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Abstract 
The notion of a problem frame is introduced and explained, and its use in analysing and structuring problems is illustrated. 
A problem frame characterises a class of simple problem. Realistic problems are seen as compositions of simple problems of 
recognised classes corresponding to known frames. 
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1 Introduction 
Software developers have aspired to the status of an 
engineering profession since the NATO conferences of 
thirty years ago [Naur 69, Buxton 70]. But few believe that 
the aspiration has been fulfilled. A leader in the field 
recently claimed [Parnas 97] that Software Engineering is 
an ‘unconsummated marriage’: “The majority of engineers 
understand very little about the science of programming or 
the mathematics that one uses to analyse a program, and 
most computer scientists don’t understand what it is to be an 
engineer.” He continued: “Chemists are scientists; chemical 
engineers are engineers. Software engineering and computer 
science have the same relationship.” 

The underlying assumption is that software engineers are 
practising a single discipline, properly aspiring to become a 
member of the same set as chemical, aeronautical, electrical, 
civil or electronic engineers. Like them, we aim to build 
useful products to serve practical purposes in the physical 
world. And indeed we do build physical products. The 
product of successful software development is a machine 
that interacts with its human users and with other parts of 
the world. The machine is almost always physically 
embodied in a general-purpose computer built by hardware 
engineers; but the software describes the particular machine 
needed for the purpose in hand, and transforms the 
computer into that machine. 

1.1. The General SE Problem 
We may characterise the general form of the software 
development problem as presented in [Jackson 95] and 
shown in Figure 1.  

 

 

 

 

 

The striped rectangle represents the physical machine we 
must build by specialising a general-purpose computer. The 
plain rectangle represents the part of the world that interacts 
with the machine. The solid line connecting the two 
rectangles represents an interface of shared phenomena — 
for example, shared events and shared state. The dotted 
ellipse represents the intangible requirement, the dotted 
arrow indicating that the requirement is a description — we 
might say, a predicate — over the phenomena of the world. 
In the terminology of Polya [Polya 57], the machine, the 
world and the requirement are the principal parts of the 
software development problem; the solution task is to 
construct a machine such that its interactions with the world 
will ensure satisfaction of the requirement. 

1.2. Descriptions 
Although the end product is a description of the machine, a 
successful result can rarely be achieved by describing the 
machine alone. In general we need to make the following 
descriptions: 

• The requirement   is an explicit description of the 
behaviour and properties that we want the world to 
have as a result of its interaction with the machine.   
is a description in the optative mood — that is, it 
expresses what we would like to be true. It is a 
description over the phenomena of the world that are of 
interest to the customer of the development: it captures 
the purpose for which the machine is to be built and 
installed. 

• The unconditional behaviour and properties of the 
world that do not depend on the machine are expressed 
in a world description .   is an indicative 
description — that is, it expresses what is true of the 
world regardless of its interaction with the machine. It 
is a description over any phenomena of the world 
whose relationships are significant for the purpose in 
hand; in particular, it is not restricted to phenomena 
shared with the machine. 

• The specification   describes the behaviour and 
properties that we want the machine to have at its 
interface with the world.   is an optative description. It 
is a description over the shared phenomena at the 
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interface, consistent with the properties of the world 
and satisfiable by appropriate action of the machine.  

• The program   describes the behaviour and properties 
that we want the machine to have, without restriction to 
its interface with the world. Again,   is an optative 
description. It is a description of the phenomena of the 
machine, including those private machine phenomena 
that are in the scope of the programming language. 

• The unconditional behaviour and properties of the 
machine that do not depend on the program are 
expressed in a machine semantics .  is an indicative 
description: it expresses what it true of the general-
purpose computer independently of the specialisation 
imposed by the program. It can be thought of as a 
description of the programming language semantics in 
terms of the behaviour of the concrete machine. 

Two relationships among these descriptions constitute a 
description of the original problem and a demonstration that 
it has been solved. First, we must have 

,     

If the machine achieves the behaviour   at its interface with 
the world, then, given the known properties   of the 
world, the requirement   will be satisfied. Second, we 
must have  

,     

If the machine is as described in , then execution of the 
program  will ensure the behaviour  at the machine’s 
interface with the world. 

