An Evaluation of Reverse Engineering Tool Capabilities

BERNDT BELLAY andHARALD GALL "
Distributed Systems Group, Technical University of Vienna, A-1040 Vienna, Austria, Europe

SUMMARY

Reverse engineering toods support software engineers in the process of analyzing and
understanding complex software systems during maintenance, reengineeling, o rearchiteding.
Thefunctionality of such todsvariesfrom editing and browsing capabili tiesto the generation of
textual and graphical reports. There are several commercial reverse engineering toals on the
market providing different capabilities and supporting spedfic source code languages. We
evaluated four reverse engineering tods that analyze C source code: Refine/C, Imagix4D,
SNiFF+, and Rigi. We investigated the @pabilities of these tods by applying them to areal-
world embedded software system as a case study. We identified benefits and shortcomings of
these tods and assessed their applicability for embedded software systems, their usability, and
their extensibility. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: reverse engineering; tool evaluation; reverse engineering tools

1. INTRODUCTION

Toadl-suppat during maintenance, reengineaing, or reachiteding adivities has becme important
to deaease the software engineas time of manua source ®de analysis and to help focus on
important program understanding isaues. The size and complexity of commercial software systems
requires automated reverse engineaing suppat to fadlit ate the generation o textual and graphicd
reports (e.g. function reports, cdl trees) of the software system under study. But reverse engineaing
tods can orly partly automate the program understanding process Design recvery or architedure
recovery adivities gill require the expertise of an enginea (Biggerstaff, 1989 and (Biggerstaff,
Mitbander and Webster, 1994).

We evaluated four reverse engineaing tods', ead of which represents a different category of
reverse engineering tools:

e Refine/C? is an extensible, interadive workbench for reverse engineaing C programs. Refine/C

is used to understand, evaluate, and redocument existing C code. It provides an APl to use its

* Correspondence to: H. Gall, Distributed Systems Group, Technical University of Vienna, Argentinierstrale 8/184-1, A-
1040 Vienna, Austria, Europe. E-mail: gall@infosys.tuwien.ac.at

! Refine/C Version 1.1a, Imagix 4D Release 2.7, Rigi V (Rigiparse V 5.4.3, Rigiedit V 5.4.3), SNiFF+ for C/C++ Version
2.3.1.

2 Refine/C and Software Refinery are trademarks of Reasoning, Inc.

reverse engineaing fedures to buld customized analysis tods. Refine/C also provides
programming accessto its C parser and grinter enabling to make extensions to the C domain
model, grammar, or lexicd analyzer. A customization d Refine/C through its API requires
Software Refinery.

e Imagix 4D° is a mmprehensive program understanding too for C and C++ programs. It
provides views to rapidly chedk and systematicdly study software & any level ranging from
high-level design to the details of its build, class and function dependencies. Imagix 4D
presents this key information onsoftware in a 3D-graphicd format which enables the user to
quickly focus on particular areas of interest.

e Rigi isapuldic domaintod developed in the Rigi Reseach Projed at the University of Victoria
(Hausi A. Miller). The main comporent is an editor cdled rigiedit. It is written in RCL, an
extended version d Tcl/Tk, and suppats viewing of parsed C, C++, PL/AS, COBOL, and
LaTeX code (Wong, 1999. A C parser for generating the representation used in the Rigi system,
cdled Rigi Standard Format (RSF), is aso avail able. Rigiedit shows the @rrespondences of the
entities that are generated by parsing the application and allows to edit these representations.

e SNiFF+ for C/C++ % is not a dasscd reverse engineaing tod. It is an open, extensible and
scdeable programming environment for C and C++ which aso suppats reverse engineaing
adivities. SNiFF provides an efficient and patable eavironment with a cmfortable user
interface.

We investigated the caabiliti es of the ébove reverse engineaing todls and identified their benefits
and shortcomings in terms of applicability for embedded software, usability, and extensibility. The
main focus was on the tod cagpabiliti es to generate graphica reports such as cdl trees, data and
control flow graphs. For a more detailed presentation d the reverse engineeaing tods se(Bellay and
Gall, 1996). This paper presents revised and enhanced results of (Bellay and Gall, 1997).

The experimenta framework for evaluating software techndogy presented in (Brown et al., 1996
states that atechndogy evaluation depends on the understanding of: 1) how the evaluated technd ogy
differs from other techndogies; and 2 how these differences address the needs of spedfic usage
contexts. In ou case, the usage cntext was the recvery of architedural information from embedded
software systems (Gall et al., 1996,Eixelsberger et al., 1997, 1998. For the evaluation we dose four
significantly different representatives of reverse engineering tools to cover a wide spectrum of tools.

The paper is organized as follows. In Sedion 2 we give abrief overview of the cae study. In
Sedion 3we define the todl assesament criteria and assessead tod in these terms. In Sedion 4we
present our results regarding the adievable software views, operating system dependencies, and
shortcomings/benefits of reverse engineering tools. In Section 5 we draw some conclusions.

2. THE CASE STUDY

The evaluation was based on a part of a Train Control System that is a red-world embedded
software system provided by an industrial partner. The system under study is one version d a family
of systems which are safety-criticd and have strong timing considerations. The software is

% Imagix 4D is a trademark of Imagix Corporation.
4 SNiFF+ is a trademark of TakeFive Software GmbH.

programmed in two languages (C, Assmbler) and hes to run on dfferent development and target
environments. The system controls high speed train movement and redizes predsion stops in metro
stations.

The wde sizeis approximately 150K LOC (Lines of Code), with the software implemented as date
automatons as described in the SDL spedficaions of the system. Time aiticd parts are implemented
in Asembler, while the rest of the software is implemented in C. The source ®de iswell commented
and the software documentation of the studied parts of the system were available for our evaluation.

3. TOOL ASSESSMENT

In this sdion, we define aset of evaluation criteria to be used in assessng the four reverse
engineeaing toadls. The definition d the aiteriais based on our experience in applying these reverse
engineering tools to the commercial case study.

3.1. AssessmenCriteria for Reverse Engineering Tools

We introduce the foll owing functional categories to assessthe reverse engineging tods. analysis,
representation, editing/browsing and general cgpabiliti es. In the following we describe eat o these
categories.

3.1.1.Analysis

The parser is the are subsystem of every reverse engineaing todl. The result of the parsed source
code, i.e. the representation from which al the views are aeaed, depends on the ailiti es of the
parser. Parts of the source @de that are not parsed o parsed incorredly will affeda all the generated
views (Murphy, Notkin and Lan, 1996. The following is a list of criteria to be cnsidered for a
reverse engineering tool parser:

Source types and project definition:

1) Parsable source languages: Define which source ®des can be parsed. The most common are C
(ANSI C and K&R C), C++, COBOL, and FORTRAN.

