

Problem Analysis and Structure - 1

Problem Analysis and
Structure

Michael Jackson
AT&T Research, Florham Park NJ, USA
and Independent Consultant, London, England

jacksonma@acm.org

mj@doc.ic.ac.uk

1. Introduction
Traditionally, thinking and research in software
development has focused on solutions: on programs
and on various abstractions that may be useful in
designing and writing program texts. We have paid
little or no attention to the problems that those
programs are intended to solve. Even methods and
approaches that claim the title of �problem analysis�
usually prove, on closer inspection, to deal entirely
with putative or outline solutions; the problem to be
solved must be inferred from its solution.

This solution-oriented approach may work well in a
field where the problems are all well known and have
been thoroughly described, classified and investigated
 where innovation lies only in devising new
solutions to old problems. But software development
is not such a field. The versatility of computers and
their rapid pace of evolution present us with a
constantly changing repertoire of problems to whose
solution software may be central. As a result, our
field is underdeveloped in crucial respects. In
particular, the repeated calls for professionalisation
and for the establishment of a corpus of core software
engineering knowledge are symptoms of a broad
failure to identify what practising software developers
should know if they are to be fit to tackle the
problems of the many different application areas.

In this talk I want to sketch an approach to problem
analysis and structuring that  I believe  avoids
the magnetic attraction of solution-orientation. The
approach is based on the idea of a problem frame.
Problem frames characterise classes of problems that
commonly occur as subproblems of larger, realistic,
problems. The intention is to analyse realistic
problems by decomposing them into constituent
subproblems that correspond to known problem
frames. This analysis guides the decomposition, gives
warning of the concerns and difficulties that are likely
to arise, and provides a context in which previously
captured experience can be effectively exploited.

2. The World, Phenomena and

Domains
Some problems are abstract in a mathematical sense,
and do not partake of the physical nature of the
world. Factorising large integers, finding cut sets of
graphs and playing chess are examples of such
problems. But most problems are located in the
physical world. Such problems include controlling
lifts, switching telephone calls, controlling the brakes
of a car, bank accounting, managing theatre seat
reservations, controlling a VCR and administering a
library. In all these cases the effectiveness of a
solution is to be evaluated in the physical world
outside the computer. The problem is located in the
world; the computer, executing our program text, is
the solution.

Phenomena
Because problems are located in the world, problem
analysis must be concerned with the world and its
phenomena. We need a phenomenology that has
nothing to do with programming languages or object
interaction, but everything to do with the physical
world. An appropriate phenomenology includes:−
• entities, which are mutable individuals such as

cars and people;
• events, recognised as individuals;
• values, which are immutable individuals such as

integers and strings;
• states, which are time-changing relations over

non-event individuals;
• truths, which are unchanging relations over non-

event individuals; and
• roles, which are the participation of individuals

in events.

Among these it is useful to recognise the class of
controllable phenomena  events, state changes and
roles  that occur on the initiative of one part of the
world rather than another. For example, a keystroke is
an event in which the user and the keyboard both
participate, but it is controlled by the user. It is also
useful to treat roles as distinct phenomena. In the
keystroke the user controls both the event and the role
that is the participation of a particular key; but in a
disk read operation the reader controls the event
while the disk controls the paricipation of the
particular record that is returned.

Keynote Talk at ITG/SEV Symposium, Zürich, 29 September 1999

Problem Analysis and Structure - 2

Domains
For purposes of problem analysis it is natural to
recognise distinct parts of the world; we will call
them domains. A domain can be thought of as a
collection of related phenomena; the kinds of
phenomena in a domain and the relationships among
them constitute the domain properties. Domains may
share phenomena: the only way two domains can
interact is by an interface of shared phenomena. For
example, a lift and its passengers interact because
both the entry of a passenger into the lift car and the
pressing of a floor request button are events shared by
the lift domain and the passenger domain. The control
computer interacts with the lift because switching on
the lift motor is an event shared by the computer and
the lift domain (and controlled by the computer).

The most fundamental distinction for problem
analysis is between the machine domain  the
computer and its software  and the problem domain
 the world where the problem is located and the
quality of its solution will be evaluated. These two
domains must share phenomena if the problem is to
be soluble.

Descriptions
In very general terms, the process of problem analysis
is concerned with these descriptions over the
phenomena of the problem domain:−
• The requirement. This is a description of

properties that the domain does not possess
intrinsically but are desired by the sponsor of the
development. It will be the machine�s task to
endow the problem domain with those
properties. For example: the property that the
lift comes when a button is pressed.