Strictly, none of these descriptions may be omitted.   
captures the purpose of the system: many systems have 
failed because their requirements were not correctly 
articulated.  captures the properties of the environment: 
these properties both constrain what the machine can do and 
permit it to affect and be affected by world phenomena that 
it does not directly share.   provides a convenient staging 
post in the often long chain of reasoning from the system’s 
purpose to the program text; it also allows a practical 
separation between those developers whose interests and 
knowledge focus on the application domain world and those 
who focus instead on the machine and its programs.   is 
the indispensable end product of the development.   
provides the underlying justification for refinement steps in 
the path from the specification   to the program . 

In practice, of course,  is already available in the manuals 
for programming language and its implementation in the 
particular computer to be used. And the sometimes limited 
attention paid to ,   and  is a measure partly of the 
development team’s competence and partly of their 
assessment of the risk of system failure and its 
consequences. 

1.3. Specialisation 
Unfortunately, this tidy characterisation of software 
development problems is a grossly insufficient basis for 
software engineering practice. Projects to develop systems 
for program compilation, for telephone switching, for 
banking, for controlling the brakes of a car, for word 
processing, and for searching the web are radically different 
and demand different engineering techniques. They differ 
hugely in their principal parts: their requirements, their 

worlds and their machines are so different that they need 
different languages for their description, different 
description structures, and different reasoning over those 
descriptions. The worlds of telephone switching software 
and car braking software are as different as the worlds of 
communications engineering and automobile engineering.  

Established engineers specialise for exactly this reason. 
Communications engineers and automobile engineers build 
completely different kinds of product to meet completely 
different kinds of purpose. Each established engineering 
field deals with a narrowly defined problem class, applies 
narrowly defined design methods, and produces equally 
narrowly constrained solutions. From a perspective that 
embraces every established branch of engineering, this 
year’s cars are indistinguishable from last year’s, and next 
year’s will be no different. Each branch of engineering 
adjusts its problem definitions and refines its products only 
gradually, by small perturbations from an established 
standard. This specialisation allows product function and 
quality to improve by small steps over many generations of 
products and engineers: today’s cars are recognisably 
solving the same problem as the cars of 1930, but they are 
much better in almost every way. 

Against this background one can see that the notion of 
software engineering as a single discipline is misconceived. 
Software engineering can no more be a single discipline 
than can ‘physical engineering’ — an imaginary discipline 
that embraces all the established branches from aeronautical 
to telecommunications engineering. Like the established 
branches, it relies on a core body of fundamental 
mathematics and science, but these fundamentals lie some 
distance below the level at which the practising engineer 
works. At this level, of practical technique, engineering 
varies enormously from one specialised branch to another.  

So too must it be for software engineering. We must deal in 
specialities, not generalities. Already some established 
specialities have emerged. Compiler construction, operating 
systems, GUIs and expert systems are notable examples. As 
each specialised branch emerges and begins to establish a 
substantial body of practical technique of its own, it breaks 
away from the parent tree. Compiler construction and 
operating system design cease to provide illustrative 
problems for courses on software engineering, and become 
the rich subject matter of their own separate courses. 

2 SE Problems for Generalists 
As its specialised branches emerge and take their leave, 
software engineering finds itself concerned with those 
particular problems and solutions that are not yet well 
enough understood to furnish the subject matter for 
additional specialities. This problem set is very rich indeed: 
the computer is so versatile that its applications are virtually 
unbounded. Today most realistic development problems fall 
into this set: only a few fall squarely into an established 
speciality. We are not at liberty to disdain these problems 
on the grounds that specialised knowledge is absent or 
inadequate. We must do what we can, approaching them as 
competent generalists.  

In the best case this means recognising that the problem is a 
composition of simpler problems that we do know how to 
solve, and that a solution can be constructed from the 
known solutions to those simpler problems. An alarm clock 
satisfies a certain requirement; a radio satisfies another. A 



 
clock radio satisfies both requirements. Similarly, a 
breakdown truck satisfies the requirements of a crane and a 
vehicle. The combination may satisfy additional 
requirements — for example, the alarm can be set to turn on 
the radio; and it may exploit common solution parts — for 
example, the breakdown truck powers uses the same engine 
to power both the crane and the vehicle. 

The work on object-oriented patterns [Gamma 94, 
Buschmann 96, Pree 97] addresses the need to identify a 
repertoire of software components and to consider their 
properties and the ways in which they can interact. Work on 
software architecture [Shaw 96, Bass 98] addresses larger 
structures of interaction. Both patterns and architecture are 
primarily concerned with the space of solutions. Inevitably 
they pay some attention to the problems being solved, but 
this attention is focused chiefly on the impact of the 
problem on the solution. There is a need to address problem 
structure and classification in a more sharply focused and 
explicit way. That is the theme of this paper.  