2) Other importable sources: These represent other importable sources that can be used in the
reverse engineaing tod (e.g. test coverage-results which can be used for test verifications of the
source code).

3) Projed definition types. This represents how a projed can be defined in the reverse engineeing
tool. Three methods of definition can be distinguished: file, directory, and makefile.

4) Ease of project definition: gives a measure of how easily a project can be defined.

Parser functionality:

1) Incremental parsing: Incremental parsing shoudd be suppated for systems that are dhanging
during the reverse engineaing phase (e.g. under development or maintenance). It provides the
ability to parse only the parts that changed, thereby reducing the parse time.

2) Reparsing: Sometimesit isimportant to reparse the whole source @de (e.g. when new maaos are
defined).

3) Fault tolerant parser: A fault tolerant parser provides the aility to parse incomplete, syntadicdly
incorred and urcompil able source @de. This ability helps to parse source ®de fast and withou
changes, bu has the disadvantage of not knowing if the parsed result represents the gplicaion
generated by a compiler.

4) Define and undfine: The define and unafine preprocesor commands are important for parsing
source @de and shoud be suppated by the parser. Two types of suppat can be distinguished:
one is define and undefine only per project and the other one is additionally on a per file basis.

5) Preprocessor command configurable

6) Suppat for additional compiler switches: In addition to maaos, compiler switches—such as
include directories—should also be supported.

Parsing functionality:

1) Quadlity of parse aror statements. The description d the parse eror shoud help identify the
source of the error and the reason why an error occurred.
2) Parse dortable, parse arors viewable during parsing, parse mntinued at error: These aiteria can
help reduce the time to parse the source @de withou errors to generate the representation in the
reverse engineering tool.
3) Point and click movement from parse results to source ®de: This aso helps to speed up the
parsing process, but has to rely on the quality of the parse errors to enable the user to find errors.
4) Parsing results: The parsing results of the parser represent the mrredness completenessand type
of information of the resulting representation of the source code in the reverse engineering tool.
5) Parse speed

3.1.2.Representation

Representations are divided into textual and graphicd reports, and properties of these reports, and
are assessed based on their usability. For both kinds several general properties have to be considerec

Textual (tabular, formatted, etc.):

This provides a list with dfferent textual reports, which are evaluated for ead tod on their
usability and completeness.

Graphical (2-, 3-dimensional):

This provides a list with dfferent graphica reports, which are evaluated for ead tod on their
usability and completeness.

General report properties:

1) Spedl o generation: The speal of generation d textual reports mostly depends on the anount of
information to be shown. Graphicd reports also depend on the layout algorithm used by the
reverse engineeaing too. Depending on the type and content of the reports, credion times upto a
few minutes are very possible.

2) Filters, scopes, grouping: These three properties help to simplify the graph by showing only the
part of interest. This is esential becaise graphicd representations of applicaions are huge and
therefore not useful in their complete representation. Filters are used to limit the view of a
generated report (postprocessng) in contrast to scopes which limit the view of the report to be

generated (preprocessng). The groupng function is important to simplify the graph withou
losing the effect of the grouped entities on the rest of the view.

3) Point and click movement between reports allows easy navigation ketween reports based on a
specific entity (e.g. function name, variable name).

4) Point and click movement from reports to source @de dlows to access the source @de
representation d a spedfic entity in a report. The browsing of the source @de can be seen as
switching the abstraction level and is done often during code comprehension.

5) Annaations help to remember certain aspeds of the software diredly whereiit is required withou
rebrowsing the part and also help to store the knowledge already acquired.

6) Static/dynamic views: Thisrefersto the aility of reportsto dynamicdly refled the dhanges made
to the source @de inside the reverse engineaing tod. An intelligent parser is required that is
cgpable of parsing sources incrementaly. In contrast, static reports have to be regenerated
completely after reparsing the source code to reflect the changes.

7) Externa functions/variables: Functions and variables that are dedared as external shoud be
parsed and included in the reports.

Textual report properties:

1) Sorting: Textual reports may get huge and therefore shoud be sortable by user-speafied criteria
(e.g. name, file, or type).

Graphical report properties:

The following properties improve usability and readability of graphical reports.

1) Layout algorithms. Spedal layout agorithms can make a graph more readable; for example,
minimizing the crossings of the arcs, showing the cohesion, or coupling of program elements.

2) View editablee Sometimes a view can be made more readable by manualy editing it. This
includes moving and celeting of entities that are aurrently nat of interest (e.g. error routines).
Grouping and filtering are further methods of editing a graph bu are separate properties and
therefore not included here.

3) Layered view: If agroupng of entities can be dore reaursively, a layered hierarchy is generated.
A layered view of such a hierarchy can be shown either in ore window (e.g. SHriMP view) or
each layer of the hierarchy is displayed in a separate window.

4) A fisheye view helps to make agraph with a fixed size more readable by zooming in or out parts
of the graph similar to a fisheye lens (Furnas, 1986).

5) SHriMP views (Simple Hierarchicd Multi Perspedive view) are a ombination d layered views
and the fisheye lens paradigm, enabling to show the layered structure in ore view with the detall
depending on the degree of interest.

3.1.3.Editing/browsing

The diting/browsing capabiliti es are esential becaise the user often switches the astradion level
from the generated views to the adua source mde. The text editor/browser shoud therefore provide
means to facilitate browsing the source code.

1) Integrated text editor/browser addresses whether the reverse engineaing toad provides an internal
text editor/browser. Normally the integrated text editor/browser provides a better functionality
with respect to the needs in a reverse engineering tool.

2) External editor/browser addresses whether external editors/browsers are supported by the tool.

3) Intelligent control of text editor/browser: For integrated editors an intelli gent control is easier to
provide but shoud also be suppated for external editors. Intelli gent control here means things,
such as positioning at the appropriate line, opening a file for browsing or editing, etc.

4) Highlighting of the source code (e.g. currently active element)

5) Visualization functions facilitate the browsing of source code.

6) Speed of text editor

7) Seach function: The text editor shoud provide aseach function to find accurrences of patterns
and easy methods to navigate among them.

8) The user interfaceshoud faalit ate the browsing of the source @de by providing short cuts or
buttons for the functions most often used.

9) A history of the browsed locaions doud exist in the text editor. This is espedally important if
the text editor provides hypertext capabilities.

10) Hypertext cgpabilities: To browse the source @de dficiently, the text editor shoud provide
hypertext capabilities to jump to elements within or across source files.

3.1.4.General capabilities

General cgpabilities gpan a wide range from suppated platforms to orline-help. We subdvide
them into the following aspects:

1) Supported platforms

2) Multi-user suppat: Multi-user suppat for reverse engineaing is not of such importance & in
development tods because the goplicaion namally does nat change and orly one person may
reverse engineq it. The neal for multi-user suppat of course dso depends on the size of the
system under study.