• The domain properties. This is a description of
the properties that the domain possesses
intrinsically, regardless of the behaviour of the
machine. For example: the property that from
floor n the lift can go only to floor n+1 or n−1.

• The machine specification. This is a description
of the desired behaviour of the machine at its
interface with the problem domain. For example:
when button n is pressed [in certain
circumstances] the machine must set the lift
motor polarity to up and set motor power to on.
Although this is a description of machine
behaviour, it is expressed entirely in terms of
problem domain phenomena: the shared
phenomena at its interface with the machine

belong, of course, both to the problem domain
and to the machine domain.

The formal criterion for success in a development is
an entailment relationship among these descriptions:

machine specification, domain properties �
requirement

If the machine behaves as specified and the domain
has the described intrinsic properties, then it is
impossible for the requirement not to be satisfied. If
the machine detects button presses and sensor states
and operates the lift and door motors, all in
accordance with the specification, and if the lift
position and behaviour are related to the sensor states
and motor settings as described in the domain
properties description, then the lift will come when
the button is pressed. Essentially, the intrinsic domain
properties bridge the gap between the phenomena
mentioned in the requirement and the phenomena
directly accessible to the machine at its external
interface to the world.

3. Elementary Problem Frames
The account just given of problem analysis is too
general. Real problems are more specific. A problem
frame captures the characteristics of a specific tightly
constrained class of idealised problems. These
problem classes correspond to intuitive notions of
different kinds of problem, but make the intuition
more precise. They stipulate the structure and
characteristics of the requirement, of the problem
domain  possibly structuring it as two or more
domains  and of the interfaces among domains.

Problem Analysis and Structure - 3

Elementary Frame: Simple Behaviour

CM:+C1

CD:+C2
C3 Controlled

Domain
Control
Machine

Required
Behaviour

Elementary Frame: Simple Information Answers

RM:+E2

E2
Responses

Response
Machine

Information
Relation

Enquirer

Real
World

E1

H2

ENQ:+E1

RW:+H1

DM:+C2 S2

S1 RW: +C1

Information
Display

Display
Rules

Display
Machine

Real
World

Elementary Frame: Simple Information Display

Elementary Frame: Simple Workpieces

TL:+E2
WP:+S1

Tool
Operation
Effects

Work-
Pieces

Operation
Requests

S1

E1

OR:+E1
TL:-E1

Figure 1: Four Elementary Problem Frames

Figure 1 shows the problem frame diagrams of four
elementary problem frames. Reading clockwise from
the top right they are:−

• Simple Behaviour. This is an idealised form of a
simple control problem. The requirement
(Required Behaviour) is to impose a certain
behaviour on the problem domain (Controlled
Domain). The requirement is expressed in terms
of controllable phenomena C3. The interface
between the machine (Control Machine) and the
controlled domain consists of shared
controllable phenomena  C1 controlled by the
machine and C2 controlled by the controlled
domain. Typically, the controlled domain is
partly autonomous and partly responsive to the
phenomena C1.
A central concern is the adequacy of the
information conveyed to the machine by the
phenomena C2 for the machine to
implement an effective control rule by
controlling the phenomena C2. ABS is an
example of a simple behaviour problem.

• Simple Information Answers. This is an idealised
form of a simple information system (Response
Machine) that answers enquiries. Enquiries in the

form of an unstructured stream of events E1
come from an autonomous Enquirer; the
machine creates its answers (Responses) by
events E2. The subject of the enquiries is the
Real World, which may be static (having no
controllable phenomena); if it is not static it is
autonomous, controlling all the phenomena H1 at
its interface with the machine. The requirement
(Information Relation) stipulates a relationship
between the answer events E2, the enquiry events
E1, and the phenomena H2 of the real world.
A central concern is the use of the interface
phenomena H1 to make inferences about the
phenomena H2 that are the subject of the
requirement. Provision of stock prices is an
example of a simple enquiry problem.

• Simple Information Display. This is an idealised
form of a simple information system (Display
Machine) that maintains a continuous display of
information (Information Display) about an
autonomous dynamic Real World. The
requirement (Display Rules) stipulates the state
S2 of the display for each state S1 of the real
world. The display is reactive, changing its states
S2 in response to the machine-controlled
phenomena C2.

Problem Analysis and Structure - 4

A central concern is the use of the interface
phenomena C1 to provide inferences about
the phenomena S1 that are the subject of the
requirement. Controlling the display in a
hotel lobby that shows the current positions
of the lifts is an example of a simple
information display problem.