2.1. Problem Structures and Problem Frames 
We regard particular problem classes as characterised by 
problem frames. Each frame is an elaboration of the general 
form shown above in Figure 1. Each frame is either 
elementary or composite. A problem of the class 
characterised by an elementary frame is to be captured by 
building descriptions appropriate to the frame. A problem 
of a composite class is first decomposed into subproblems 
characterised by elementary frames. 

A particular problem frame elaborates and specialises the 
general form of Figure 1 in the following ways: 

• The world is decomposed into domains. For example, 
if the problem concerns the production of an output text 
stream from an input text stream, we may decompose 
the world into the domains InputText and OutputText. 
(The term domain is considered to include the machine. 
The machine is not decomposed within one elementary 
problem frame, but there is a submachine — a 
projection of the machine — for each subproblem of a 
composite problem.) 

• Different types of domain are distinguished according 
to the role they play in the problem. For example, one 
domain may embody a tangible description of another 
domain; or one domain may be given, while another is 
created by the action of the system.  

• Interfaces of phenomena shared between domains are 
shown by connecting lines as in Figure 1. Not all 
domains need be connected to the machine. For 
example, in the well-known Patient Monitoring 
problem [Stevens 74] the Patients and the Analogue 
Devices are two domains: the Analogue Devices are 
connected to the machine, but the Patients are 
connected only to the Analogue Devices.  

• The connections among the parts of the problem frame 
are more closely characterised in terms of the types of 
the connecting phenomena. For example, an interface 
connecting two domains may have only shared event 
phenomena, while another interface between two other 
domains may have both shared events and shared 
states. The control of phenomena is also indicated, as 
explained in the following section. 

• The phenomena related by the requirement are 
similarly characterised according to their types. Also, 
they are identified, where appropriate, with phenomena 
at interfaces in the frame. 

• The characteristics of domains at their interfaces with 
other domains are classified. For example, an Inert 
Reactive domain initiates no events; it responds to each 
shared event initiated by the connected domain by 
changing the shared state, and returns to an inert state 
until a fresh shared event occurs. In general, the 
characteristics of a domain are different at its interfaces 
with different sharing domains: in the Patient 
Monitoring problem, the Analogue Devices are Inert 
Reactive at their interface with the Patients, but Active 
at their interface with the machine. 

These elaborations are illustrated and discussed in 
subsequent sections. They support a repertoire of 
elementary frames, each very simple.  

Composite frames, also illustrated in subsequent sections, 
are essentially parallel compositions of elementary frames. 
For some composite frames it is necessary to introduce 
additional created domains that mediate between 
subproblems, somewhat after the fashion of local program 
variables. In general the creation of such an additional 
domain becomes a subproblem in its own right, with its own 
elementary problem frame. Such an elementary frame is 
called a partial elementary frame, because the problems it 
characterises — like the creation of a local variable — can 
never be independent problems in their own right but occur 
only as subproblems. Other partial elementary frames, as 
discussed in subsequent sections, arise from explicating 
implicit assumptions about the environment of a problem. 

2.2. Phenomena and Control 
Domains and interfaces, and hence problems, differ in their 
phenomenological characteristics. For example, a static 
domain, in which there are no events and no state changes, 
is different from a dynamic domain in which events and 
state changes occur over time. They will raise different 
considerations in the treatment of problems in which they 
appear, and will demand different kinds of description. 

We must also consider the control of events and state 
changes at the domain interfaces of shared phenomena. For 
example, in a problem to control a lift, the pressing of 
buttons is controlled by the users, the polarity of the 
winding motor is controlled by the computer, and the 
closing and opening of sensors in the lift shaft is controlled 
by the lift mechanism itself through the movement of the lift 
car. (We are, of course, concerned here with proximate 
control by one of the sharing domains. The sensors are 
controlled by the lift mechanism, not by the computer, 
because the proximate cause of the closing of a sensor is the 
arrival of the lift car; the fact that the computer can 
indirectly cause the lift car to travel in the shaft is not 
relevant here.) 

In characterising interface properties we use a simple 
classification of phenomena. We recognise three kinds of 
individual: 

• Values (‘V’) are timeless individuals: for example, 
integers and characters.  