3) Toodset extensihility: Most reverse engineaing tools provide afixed set of cgpabiliti es which
canna be extended. Althouwgh such a set might be quite large, it canna foresee @mpletely what
different users may need and what new techndogies may evolve. An open system often provides
only afew compaosable operations and mecdhanisms for user-defined extensions. A closed system
shoud provide alarge set of built-in fadliti es and dfers no pashility to extend the set. Reverse
engineeaing tods can be extended either by extending the tod itself or by constructing integrated
applications from a set of tods. Reverse engineaing tools usually can be extended in the
following diredions. parser, user interface and functionality. For constructing extensible
integrated appli cations from a set of tods there aetwo basic gpproades. tod integration and todl
composition.

4) Storing capabilities: parsed source code, edited representation, tool state, selections, and views.

5) Output cgpabiliti es can roughly be grouped into printing, exporting, and automatic generation o
documentation. The printing cgpabiliti es are important for the documentation processto show the
results after applying the reverse engineaing tod if the tod is not available. Furthermore it is
important that the printing capabiliti es are intelli gent (e.g. banner printing, scding of graphics,
usage of different line styles when nocolor is avail able, etc.) to produce useful results. The export
cgpabiliti es are useful to be ale to generate other results with the aeded representation o the
source ®de (e.g. to crede an entity relationship dagram in a cae tod). The documentation
cgpability can be seen asthe aedion d other views. Some toadls provide the documentation d the

parsed source mde aitomaticdly and ahers smi-automaticdly (e.g. maaos for the generation).
The output format can provide hypertext functionality to ease the use of the documentation.

6) History of browsed locaions: A history of browsed locaions not only for the text editor but aso
for al the other elements of a reverse engineaing tod (e.g. reports) helps to go badk to
interesting parts already shown.

7) The seach fadlity of areverse engineaing tod is an esentia part: It can fadlit ate the task of
creding goups of items (seledions) and finding parts that are of interest. Not only patterns
shoud be suppated by the seach engine but also properties of the entities used in the reverse
engineering tool (e.g. scope of a function, location, size and other metrics).

8) Online-help

3.2. Assessment of the four Reverse Engineering Tools
The assessment for all criteria is done using one of three methods:

1. An enumeration of possible types,

2. Yes or no to clasdfy the availability of a functionality, where no further classficdion is
needed, or

3. A simple four-level scale, where the scale indicates whether a tool provides a functionality

++ excellent,

+ good,
0 acceptable, or
- not at all.

In additionto these, a “/ ” is used if afunctionality canna be assssd. Table 1 shows the results
for the four reverse engineering tools.

Table 1 Assessment of the four reverse engineering tools

4. EVALUATION RESULT S

This sdion gives an owerview of the adievable software views provided by the four evaluated
reverse engineaing tods and hriefly compares the cdl graph view of these tods. Afterwards a
comparison d the tools and their extensibility is presented. The sedion concludes with general
shortcomings of reverse engineeing tod views, problems with reverse engineaing tods due to
operating system dependencies of the system under study, and some more general benefits and
shortcomings of reverse engineering tools.

4.1. Achievable SoftwareViews

The views that can be generated with the different reverse engineaing toadls are shown in Table 1
under “Representation.” What is not shown, is that—although the evaluated reverse engineaing tods
provide similar kind d views—the representations and the possble manipulations, and thus the
finally achievable views, differ quite a lot across the evaluated tools.

The figures used for ill ustrating the tod's are from the case study, bu had to be aaonymized due to
confidentiality reasons.

The views in Refine/C are ather tabular reports or 2-dimensional graphs. All views can be focused
on the interesting part of an applicaion by seleding the scope of a view. Scope seledion can orly be
dore manually by seleaing al i nteresting parts of the gplicaion shown in ore view and then creaing
the other view. These seledions get lost after creaing a new view and no pashility exists to save a
set of seledions. Additiondly, it is only possble to seled the antities for the scope of the view in
exadly one report and it is not possble to use athus limited report to generate anew view (thisis
because the default scope is always the whole application).

The 2-dimensional graphs in Refine/C can be manipulated by moving the nodes. Nothing can be
deleted or grouped together. This frequently results in very broad graphs if the whole gplicaion is
viewed (seeFigure 1). The views then are very large and have to be zoomed to identify the part of
interest resulting in alossof context. In such cases, the boxes are too small to view the whole names
of entities making it impossible to distinguish entities with identical prefixes.

The views in Imagix 4D provide a3-dimensional graph (except the control flow graph) and a text
window viewing additional information and structure (Begure2).

By using threedimensions the graph daes not get that broad. Using the rotate and zoom functions
the graph can be viewed from all sides and the entities can be identified. The disadvantage of this
smaller graph is that highly conreded graphs get complicated and unreadable. The graphs can either
be viewed top-down o bottom-up and the views are layered acwrding to this sledion. All entities
viewed in the graph are also shown in context to the files and directories in the text window.

The graph can be manipulated by hiding or isolating seledions made and also by groupng of the
seleded entities to ore entity. This groupng function is very useful because functional groups can be
combined to ore entity and can then be observed in interadion with the rest of the graph. Another
advantage is that such groupings help to make the graph small er and more understandable. In contrast
to Rigi, Imagix 4D does naot provide layered views based on these groupngs and these groupngs
canna be saved between sessons. Seledions can be made in any of the views and then used to limit
the scope in the next creded view (e.g. seleding a C file in the file view and hding it credes a cdl
graph without the functions in this file).

The seledions can be made in many different ways ranging from manua seledion d entities,
automatic use of the UNIX command grep, automatic seledion d al cdled entities garting from a
particular entity, to a find function with many options. The seledions canna be saved, orly one
seledion can be saved temporarily during one sesson. Creaed views made by using this functionality
of Imagix 4D can orly be saved temporarily during one sesson bu get lost between sessons. In
addition to these views inside Imagix 4D, reports can be aeded as part of the atomated
documentation process, which are formatted documents or hypertext documents (HTML).

Rigi creaes 2-dimensional graphs that can be aranged either top-down, bdtom-up a with two
spedal agorithms: Sugiyama and Spring-layout. The Sugiyama-layout algorithm has a layered, tree
like layout that tries to minimize the aossngs. The Spring-layout algorithm models the acs as
springs o that highly conreded nodes tend to pul ead ather together and more isolated noces tend
to push each other apart ($agure3).

The graph can be daited manually, using filters and by seaching and then deleting or hiding
entities from the view. Together with the speda layout algorithms well readable views can be

generated. Rigi aso suppats layered views and SHriMP (see Figure 4) views. Rigi alows to save
both the edited representation of the source and the created views.