• Simple Workpieces. This is an idealised form of
a problem in which the machine (Tool) acts as a
simple tool for the creation and manipulation of
text or graphic objects (Workpieces). The user of
the tool autonomously issues an unstructured
stream of commands (Operation Requests) E1,
which the machine may sometimes inhibit. The
workpieces are regarded as given  that is, their
design is not considered to be a part of the
workpieces problem itself. They are state
reactive: that is, their behaviour consists only of
changing their states S1 in response to events E2.
The heavy dot on their interface with the
machine indicates that they are contained in the
machine: that is, all their phenomena are
phenomena of the machine.
A central concern is that the machine must
inhibit invalid operation requests E1 (such
as a deletion request for a non-existent
workpiece), and must convert valid requests
E1 into appropriate combinations of
invocations E2 at the interface with the
workpieces. The control of setting a VCR
memo to record a TV program is an
example of a simple workpieces problem.

4. Problem Decomposition
The elementary problem frames deal only with
simplified idealised problems. Even when extended
by a number of common variants and composites, the
corpus of frames does not encompass many 
perhaps any  problems of realistic size and
complexity. Dealing with a realistic problem means
decomposition into subproblems. An adequate corpus
of frames is one in which we can always find a set of
subproblems to give an appropriate decomposition of
any realistic problem. There are several possible
approaches to the decomposition task. In this section
we mention three of them.

Outside-In Decomposition
Sometimes the problem in hand seems to fit no
known frame even approximately. It may then be

helpful to decompose the problem by working from
the outside towards the inside, as it were. The
approach here is to try to find recognisable parts or
aspects of the problem that correspond to known
frames, and analyse them in the context of those
frames. Then they may be regarded as solved
problems, and the parts and aspects of the original
problem that remain to be solved can be considered
without the added complication of the already solved
subproblems.

This approach is essentially an iterative application of
the often-quoted heuristic �find a piece of the
problem that you can solve�. If the approach
succeeds, the original problem is eventually whittled
down to a simple nucleus that fits a known frame.

Inside-Out Decomposition
Sometimes the problem in hand seems to fit a known
frame approximately, but exhibits difficulties that
frustrate the pure application of the frame. These
difficulties themselves give rise to subproblems that
may be recognisable as fitting other frames in their
own right. For example, one form of difficulty is a
connection difficulty: it may be that some information
needed by the machine is not available directly when
it is needed. It may then be possible to cast the
difficulty as an information answers subproblem in
which the original machine plays the part of the
enquirer. Another kind of difficulty is an identities
difficulty, in which the machine shares a set of event
or state phenomena with the problem domain but
does not share the associated roles that identify the
participating domain entities.

This approach can be thought of as working from the
inside towards the outside, where the inside is the
frame that seems to fit approximately and the outside
is the surrounding set of difficulties. The core
problem can be analysed on the assumption that the
difficulties will be overcome in the solutions to the
subproblems that capture them. This approach, too, is
an application of a well-known heuristic: �solve a
simpler problem�.

Recognising a Standard Composite
Frame
Although the elementary frames form the basis of the
technique of problem analysis and structuring
advocated here, a more fully developed stage of the
technique will have a rich set of composite frames. It
may be expected that a substantial part of a realistic
problem, or even, occasionally, the whole of it, will
fit a known composite frame. To recognise and

Problem Analysis and Structure - 5

exploit this fit is to apply the heuristic �the best
method is to have solved the same problem before�.

One example of a composite frame is the Interactive
Workpieces frame which, unlike the Simple
Workpieces frame, includes an Interactive Screen
domain at which the user can interact with the Tool
by viewing the workpiece states and entering
operation requests by a mouse or similar device. This
composite frame, of course, has a solution in the form
of the MVC (Model-View-Controller) framework,
well-known in object-oriented design. Another
example of a composite frame is an information
system with a model. Where the shared phenomena
are inadequate or untimely in an information problem,
the difficulty can often be overcome by introducing a
model domain and decomposing into two
subproblems. In one subproblem the machine builds
the model from the real world; in the other it uses the
model to maintain the display or to answer the
enquiries.

This kind of composition is closely analogous to the
situation in established branches of engineering,
where standardised products  such as cars and
television sets and bridges  are elaborate
composites of standardised components. The value of
a repertoire of well-understood composite frames is,
of course, that understanding a composite frame
means a lot more than understanding its component
subproblems: it means also understanding how the
subproblems fit together, being aware of the concerns
and difficulties that arise from the composition itself,
and knowing how to fit the subproblem solutions
together into a satisfactory solution to the original
composite problem.