 
• Entities (‘N’) are individuals that change over time: for 

example, people and bicycles and bank accounts. 
• Events (‘E’) are atomic events occurring in time: for 

example, the pressing of a lift button or the starting of 
the winding motor. 

We recognise three kinds of relation over individuals: 

• Truths (‘U’) are timeless relations: for example, ‘x>y’ 
over integers.  

• States (‘S’) are relations that change over time: for 
example, ‘IsChild(x)’ over human beings. Changes of 
an entity over time are changes in states in which it 
participates. 

• Roles (‘R’) are relations indicating participation of an 
individual in an event: for example, ‘IsButtonIn(b,p)’ 
over buttons and button-press events. 

We must also express the temporal ordering of events and 
capture the relationship between events and states. In 
[Jackson 93], [Zave 93] and [Jackson 95] this relationship 
was captured by introducing intervals between events as 
explicit individuals. Here, as in [Bhargavan 98], we use 
instead a convention in which state symbols are decorated 
with the prefix or suffix ‘Then’ and the argument list 
augmented by an event identifier. For example, 
‘IsChildThen(x,e)’ means ‘IsChild(x) is true immediately 
before event e occurs’, and ‘ThenIsChild(x,e)’ may mean 
‘IsChild(x) is true immediately after event e occurs’. These 
relationships will not play a part in the discussion of 
problem frames, and we will not pursue them further here.  

Larger classes of phenomenon that will be useful are: 

• All phenomena (‘H’) is the class containing all the 
phenomena. 

• Controllable phenomena (‘C’) is the class containing 
those phenomena that can be controlled by a sharing 
domain. They are roles, states and events. 

Controllable phenomena at a domain interface may be 
initiated (‘+’) by one of the sharing domains. For example, 
a state change of the lift shaft sensors is initiated by the lift 
mechanism, and the pressing of a button is initiated by the 
intending passenger. Truths at a domain interface are 
determined (‘=’) by one of the sharing domains. For 
example, an ordering over strings may be shared by the 
machine and a strings domain, and is determined by the 
strings domain. In some cases a domain may exercise 
inhibition (‘-‘) over a controllable phenomenon. For 
example, the user of a personal computer may initiate a key 
depression, and the computer may inhibit it by locking the 
keyboard.  

The use of these classifications and control indications is 
illustrated in subsequent sections.  

2.3. Frames, Subproblems and Methods  
The use of tightly constrained problem frames can offer two 
important advantages. The first advantage is that it 
underpins a repertoire of known and recognised subproblem 
classes into which realistic problems can be decomposed. 
The difficulties of unguided problem decomposition are 
now widely accepted. The traditional top-down process 
involves decomposing a problem of no recognised class into 
a number of subproblems also of no recognised class, and 

continuing recursively until — if the process succeeds — 
elementary subproblems are recognised at the lowest level. 
This process can not be expected to produce a good result. 
Fred Brooks [Brooks 75] sums up his experience in the 
aphorism: “Plan to throw one away; you will  anyhow.” The 
outcome of the process is not a good decomposition; it is a 
degree of insight into the difficulties of the problem, so that 
a second complete attempt can then be based — at least in 
part — on recognised problem characteristics. A sufficient 
repertoire of problem frames would allow the first 
decomposition to be guided by a more systematic problem 
taxonomy.  

The second advantage is that a problem frame is, ideally, 
associated with one or more methods for capturing the 
problem in full detail and developing a solution. Software 
development method is chiefly concerned with stipulating 
the descriptions to be made, the languages to be used, and 
the large structures within which the descriptions are 
related. The decomposition of a problem into subproblems 
of recognised classes allows the appropriate method to be 
used for each subproblem. Within each frame the method 
stipulates descriptions of the problem’s principal parts, and 
the particular way in which their large structures specialise 
the general structure outlined in Section 1.2 above. 

A method associated with a tightly constrained problem 
frame can take advantage of the known characteristics of the 
problem in several ways. In particular, it can stipulate a less 
expressive language than might be needed in a more 
unconstrained problem. For example, a method may 
stipulate the use of a regular expression language. A 
problem whose relevant part can not be described by a 
regular expression may be deemed to fall outside the frame. 
Or, in some cases, the method may provide a technique for 
overcoming the difficulty. For example, the description may 
consist of two or more regular expressions over intersecting 
alphabets, perhaps with a corresponding problem 
decomposition. 