NiFF+ can crede 2-dimensional graphicd views (see Figure 5) and textual views which can be
browsed. The graphicd views dow al the entities that one entity refers-to or is referred-by. This view
islimited in the sense that conredions can oy go in ore diredion from an entity, therefore, resulting
in many representations of one item (e.g. function) if the item is referenced somewhere dse. These
items are then marked in a speda way. Becaise of this limitation d the views, highly conreded
entities cannot be identified and the reading of the views can get complicated with large graphs.

The entities in the graph can be filtered bu no red manipulation d them is possble. The views
creded canna be saved bu remain the same until a new view is creaed o the tod to generate the
view is terminated.

The adievable software views, as we have shown, are quite different. But they do nd only differ
in the kind d views that can be generated bu aso views of the same type can dffer quite abit
between the reverse engineaing todls. The next subsedion gives an example of the possble diversity
of software views based on the call graph.

4.1.1.Call graph

Two functional views which usualy can be generated by a reverse engineeing tod are the
functions report as a textual view and the cdl graph for graphicd representation. These views $how
the functional coherence of the system under study. The cdl graph shows the cdl relations among a
set of functions. Eadh function is represented by an item that has outgoing arrows to the function it
calls, and incoming arrows from the functions that call it.

The cdl graph in Refine/C is cdled “structure dart.” To show functions that are defined as
externa (functions that are ather programmed in Assembler or are part of a standard library) the cdl
graph is creaed with the option “show externals’ activated. Thus the resulting cdl graph is very
broad. Thisis due to many functions that are ather not cdled dredly from the C source @de or from
functions in the standard libraries.

To view the entities in areadable form the cdl graph hes to be zoomed (seeFigure 1). As can be
sea in the figure the entities are labeled with the initial substring that fits in the graphicad |abel and
thus cannot be distinguished.

Figure 1. Refine/C call graph zoomed

The cdl graphinImagix 4D is gnaller becaise of the use of the third dmension. The disadvantage
here is that functions that are highly interconneded hide some of the information kehind them. To see
the entities that are & the “badk side” of the cdl graph it has to be rotated. In large cdl graphs it
sometimes is not posgble to identify the functions in the midde of the graph (espedally the
conredions to ather functions). In the text window (on the right side of the cdl graph, seeFigure 2)
the entities are viewed in relation to the files and dredories were they are defined. Functions that are
not in one of the files are defined externally.

To creade amore readable graph the view can be manipulated. The graph shown in Figure 2 has
been creaed by hiding functions that are ether not conneded to any other function a are part of error
routines.

Figure 2. Imagix 4D filtered call graph

The cdl graphin Rigi is creded by viewing the graphicd representation withou the variables. This
can be dore by filtering or deleting them. The externa functions (i.e. Assembler code) are not shown
in the cdl graph, resulting in a smaller graph with lessinformation. To creae the cdl graph with the
Spring-layout algorithm the functions that are not conreded to the graph hed to be deleted (the
algorithm can be applied only to connected graphs).

The thus creaed cdl graphs $how a groupng around the aror functions. Resulting from this
centering aroundthe aror routines, the cdl graphs are not showing the interesting parts clealy. The
following gaph (seeFigure 3) was creaed by filtering these aror routines. In this view, the centering
around the main function and the module structure of the source code can be identified easily.

Rigi also provides the caability to generate layered (Harel, 1988 and SHriMP views. The layered
views allow the groupng of functions (or any other type) into ore entity. The result is a hierarchy of
entiti es with the led nodes being the adual functions. The SHriMP view —Simple Hierarchicd Multi
Perspedive view (Storey and Miller, 1995— isa cmmbination d nested graphs and the fisheye view
paradigm (Furnas, 1986). The fisheye view used by SHriMP has the following features:

e Highly interactive zooming

e When ore nocke is enlarged, the other nodes snocthly deaease in size to make room for the
selected node

¢ Different areas of the graph may be inspected without permanently altering the graph

e A user may zoom multiple focal points and focal areas in the graph

The SHriMP views show the complete nested graph all owing to zoom-in or out of composite nodes
down to the level of the aomic nodes. To crede aSHriMP view the antities that were not of interest
had all to be hidden first then a layered view was creaed o the cae study. Figure 4 shows this
SHriMP view after some nodes have been zoomed at different levels.

Figure 3. Rigi call graph, filtered (Spring-layout algorithm)

Figure 4. Rigi SHriMP view of the Train Control System

NiFF+ has no view which is a cdl graph ony, bu the aossreferencer can be reduced to a cdl
graph view by filtering the functions from all the symbals (seeFigure 5). As dated before, the graphis
viewed by starting at one entity and viewing all the entities that are ather referred-to or referred-by
this entity (to a given depth). To generate the cdl graph the “main” function, i.e. the one that cdls
most of the other functions has to be identified. Starting from this function all the functions that are
cdled by it are shown. The graph is snall becaise the external functions canna be shown. It is
interesting that the fan-in of functions canna be identified well and since many references to a
function are shown multiple times some information gets lost.

Figure 5. SNiFF+ call graph

4.2. Comparison of the evaluated reverse engineering tools

In contrast to the common assumption that reverse engineaing tods have basicdly the same
cgpabiliti es this was not the cae for the four evaluated reverse engineeing todls, at least with the
exception that all tools provided a call graph.

Further, no evaluated tod provided all the functiondity of the others or at least a majority. In fad
the todls provided very different sets of cgpabiliti es, which may be partly due to the seledion d the
tods to represent a wide spedrum. Hence, nore of the tools can be dedared as the best or most useful
reverse engineering tool in general. Every tool provided at least one advantage over the other tools.

4.2.1.Refine/C

Refine/C provides an excdlent parser in terms of the results of the internal representation
(augmented abstrad syntax tre€. Espedally in addition with Software Refinery it provides a good
basis to extend Refine/C for spedfic gpplicaions. This is one reason why it is often used in the
reverse engineging community. The generation d the projeds, athouwgh it has to be dore ather
manually or by asimple tod provided by Reasoning Systems, is flexible (e.g. define and undfine per
file, exclusion d files, etc.). One maor problem of parsing programs in Refine/C is that after a projed
has been parsed it canna be reparsed, which sometimes is needed if changes to the projed definition
file have to be made during a session.

The user interfaceof the Refine/C workbench is restrictive (e.g. allows only one representation o
eat view, representations can orly be placal on spedfic screen parts, etc.). Espedally missng are
capabilities such as a search engine, or an integrated editor, to ease the task of the reverse engineer.

The views that can be generated are the most important ones and orly Imagix 4D provides more
views.

The major drawbadk of Refine/C is the misdng suppat to save scopes creded o at least
generating views from alrealy limited ores. Also the manipulation d the graphicd views sioud be
suppated in a better way (only the movement of the entities and krowsing through the view is
supported).