5. A Realistic Problem
To illustrate the problem frame technique we take the
problem of controlling a package router. Here is the
problem statement, adapted from [Swartout & Balzer
82]:−

�Packages with bar-coded destination labels
move along a conveyor to a reading station
where their package-ids and destinations are
read. They then slide by gravity down pipes
fitted with sensors at top and bottom. A delay is
introduced between successive packages; the
delay is smaller between two packages to be
routed to the same destination.

�The pipes are connected by two-position
switches that the computer can flip (when no
package is present between the incoming and

outgoing pipes). The configuration of pipes
therefore forms a tree.

�At the leaves of the tree are destination bins
corresponding to the bar-coded destinations. A
package can not overtake another either in a pipe
or in a switch. However, because the packages
are of varying shapes and sizes, they slide at
unpredictable speeds and may therefore get too
close together to allow a switch to be set
correctly. A misrouted package may be routed
to any bin, an appropriate message being
displayed.

�The system must route packages to their
destination bins by setting the switches
appropriately for each package as it slides down
the pipes of the tree.�

Inside-Out Approach
At first sight, this is a simple behaviour problem.
Figure 2 shows the problem diagram with the part
names of the simple behaviour frame superimposed.

The interface between the Router Controller and the
Router & Packages domain, shown in the callout, is
as follows:−

• The Router and Packages domain controls read
events in which the barcode of a package entity is
read, and the associated role participation of the
resulting barcoded string.

• The Router and Packages domain also controls
hit events in which a package hits a sensor, and
the associated role participation of the sensor.

• The Router and Packages domain controls the
posn(sw,pos) states, which are the physical
positions  left or right  of the switches.

• The Router Controller machine controls the flip
events, in which a switch is flipped, and the
associated role participation of the flipped
switch.

The requirement Correct Routing is concerned with
the following phenomena:−

Router &
Packages

Correct
Routing

Router
Controller

RP:
read, hit, posn;
CM: flip

arrive, package,
bin, destination

Figure 2: Package Router as a Simple Behaviour Problem

Control
Machine

Controlled
Domain

Required
Behaviour

Problem Analysis and Structure - 6

• arrive events in which a package arrives at a bin
at a leaf of the tree, and the associated roles
which are the participation of the package and
the bin.

• destination truths relating a package to a
destination barcoded string, and corr truths
relating the barcoded strings to the corresponding
destination bins.

A Connection Difficulty
The briefest attempt at describing domain properties
that can close the gap between the requirement and
the machine  if carried out with a properly
meticulous attitude to the phenomena  will show at
once that there is a connection difficulty. The essence
of the difficulty is that the requirement is concerned
with roles and truths involving package entities, but
packages appear in none of the roles shared by the
Router Controller. For example, the Router
Controller can detect that a sensor has been hit, but
can not detect which package is responsible.

The difficulty can be dealt with by a composite
information frame with a model domain. Figure 3
shows the subproblem in which the model is built:−

Because packages do not overtake each other in the
pipes and switches, it is possible to regard the
packages in the router as forming a set of queues: on
each read event at the reading station a new package
enters the tail of the queue in the topmost pipe, and
on hitting a sensor at the bottom of a pipe it moves
from the head of one queue to the tail of another. The
model domain, Packages & Sensors Model, contains
a representation of these queues and a destination
attribute for each queue element. The destination
attribute is assigned when the barcoded destination of
the package is read at the reading station.

The model domain can then be interrogated by the
Router Controller in the behaviour problem to answer
the question: �what is the barcoded destination of the

package that participated in the most recent hit event
in which this particular sensor participated?� The
answer to this question solves this connection
difficulty: when a package arrives at the sensor
guarding a switch its destination is known.

Two Identities Difficulties
The problem offers two clear examples of the
identities difficulty. The first concerns the sensors
and switches. Each sensor and switch is connected to
a particular port  a register or sense line  of the
machine. When the machine detects a hit it detects it
at a particular port, but the identity of the sensor is
not made explicit. A similar difficulty arises for the
switches.

The second identities difficulty concerns the barcoded
destinations and bins. Each bin can be associated one-
to-one with the sensor guarding its entrance, but this
does not help: the machine has no access to the
mapping between the bin sensors and the strings.
Effectively, therefore, it has no way of determining
which is the destination bin for a particular barcoded
string.

