output capabilities (printing)
storing of output yes yes no yes
output formats ASCII, PS PS, GIF / PS

intelligent printing capabilities - - / +

Output capabilities (exporting)
CASE tool Software through

Pictures
- - -

other reverse engineering tool - - - -

Output capabilities (documentation)
automatic generation - ++ - +
macros - - - +
output formats / ASCII, RTF,

HTML
/ internal format

History of browsed locations no no no yes

Search facility - ++ o +

Online help - + - -

Analysis ++ ++ o o

Source types and project definition
Parsable source languages C (ANSI),

C (K&R)
C (ANSI), C++ C (ANSI), C++,

COBOL,
PL/AS, Latex

C (ANSI), C++

Other importable sources / gdb and tcov
results

/ /

Project definition type File File, Directory,
Makefile

File Directory

Ease of project definition o ++ - +

Parser functionality
Incremental parsing no yes no yes
Reparse no yes yes yes
Fault tolerant parser no no no yes
Define and undefine Project/File Project/File Project Project

Preprocessor command configurable yes no no yes
Support for additional compiler
switches

yes yes yes yes

Parsing functionality
Quality of parse error statements o + + -
Parse abortable yes no yes no
Parse errors viewable during parsing yes no yes no
Parse continued at error no yes yes yes
Point and click movement from parse
results to source code

yes no no no

Parsing results ++ ++ o o
Parsing speed o + + +

Representation + ++ + o

Textual (tabular, formatted, etc.)
directory layout/organization - + - -
files o ++ - o
functions + + - o
types + + - o
variables + + - o
coding standard violation + - - -
pseudo code - - - -

Graphical (2-, 3-dimensional)
directory layout/organization - ++ - -
build map - ++ - o
call graph o + + o
control flow graph - ++ - -
data flow graph + + - o
data structure diagram - + - -
entity relation diagram - - - -
state transition graph - - - -
combined views - Calls and

Variables, Full
view

Full view Full view

General report properties
speed of generation o + + ++
filter - ++ + +
scopes + ++ - o
grouping - + + -

point and click movement between
reports

- - - +

point and click movement from report
to source code

+ + + +

annotations - - + -
static/dynamic views - - - +
external functions/variables o ++ - o

Textual report properties:
sorting + - - -

Graphical report properties:
layout algorithms - - ++ -
view editable o - + -
layered view - - ++ -
fisheye view - - - -
SHriMP view - - o -

Editing/browsing - ++ - +

Integrated text editor/browser - ++ - +

External editor/browser yes yes yes yes

Intelligent control of text editor/browser o ++ o +

Integrated browser functionality
Highlighting / + / +
Visualization functions / ++ / +
Speed / o / +
Search function / + / +
User interface / ++ / +
History / + / +
Hypertext capabilities / + / +

Extensibility

4)
4) Rigi

5)

2)

3)1)
Usability

1) Refine/C
2) Refine/C and Software Refinery
3) Imagix 4D

5) Sniff+