4.2.2.I1magix 4D

Imagix 4D, like Refine/C, provides an excdlent parser and the generation d projeds is well
suppated by the tod (e.g. projed definition by file, diredory, makefile, reparse and incrementd
parsing, etc.).

The tod has a good wser interface ad is easy to use. The @ntext sensitive online help and the
tutorials contributed to make the leaning curve alot stegoer than in the other tods. It provides the
most number of views of all the evaluated todls and it owns the best set of suppating cgpabiliti es (e.g.
search engine, integrated editor with highlighting and great browsing capabilities, etc.).

The generated views were sometimes too kg and complex to be of red use, bu because of alot of
cgpabiliti es to manipulate them (e.g. filters, scopes, groups, etc.) they could be well tail ored to the task
or problem at hand. Additionally the views could be saved duing a sesson to be used for further
reference or to be the starting point for a new view (the views can be used to save seledions).
Espedally the queries for the source @de that are provided proved very useful (e.g. to comprehend the
program faster).

Another cagability that is only provided by Imagix 4D is the atomatic generation o
documentation from the source @de: It allows to generate HTML documentation which can then be
browsed. What is also orly provided by Imagix 4D is the import of additional data sources (graph
profil e data - gprof and test coverage data - tcov) that can then be related to the views (e.g. to show the
test coverage results in a call graph).

Two maor capabiliti es that are missng are away to extend the tod and to generate graphicd
views that are also useful in printed form.

4.2.3.Rigi

The major drawbadk of Rigi is the provided parser which can orly parse functions and struct data
types. This limits the views that can be generated mainly to functional views (cdl graph). Ancther
problem is that the tool —because it is a research prototype— is not too stable.

The major advantages of the tod are that it feadures new techndogies (e.g. layered views, SHriMP
view, layout algorithms, etc.). The tod provides suppating cgpabiliti es (e.g. filters, metrics, groups,
etc.) andit is extensible in some way. The aeaed views are of good quality, partly due to the possble
manipulations (e.g. filters, moving of entities) and the two layout algorithms which show additi onal
information (e.g. cohesion and cougding). Rigi isthe only tod that all ows to save the generated views
and representations.

4.2.4. SNiFF+

Thefast and fault tolerant parser in SNiFF is grea when parsing source @de that isincomplete or
syntadicadly incorred. But if corrednessof the source ®de is of interest the fault tolerant parser can
be adisadvantage. Only missng fil es are reported and this information can be foundin afile. Also the
generation d the projeds in SNiFF turns out as rather inflexible: All the files have to be in ore
directory.

The main adhievable view is the graphicd crossreferencer. The structure of this view is suitable
for printing, bu not for comprehension (entities can be foundmore than orcein the aossreferencer,
but are then at least marked). SNiFF+ also provides good printing capabilities (e.g. banner printing).

The integrated text editor is dmost as good as the one from Imagix 4D. It suppats g/ntax
highlighting and pant and click movement which makes browsing the source @de very easy. SNiFF
is the only tod that aso suppats browsing between al generated views which comes in handy
sometimes.

4.3. Tool extensibility

Tod extensibility is an important fedure of many types of todls. Thisis aso the cae for reverse
engineeaing tods, in which additional functionality often needs to be integrated to med the spedfic
constraints of areverse engineaing adivity. In ou case study it was important to extrad information
from the tod database to be integrated into another tod or with ather recmvered system information
based onthe Assembler source mde. The following gves a short overview of the extensibility of the
evaluated tools

Refine/C provides an APl to use its reverse engineaing feauresto buld customized analysis tods,
such as by (Kontogiannis et al., 1999 and (Whitney, et al., 1999. Further, it provides programming
accessto its C parser and printer, to enable extensions to the C domain model, grammar, or lexicd
analyzer. A customization d Refine/C through its API requires Software Refinery. Furthermore, for
small extensions, the output of the reports is customizable and can be converted easily.

Imagix 4D provides a scripting language to generate queries based onthe caabiliti es provided by
Imagix 4D (the auto queries are based onthis). To use the information generated by Imagix 4D in

other tods, the output generated by the documentation functionality may be used, bu the other todls
need to cope with truncated long identifiers and the special format of the output.

Rigi (rigiedit) is programmable through a scripting language (RCL, an extended version d Tcl/Tk)
and provides a austomizable user interface(Whitney et al., 1995. The separate parser can be replaced
with ancther one based on the Rigi Standard Format (RSF) triples, that are binary relations
representing the database.

NiFF+ is nat extensible for reverse engineaing tasks. It provides an interface for control
integration via an API or an executable command.

4.4. System dependencies

The difficulties in reverse engineaing the cae study mainly resulted from two aspeds which to
some extent are typical for embedded software systems:

First, embedded software systems are usually programmed in more than ore programming
language. In the cae study both C and Asembler were used. The reverse engineeaing tools examined
are not able to parse Assembler code, so ony the C parts could be parsed and studied, which resultsin
incomplete views of the gplication. Furthermore, the C code mntained externally defined functions
and variables which are defined and instantiated in the Assembler part. As a result, some reverse
engineeaing tools do nd include these variables and functions in the generated reports. The exclusion
of these variables caused problems because they are used for the main data flow in our case study.

Sewndy, the cae study was creded for different development and target environments and was
reverse engineaed in again ancther environment. This resulted in some difficulties when parsing the
C source mde: Platform dependent parts of the gplicaion had to be suppied (e.g. heaer files) and
platform properties had to be taken into acount (e.g. file naming conventions, interrupt usage).
Furthermore, applicaion-spedfic knowledge was required to parse the gplicaion in a useful way,
becaise maao definitions and additional fil es were used to generate diff erent versions of the software
(e.g. debugging, different application properties, etc.).

4.5. Shortcomings of achievable software views

Independent of the reverse engineeaing tod that generates views of the system, tool-generated
views have—as manually generated views—some shortcomings.

Espedally the graphicd views can oy show a part of the system tradng a spedfic problem. This
isdueto the fad that the view of the cmmplete gplicaionis nat usable in most cases, mainly becaise
of the size of the system under study. The complete view of the system is typicdly unreadable and
clustered (if the complete view is srown onthe screen) or canna be comprehended well (if only a part
of the view is shown). To make the aitomaticdly generated views more readable andto relate them to
a spedfic problem, qute some dfort is required. Additionally, applicaion-speafic knowledge (e.g.
which parts of the goplicaion are airrently of interest) and damain knowledge (e.g. in this application
domain the aror routines are not of high importance and can, therefore, be excluded from the view)
are important.

Many red-world systems hinder the generation d the complete views of the system (e.g. multi-
language development, client-server applicaions, etc.). These views have to be generated either
manually or by completion of the partly tool-generated view.