More fundamental difficulties may demand a further 
decomposition of the problem. The use of a model within 
the machine, simulating a part of the world outside it, may 
be the result of such a decomposition. This difficulty, and 
others, are illustrated in subsequent sections.  

3 Elementary Problem Frames 
In this section some elementary problem frames, including 
partial frames, are outlined and briefly discussed. 
Composite frames are discussed in the following section. 

3.1. Simple Control Frame 
The Simple Control frame characterises problems in which 
the machine is required to control a simple device. An 
example of such a problem is the control of a simple pair of 
traffic lights used to ensure one-way traffic in alternating 
directions over a stretch of road undergoing repair. The 
problem frame diagram is shown in Figure 2. 

 

 

 

 



 
 

 

 

 

 

 

In this frame the general form of a software development 
problem has been elaborated only by more specialised 
names for the principal parts and by markings on the 
connecting lines indicating the types and control of the 
phenomena concerned. The markings indicate that: 

• The Required Behaviour RBV is a condition over 
controllable phenomena (C3). 

• The interface between the Machine MC and the 
Controlled Domain CD consists of two sets of shared 
controllable phenomena: C1, controlled by MC, and 
C2, controlled by CD. 

In the traffic light control problem, the Machine  is the 
control computer and the Controlled Domain is the pair of 
traffic lights. The Required Behaviour is a specified 
sequence of displayed light states: for example 
(Stop1+Stop2; Stop1+Go2; Stop1+Stop2; Go1+Stop2;)*, 
each state being required to persist for 50 seconds. The 
phenomena C3 are the states Stop1, Go1 etc. The 
phenomena C1 controlled by the Machine are events Red1, 
Green1, On1, Off1, Red2, Green2, On2 and Off2. The set 
of phenomena C2 is empty, since the traffic light devices 
control no phenomena that they share with the control 
computer. 

The relationship between the traffic light states {Stop, Go} 
and the events {Red, Green, On, Off} is obscure. This 
obscurity illustrates  the need, in capturing any Simple 
Control problem, to describe the internal properties of the 
Controlled Domain CD explicitly, even when they are not 
obscure. In the traffic lights problem is it necessary to 
describe explicitly how the states Stop and Go are 
determined by sequences of the Machine-controlled events 
Red1 etc. This description, of course, is the indicative 
description   of the real world discussed in Section 1.2 
above.  

3.2. Simple Enquiry Frame 
The Simple Enquiry frame characterises problems in which 
the machine is required to answer enquiries about a 
connected part of the world. An example of such a problem 
is an experimental laboratory set-up in which voltages are 
measured at sixteen points and communicated to a computer 
by A/D devices. The experimenter can enter enquiries 
asking for the current value at any of the sixteen points, the 
current highest value, the current average value, and so on.  

The problem frame diagram is shown in Figure 3. In this 
frame the general form of a software development problem 
has been elaborated not only by more specialised names for 
the principal parts and by markings on the connecting lines 
indicating the phenomena concerned, but also by a 
decomposition of the World into distinct domains. The part 
of the world about which information is sought is the Real 
World RW; the source of the enquiries is the Enquirer 

ENQ; and the responses produced by the Machine are the 
Responses domain RSP. The single vertical stripe on the 
RSP domain indicates that it is not given, but is created 
when the system runs. 

 

 

 

 

 

 

 

 

 

 

The markings indicate that: 

• The requirement IRL is a condition over phenomena of 
RW (H2), events of RSP (E2) and events of ENQ (E1). 
For example, for the E1 enquiry ‘V5’, occurring when 
the voltage at point 5 is 3.2 volts (a state phenomenon 
in H2), the response event in E2 must be ‘3.2’. 

• The interface between the Machine MC and the Real 
World RW consists of a set of shared phenomena of 
any type (H1), controlled by RW. Since RW has no 
interface at which it shares phenomena controlled by 
another domain, it is autonomous. 

• The interface between the Machine MC and the RSP 
domain consists of a set of shared events (E2), 
controlled by the Machine. RSP controls no phenomena 
at any interface, but shares phenomena controlled by 
MC: it is passive. 

• The interface between the Machine MC and the ENQ 
domain consists of a set of shared events (E1), 
controlled by ENQ. ENQ is active. 