Both of these difficulties are solved in the standard
way for identities difficulties: the mapping
must be made explicit, and put in a form
accessible to the machine. Creating the
mapping is a simple problem, perhaps fitting
the Workpieces frame. The mapping is then
used by the router controller to identify the
destination of each package with the bin
sensor that is its eventual goal.

Another Connection Difficulty
Another connection difficulty still lurks in the

problem. When a package arrives at the sensor
guarding a switch the machine must flip the switch or
not according to the required routing of the package.
But the machine has no access to the necessary
routing information: that is, it has no way of
determining whether a particular bin can be reached
from a particular switch, and if so, whether by its left
or its right exit.

The solution to this difficulty is another model, but
this time of a static domain. As often happens with
static models, it will probably be necessary to create
the model with the help of a human informant, as
shown in Figure 4:−

Router &
Packages

Model
Correspondence

Router
Controller
2

Figure 3: Making a Model Domain for the Packages and Sensors

Packages
& Sensors
Model

Problem Analysis and Structure - 7

This static model provides all necessary information
about the router topology: Which sensors are on
which ends of which pipes? Which pipes feed which
switches? Which pipes leave which switches? Which
pipe leaves the reading station? Which bins are
guarded by which sensors? From this information the
router controller can determine the package routes to
their destination bins.

An Information Display Problem
The display of an appropriate message when a
misrouted package arrives at a wrong bin is, of
course, a simple information display problem. When
each package arrives at the sensor guarding a bin, the
bin identity can be compared with the package�s
destination and a message produced in the case of a
mismatch.

A Final Word on Composing the Solution
To compose the solutions of subproblems it is
necessary to consider the scheduling of their
machines.

In the present case the composition is fairly easy.
Evidently the machines implementing the solutions to
the identities difficulties, along with the machine that
builds the static model of the router topology, must be
run to completion first. Subsequently all the machines
can run in parallel, essentially synchronised by the
read and hit events controlled by the Router &
Packages domain. That is, when one of those events
occurs, each machine reacts to the event and returns
to a quiescent state. Careful consideration may be
needed to order the machines� reactions
appropriately: the information on which the answer to
a question is based must be established before the
question is answered.

6. Summary
This talk has necessarily been brief and
somewhat superficial, but I hope it has given a
reasonably clear sketch of the problem frame
approach. The chief points of the approach are
these:−
• Problems are located in the world, not in

the computer. The computer and its
software are the solution. It follows that
problem analysis must pay meticulous
attention to the phenomena of the world and
to the characteristics of its constituent

domains and of the interfaces between them.
• Large and realistic problems can be seen as

compositions of small problems. The small
problems must be of recognised classes, both to
guide the decomposition and to provide an
intellectual structure within which we can
capture, develop and disseminate a growing body
of knowledge.

• Problem structure is often a parallel composition
of subproblems. Hierarchical and embedded
structures are also found, but parallel structuring
is the commonest. The right metaphor for
problem structure is not the bill-of-materials
assembly structure but the superimposition of
CYMK separations in the printing of a four-
colour graphic.

• Each subproblem is concerned with some parts
of the world, and the subproblems of one
problem are connected by the world phenomena
they have in common.

• Problem frames provide a basis for the approach
by characterising a repertoire of problem classes
in terms of their phenomena and domains.

There are further discussions of the Package Router
problem in [Balzer et al 82] and in [Jackson 96].
There is further discussion of problem frames in
[Jackson 95] and [Jackson 99].

Package
Router

Model
Correspondence

Router
Controller
3

Figure 4: Making a Model Domain for the Router Topology

Router
Topology
Model

Informant

Problem Analysis and Structure - 8

References

[Balzer et al 82] Robert M Balzer, Neil M Goldman
and David S Wile. Operational Specification as
the Basis for Prototyping; ACM Sigsoft SE
Notes Volume 7 Number 5 pages 3-16,
December 1982.

[Jackson 95] Michael Jackson; Software
Requirements & Specifications: A Lexicon of
Practice, Principles and Prejudices; Addison-
Wesley, 1995.

[Jackson 96] Daniel Jackson and Michael Jackson;
Problem Decomposition for Reuse; Software
Engineering Journal Volume 11 Number 1
pages 19-30, January 1996.

[Jackson 99] Michael Jackson; Problem Analysis
Using Small Problem Frames; Proceedings of
WOFACS �98, South African Computer Journal
22, pages 47-60, March 1999.

[Swartout & Balzer 82] William Swartout and
Robert Balzer; On the Inevitable Intertwining of
Specification and Implementation; Comm ACM
25,7 pages 438-440, July 1982.