Another shortcoming of generated software views is that amost no focus on esential elements is
possble acoss the different views. Spedfic problems canna be tracal easily aaoss the views,
becaise of the part of applicaion shown and the different kind o information represented in the
different views. The reverse engineeg has to combine the diff erent types of information shown by the
views to generate the intended view of the gplicaion manualy (e.g. remvered architedure,
recovered design, etc.).

A further shortcoming of the adhievable software views is the missng suppat of different layout
algorithms for the graphicd views (such as gedfic layout algorithms for printing, showing cohesion
and/or coupling).

4.6. Benefits/shortcomings of reverse engineergitools

Many shortcomings of reverse engineaing toaols are due to the size of the system under study. The
result are representations that get confusingly large. Espedally the graphicd views do nd only grow
in their size, they aso get lessreadable (clustered, incomplete |abels, etc.). Graphicd views often need
an unacceptable amount of time to be generated because of the layout algorithms.

Reverse engineaing tods can generate several views, bu to get a omprehensive “picture” of the
application, these views are not sufficient. The tool-generated views often have to be completed
manually because of different problems of reverse engineaing todls: the inability to parse dl source
languages, client-server code caand be related to eathy ather automaticdly, etc. Suppemental
manually generated views have to be aeaed (some views smply canna be generated by reverse
engineaing tods yet and ahers are ather not suppated by the individual tod or insufficiently
generated, e.g. state transition diagrams).

Manually generated views canna be aeaed for all the spedfic problems or parts of the gplicaion
traced (in contrast to the auitomaticaly generated views where thisis at least passble). This makes it
more difficult to relate the information foundin the aitomaticdly generated views to the manually
generated views.

Thouwhiit is sid that applying reverse engineaing tods to an applicaionisan easy task, it requires
application-spedfic knowledge (e.g. maaos used for generating different versions of the software
under study) and damain knowledge (e.g. safety criticd systems) for many tasks during reverse
engineaing (e.g. parsing the source @de, generating useful software views, etc.) making it not as easy
and simple as it may seem.

Although some reverse engineaing toals provide the aility to parse more than ore programming
language, they are not cgpable of mixed language suppat. Therefore, they canna crede projeds or
views with different source code languages.

The views only represent static information that can be found automaticdly in the source ®de.
Additional applicaion knowvledge, therefore, is nat included. A tod-suppat to include externa
application- and domain knowledge would enrich the views significantly.

Suppat for comporent identificaion, redundancy detedion, and dynamic system analysis adivities
would also be desirable capabilities of reverse engineering tools.

5. CONCLUSIONS

Thereisnosingle tod that could be dedared as the best of our evaluation. The reverse engineaing
tods evaluated are dl quite different with varying strengths and we&knesses. They all provide good
reverse engineeing cgpabiliti esin diff erent usage cntexts. Figure 6 shows afina classficaion d the
evaluated reverse engineering tools based on usability (for our task) and extensibility.

Figure 6. Classification of reverse engineering tools

Refine/C provides an excdlent parser in terms of the results of the internal representation
(augmented abstrad syntax treg). Espedally together with Software Refinery it provides a good lesis
to extend Refine/C for spedal applications, which is one reason why it is often used in the reverse
engineeing community. The views that can be generated are the ones of major interest, but suppat in
manipulating the graphical views more easily as well as in searching or saving selections are missing.

Imagix 4D provides a large set of cgpabiliti es with a number of achievable views and aso the
cgoability to creae documentation from the source ®@de. The queries that are provided help to
comprehend a program faster. Posghiliti es to extend the tod and to generate graphicd views that are
also useful in printed form should be included.

Rigi fedures alot of new techndogy, such as layered views, SHriMP view, layout algorithms, etc.
and can be extended. One shortcoming is that the parser can ony parse functions and data of type
struct This limits the views that can be generated mainly to functional views (call graph).

SNiFF+"s main view is the graphicd crossreferencer, which—due to its gructure—is well -suited
for printing. SNiFF provides aso good ginting capabilities. The fast and flexible fault-tolerant
parser alows to parse incomplete or even syntadicdly incorred source @de. A shortcoming of
SNiFF+ is that only the cross referencer can be seen as a software view of the system.

For the purpase of customizing atod for a spedfic goplicaion Refine/C or Rigi (if the parser for C
code is extended) can be recommended. To speed up pogram comprehension and to generate
documentation and several views, Imagix 4D provides optimal capabiliti es. SNiFF is well-suited for
software systems that are not completely parsable, for creaing printable views and for browsing the
system under study.

As a more general result, our tod evaluation showed that the performance and cgpabiliti es of a
reverse engineaing tod are dependent on the cae study and its application danain as well as the
analysis purpase. The study discovered that embedded software systems are difficult to analyze with
current tod techndogy. Further, it showed that espedally the graphicd views and layouts require
significant improvement and that a multi-language support is required for real-world applications.

Acknowledgements

We ae grateful to Wolfgang Eixelsberger, Lasse Warhdm and Hagon Bedkman for their suppat
in analyzing the case study.

This work was suppated by the European Commisson within the ESPRIT Framework IV projed
ARES (Architectural Reasoning for Embedded Systems), project no. 20477.

References

Bellay, B. and Gall, H. (1996 An Evaluation d Revese Engineeing Tools (TUV-184196-01), Distributed Systems
Department, Technical University of Vienna, 39 pp.

Bellay, B. and Gall, H. (1997 ‘A Comparison of four Reverse Engineaing Tools, in Procealings of the 4" Working
Conference on Reverse EngineeriteEE Computer Society Press, Los Alamitos CA, pp. 2-11.

Biggerstaff, T. J (1989) ‘Design recovery for maintenance and rd&geE, Computer22(7),36-49.

Biggerstaff, T. J., Mitbander, B. G. and Webster, D. E. (1994 ‘Program understanding and the concept assgnment
problem’,Communications of the ACM7(5),72-83.

Brown, A. W. and Wallnau, K. C. (1996) ‘A framework for evaluating software technolldgfyE Softwargel13(5),39-49.

Eixelsberger, W., Warholm, L., Klésch, R., and Gall, H. (1997) “Software Architedure Recovery of Embedded Software’,
in Procealings of the 19" Internationa Conference on Sdtware Engineeing, IEEE Computer Society Press Los
Alamitos CA, pp. 558-559.

Eixelsberger, W., Ogris, M., Gall, H., and Bellay, B. (1998 “Software Architedure Rewvery of a Program Family’, in
Procealings of the 20" Internationa Conference on Sdtware Engineeing, |IEEE Computer Society Press Los
Alamitos CA, pp.508-511.