One aspect of the simplicity of this frame is that the 
requirement is over the phenomena of RSP and ENQ that 
those domains share with MC. Further, each response event 
E2 is a function of the Real World phenomena and of the 
enquiry event E1 to which it responds, not of preceding or 
otherwise related enquiry events. More precisely, RSP has 
no structure more complex than E2*, and ENQ no structure 
more complex than E1*. There is therefore no need to 
consider the internal behaviours of those domains. 

A source of potential difficulty in this problem frame is that 
the information to be provided is over phenomena H2 of 
RW, while the Machine MC has access only to phenomena 
H1. If the sets H1 and H2 are identical, or if H1 contains 
H2, there is no difficulty. Otherwise it will be necessary to 
examine and describe the relationship between H1 and H2. 
This relationship is embodied in the internal properties and 
behaviour of RW. In the experimental voltages problem, a 
trivial relationship presenting no difficulty is that a voltage v 
at point n (an element of H2) corresponds to a value v in 
AD register n (an element of H1). A more complex 
relationship would be one in which an enquiry may refer to 
voltages at past times. This kind of difficulty and its 
consequences are discussed in subsequent sections. 
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3.3. Information Display Frame 
The Information Display frame characterises problems in 
which the machine is required to maintain a display about a 
connected part of the world. An example of such a problem 
is the provision of a display in a hotel lobby showing the 
current positions of the hotel lifts. The problem frame 
diagram is shown in Figure 4.  

The Display Machine MC is connected to the Real World 
RW about which information is to be displayed by an 
interface of shared controllable phenomena controlled by 
RW. In the lift problem these phenomena may be the states 
of sensors in the lift shafts and button-press events. 

The Information Display domain DIS is controlled by the 
Machine through the shared phenomena C2. The 
requirement DRL stipulates the states S2 of the Display 
domain that must correspond to states S1 of the Real World. 
For example, in the lift problem DRL may stipulate that 
whenever a lift is ascending an Up arrow should be 
illuminated in the column corresponding to that lift.  

 

 

 

 

 

 

 

 

In an Information Display problem it is necessary to 
describe the internal properties of both DIS and RW. The 
relationship between the phenomena C2 and their effects on 
the states S2 of the Display must be examined and 
described. The properties of RW are likely to be more 
complex. For example, in the lift problem it may be that the 
Display must show outstanding requests: an outstanding 
request is a member of S1. The phenomena C1 shared by 
RW with the Machine may be only button-press events and 
lift-shaft sensor states. It will then be a non-trivial task to 
determine how the Machine should calculate S1 from C1. 
We will return to this topic in a later section. 

3.4. Simple Workpieces Frame 
A Simple Workpieces problem requires the provision of a 
tool for constructing and editing intangible artifacts such as 
texts or graphics. The artifacts are restricted to extremely 
simple objects that can be edited ‘blind’ as shown in the 
problem frame in Figure 5. 

The machine to be built is the Tool TL. The Workpieces 
WP are constructed by the Tool and are entirely contained 
within it, the containment being shown by the heavy dot on 
the connecting line representing the interface. Containment 
means that all the phenomena of the contained domain are 
shared with the containing domain; in the Workpieces frame 
shown above we can infer that WP has no phenomena other 
than E2 and S1.   

The Operation Requests domain is a stream of events E1, 
each requesting an operation on a workpiece. Because some 
requests — for example, a request to delete an 

 

 

 

 

 

 

 

 

 

element from a non-existent workpiece — are unacceptable, 
the Tool can inhibit E1 events. Inhibition by the Tool is, of 
course, quite different from returning a null result to an 
accepted request — for example, a request to change all 
occurrences of ‘1’ to ‘2’ in a text containing no occurrence 
of ‘1’. Inhibition might be implemented by ignoring the E1 
input except to respond with a bleep. 

In this simple frame, requests are mutually independent: the 
meaning of a request does not depend on any other request. 
Similarly, the workpieces are mutually independent: no 
operation involves more than one workpiece. The 
requirement stipulates the effect of each operation in terms 
of the preceding and resulting states of the affected 
workpiece. 

The Workpieces domain WP is Inert Reactive at its 
interface with the Tool. That is to say, it responds to each 
event in E2 by a (possibly null) state change in S1, and 
immediately returns to quiescence. WP never initiates state 
changes in S1 except in response to events in E2. 

3.5. Methods and Descriptions 
The characteristics of the principal parts of a problem frame 
and of their interfaces govern the choice of method, both for 
capturing the problem in full detail and for developing a 
solution. 