Furnas, G. W. (1986 ‘Generalized fisheye views', in Proceeadings of ACM CHI 86, Association of Computing Madhinery,
NewYork N.Y., pp. 16-23.

Gdl, H., Jazgeri, M., Klosch, R., Lugmayr, W. and Trausmuth, G. (1996 ‘Architedure remvery in ARES, in Joint
Procealings of the SSGSOFT '96 Workshops - Seaond Internationd Sdtware Architedure Workshop 1SAW-2,
Association of Computing Machinery, NewYork N.Y., pp. 111-115.

Harel, D. (1988) ‘On visual formalism&Gommunications of the AGNM1(5),514-530.

Kontogiannis, K., Galler, M., DeMori, R., Bernstein, M. and Merlo, E. (1995 ‘Pattern matching for design concept
locdization’, in Procealings of the 2" Working Conference on Revese Engineeing (WCRE '95), IEEE Computer
Society Press, Los Alamitos CA, pp. 96-103.

Murphy, G. C., Notkin, D., Lan, E .S.-C. (1996 ‘An empiricd study on static cdl graph extradors’, in Proceealings of the
18" International Conference on Software EngineeriiEE Computer Society Press, Los Alamitos CA, pp. 90-99.

Reasoning Systems (199jalect User's Guide

Reasoning Systems (199Rgfine User's Guide

Reasoning Systems (199hjervista User's Guide

Reasoning Systems (199Rfine/C User's Guide

Reasoning Systems (199%¢fine/C Programmer's Guide

TakeFive Software GmbH (1993NiFF+ for Unix.

TakeFive Software GmbH (1993NiFF+ User's Guide.

TakeFive Software GmbH (1993NiFF+ Tutorial Guides.

TakeFive Software GmbH (1993NiFF+ Reference Guide.

Storey, M.- A. D. and Miller, H. A. (1995 ‘Manipulating and dacumenting software structures using SHriMP views', in
Procealings of the Internationa Conference on Sdtware Maintenance, IEEE Computer Society Press Los Alamitos
CA, pp. 275-84.

Whitney, M., Kontogiannis, K., Johnson, J. H., Bernstein, M., Corrie, B., Merlo, E., McDanidl, J., DeMori, R., Mlller, H.,
Mylopaulos, J.,, Stanley, M., Tilley, S. and Wong, K. (1995 ‘Using an Integrated Todset for Program
Understanding’, in Procealings of the 19951BM CAS Conference (CASCON “95), IBM Canada Ltd., Toronto ON,
pp. 262-274.

Wong, K. (1996Rigi User's Manual V 5.4,3art of the Rigi distribution package, pp. 161.

Authors’ biographies:

Berndt Bellay is currently a reseach assstant in the Distributed Systems Group at the Technicd
University of Vienna, where he investigates architedure recovery issues within the ESFRIT projed
ARES (Architedural Reasoning for Embedded Systems) and daes his Ph.D. He recaved his M.Sc. in
computer sciencefrom the Technica University of Viennain 1997 Hisreseach interests are software

engineging, reverse engineaing, software achitedures, and pogramming languages. E-mail:
bellay@infosys.tuwien.ac.at

Harald Gall receved the M.S. and Ph.D. degrees in computer science from the Technicd University
in Vienna, Austria. He is currently Assstant Profesor in the Distributed Systems Group at the
Tecdhnicd University of Vienna. His reseach interests are direded toward software achitedure,
architedure remvery and reverse engineaing, and software evolution. Dr. Gall is a member of the
IEEE and the Austrian Computer Society (OeCG). E-mail: gall@infosys.tuwien.ac.at

APPENDIX A: TOOL INFORMATION

Refine/C and Software Refinery
Reasoning Systems, Inc.
3260 Hillview Avenue Palo Alto, CA 94304, USA
Phone: (415) 494-6201; Fax: (415) 494-8053
E-mail: info-requests@reasoning.com
Internet: http://www.reasoning.systems

Software Version
Refine/C Version 1.1
Refine Version 4.0

Manuals
Refine User's Guide (Revised May 25, 1990)
Intervista User's Guide (Revised March 4, 1991)
Dialect User's Guide (Revised July 6, 1990)
Refine/C User's Guide (Revised May 2, 1994)
Refine/C Programmer's Guide (Revised June 13, 1995)

Imagix 4D
Imagix Corp.
3800 SW Cedar Hills Blvd., Ste 227 Beaverton, OR 97005-2035, USA
Phone: 1-503-644-4905
E-mail: info@imagix.com
Internet: http://www.imagix.com
Software Version
Imagix 4D Version 2.7
Manuals
Context-sensitive online help

Rigi
Hausi A. Muller, Department of Computer Science,
University of Victoria, P.O.Box 3055, Victoria BC, Canada
Phone: (604) 721-7630; Fax: (604) 721- 7292
E-mail: hausi@csr.uvi.ca
Internet: http://www.uvic.ca/rigi

Software Version
Rigiedit V 5.4.3
Rigiparse V 5.4.3

Manuals
Rigi User's Manual V 5.4.3 (Postscript)

Rigi User's Manual V 5.4.1 (HTML)
Rigi Command Language (RCL) V 5.4.3 (HTML)
Rigi C-Language Parser (HTML)

SNiFF+
TakeFive Software GmbH, 5020 Salzburg, Austria or
TakeFive Software, Inc., Cupertino, CA
E-mail: info@takefive.co.at or info@takefive.com
Internet: http://www.takefive.com
Software Version
SNiFF+ Version 2.3.1
Manuals (Postscript and HTML)
SNiFF+ for Unix
SNiFF+ User's Guide
SNiFF+ Tutorial Guides
SNiFF+ Reference Guide

Table 2. Assessment of the four reverse engineering tools

Assessment Criteria Refine/C Imagix 4D Rigi SNiFF+
General capabilities o] o] 0 (o]
Supported platforms Sun Sparc; Sun Sparc; Sun Sparc; Sun Sparc;
HP 9000/7xx; ~ HP 9000/7xx; IBM RS/6000; HP9000/7xX;
IBM RS/6000 SGI Pentium PC HP9000/8x7;
IBM RS/6000;
IBM Power PC
DEC Alpha;
SGI; SNI RM;
NCR; PC
Multi-user support o} o} - ++
Toolset extensibility
tool integration - - 0 -
tool composition - - 0 o}
parser ++ - + -
user interface + - ++ -
functionality ++ - ++ -
Storing capabilities
parsed source code storable + always always always
edited representation storable - - + o}
tool state storable - - - +
selections storable - - - -
views storable - o} + -
Output capabilities (printing)
storing of output yes yes no yes
output formats ASCII, PS PS, GIF / PS
intelligent printing capabilities - - / +
Output capabilities (exporting)
CASE tool Software through - - -
Pictures
other reverse engineering tool - - - -
Output capabilities (documentation)
automatic generation - ++ - +
macros - - - +
output formats / ASCII, RTF, / internal format
HTML
History of browsed locations no no no yes
Search facility - ++ 0 +
Online help - + - -
Analysis ++ ++ o 0
Source types and project definition
Parsable source languages C (ANSI), C(ANSI), C++ C (ANSI), C++, C (ANSI), C++
C (K&R) COBOL,

PL/AS, Latex

Other importable sources / gdb and tcov / /
results
Project definition type File File, Directory, File Directory
Makefile
Ease of project definition o} ++ - +
Parser functionality
Incremental parsing no yes no yes
Reparse no yes yes yes
Fault tolerant parser no no no yes
Define and undefine Project/File Project/File Project Project
Preprocessor command configurable yes no no yes
Support for additional compiler yes yes yes yes
switches
Parsing functionality
Quality of parse error statements o} + + -
Parse abortable yes no yes no
Parse errors viewable during parsing yes no yes no
Parse continued at error no yes yes yes
Point and click movement from parse yes no no no
results to source code
Parsing results ++ ++ 0 o}
Parsing speed o} + + +
Representation 4 ++ + 0
Textual (tabular, formatted, etc.)
directory layout/organization - + - -
files o} ++ - o]
functions + + - o}
types + + - o]
variables + + - o}
coding standard violation + - - -
pseudo code - - - -
Graphical (2-, 3-dimensional)
directory layout/organization - ++ - -
build map - ++ - o}
call graph o] + + o]
control flow graph - ++ - -
data flow graph + + - o}
data structure diagram - + - -
entity relation diagram - - - -
state transition graph - - - -
combined views - Calls and Full view Full view
Variables, Full
view
General report properties
speed of generation o} + + ++
filter - ++ + +
scopes + ++ - o]
grouping - + + -

point and click movement between - - - +

reports

point and click movement from report + + + +

to source code

annotations - - + -

static/dynamic views - - - +

external functions/variables o] ++ - o}
Textual report properties:

sorting + - - -
Graphical report properties:

layout algorithms - - ++ -

view editable o} - + -

layered view - - ++ -

fisheye view - - - -

SHriMP view - - o] -
Editing/browsing - ++ - 4
Integrated text editor/browser - ++ - +
External editor/browser yes yes yes yes
Intelligent control of text editor/browser o} ++ 0 +
Integrated browser functionality

Highlighting / + / +

Visualization functions / ++ / +

Speed / o} / +

Search function / + / +

User interface / ++ / +

History / + / +

Hypertext capabilities / + / +

REFINE/C 1S [=] E3

File Edit Programs Analyze Reports Exports Options Windows

222 Structure Chart: TCS <z

>

Frint

=

N
o
= m
3
=)
=

Hide All
Hide
Refresh
hove
Reshape
Zoam In

Unity Scal

[¢][*]

(#][#] [
O

(el el @[]

- [—

Imagix 4D -- Projec!

FHle Edit Mode

% Top Down

View Query Select Traverse

Bottom Up

Group Filter

Options

i Labels

Callers = &

O c9_pracl

Kind = library
LinsHumber = &

Loc = 4

Complexity - Mo Data
Callers = 1

=l

0O #l_procid
Soope = glokal
Kind = with-body
Linehunber = 162
LoC = 69
Complexity = 12
Callers = 1

0O #l_proc?

Soope = glokal
Kind = with-body
Linehunber = 259
LoC = 334
Complexity = 66
Callers = 1

0O #_procis
Soope = glokal
Kind = with-body
Linehunber = 132
Lo = 18
Complexity = 3
Callers = 1

0O #l_proc26
Soope = glokal
Kind = with-body
Linehunber = 159
Loc = 31
Complexity =
Callers = 1
0 #l_proc2?
Soope = global
Kind = with-body
Linehunber = 479
LoG = 18
Complexity = 4
Callers = 1

0 #d_procd

Scope = global
Kind = uith-body
Linehunber = 508
Loc = 29
Complexity = 4
Callers = 1

0O #l_proc?

IS

4| Contains >

Show -Visible o

Help

W Atir.

ArcType: level Filtered: 0 nodes, 0 arcs

2 SHriMP Yiew - TCS

- (O]]

TCS

Frocess

A_process_tr

|

"W
[1]

A _cho_tr

& tr eval

4!

Send

J E_set
J’ B

Test J Utility

v

Cross Referenc

@ Info

Class ¥ref Graph

anonymous_zniff. proj

History

Lahguage

Ansi C/C+H+

—i| papth [3d

Root Symbaol

\\\‘H Al proclé [4] ’}—h‘ CSJJrocZ|
£ 31 procd [7]

\f Al_proc27 [2]
a1l proc? —F ©5 proci]
£ B1_proc23 pw——f B1_proc2f]

C5 _procd 107

£5 procZ [14]

f B1_procZd

£ Bl _proc

C5 procZ [2]]

£ Bl proc30 [3] :

]f EBl_proclS bl—'f Bl_procll]

1:E El_procy ’}—h‘ CS_procZ|
£ &4 procd ’I—':(B4J:|roc:5|

if Bd proch

£ C8 proc

[52_procd P 5 _proc2 [4]]

£ A2 procT ’}—‘1‘ C5_procd [2,?|
JEEE procH

7

|C3_proc4

El_proc23
El_proc2b
El_proclé
El_proc28
El_proc29
E1l_proc3

E1_procd
E1l_procT
EZ_procl
E2_procl
BZ_proc3
EZ_procd
EZ_proch
EZ_proct
EB2_procT
E3_procl
E4_procl
Ed_procZ
E4_procd
E4_procd
E4_proch
Ed_proch
E4_proc?
E4_proch
G3_procl

C3_prock
C5_procl
CS_proc?
CE_procl
c7_procl
C8_procl
G8_prock
C8_proc3

(£}
(£}
(£)
(£}
(£}
£} >

(f)

(£} »
(£) >
[¢3]

(f)

() >
() >
[£3]
(f)
(f)
(f)
(f)
[¢3]
(f)
(f)
(f)
[¢3]
(f)
() >

L Y]

(£} >
(f) >
(£} >
(f) >
(f) >
(f) >
(£}
(f)

o

El_proc3d0 (f) »
El_proc3l (f) >
El_proc32 (f) »

C3_procd (f))I

-

Projects

Full Tree

#
—t
—

anonymous_sniff proj

I Frozen

Modes: 128 Matches: 26

Cached Files:

19

I

Extensibility

° 2) i
" 1) Refine/C
' 2) Refine/C and Software Refinery
. 4) - 3) Imagix 4D
 4)Rigi
.5) i 5) Sniff+
1) |
‘ *3 | » Usability