For example, the inert reactive nature of the Workpieces 
domain WP in the Simple Workpieces frame allows WP to 
be described as a set of instances of an abstract data type: 
the events E2 are the operations of the type, and the states 
S1 define the data representation. In developing a solution 
this description of WP may be refined into the definition of 
an object class. Because WP is inert reactive, and not 
active, the object class definition needs no ‘run’ or ‘live’ 
method: its methods are all externally invoked and executed 
sequentially. Both the problem statement and the solution 
therefore avoid the potential complexities of concurrency. 

The domain RQ, of requests for operations on Workpieces, 
is active and autonomous. The requirement EFF therefore 
can not constrain RQ in any way although it constrains the 
relationship between RQ events E1 and WP states S1: EFF 
must be satisfied solely by constraints on the behaviour of 
TL and WP. Further, the domain RQ has the trivial structure 
request*. Hence RQ needs only an indicative description of 
a simple kind. 
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In the Simple Control frame discussed in Section 3.1 above, 
the properties of the Controlled Domain CD and of its 
interface with the Machine MC will govern the kinds of 
description needed to capture the problem and  to develop a 
solution. In the very simple case of the traffic lights problem 
the following descriptions will be appropriate: 

• The requirement   is described as a finite-state 
machine in which the states denote the pairs of lights 
showing in the two sets of lights and the transitions 
denote timeouts for the delays. 

• The world description   is a finite-state machine in 
which the states denote the single light showing in one 
set of lights and the transitions denote the events shared 
with the control computer. Additional states may be 
needed if more than one event must occur for the light 
to change. The same finite-state machine describes the 
properties of both sets of lights. 

• The specification   is given as a Mealy machine in 
which transitions are timeouts for the delays and 
outputs on the transitions are events shared with the 
lights. The states are not significant: in a diagrammatic 
representation of the Mealy machine they need not be 
named; in a transition-list representation their names 
are bound variables. 

More complex variants of the Simple Control frame may 
demand more expressive languages. But, as a rule, a 
problem that demands a more elaborate descriptive structure 
is not a problem of the class characterised by the frame.  

4 Difficulties and Problem Frames 
Possession of a set of close-fitting frames and associated 
methods arms the developer to recognise and deal with 
problems of the corresponding classes. A method should not 
be used if the problem does not fit its frame. Construction of 
a compiler, for example, can not be treated as a Simple 
Control problem: the compiler world must be structured into 
at least two domains — the input source program and the 
output object program; further, the output object program is 
not given but must be created when the system runs. 
Similarly, developing a controller for a chemical plant is not 
a Simple Workpieces problem. The plant evidently does not 
have the characteristics stipulated for the Operation 
Requests domain, and it is certainly not inert: even in the 
absence of shared events initiated by the control computer 
liquids and gases will continue to flow, to condense or 
evaporate, and to rise or fall in temperature. Development 
of an avionics system is not an Information Display 
problem: the aircraft is neither autonomous like the Real 
World domain nor inert reactive like the Information 
Display domain. Developers of an avionics system who 
mistakenly try to use the Information Display frame will 
find that the associated methods are quite unable to handle 
many of their most important concerns. (Regrettably, such 
misfits between problem and method are often ignored by 
proponents of development methods that claim very wide, 
or even universal, validity.) 

Recognition of a frame misfit may simply lead to the 
selection of another available frame. But sometimes it will 
lead to recognition of a difficulty of a known kind to which 
the solution may be a standard elaboration of the misfitting 
frame or a standard decomposition into two or more frames. 
In this section some simple illustrations are given. 

4.1. Flexible Requirements Difficulty 
A common difficulty that can occur in almost any problem 
frame is a need for flexibility, when a  fixed requirement is 
inappropriate. In the traffic lights problem, for example, the 
sequencing of light states and the delay for each transition 
are fixed in the requirement; they will then become fixed in 
the control computer’s program. It may be necessary to 
arrange for the sequences and delays to be conveniently 
specified by insertion of a floppy disk or setting switches on 
a console attached to the computer. The disk or console 
then becomes a distinct domain, playing the part of a 
description in the problem frame as shown in Figure 6. 

The oval outline of the Sequence Description domain SQD 
indicates that it plays the part of a description in the 
problem; the outline is solid — unlike the outline of the 
requirement — because it has a tangible embodiment in the 
problem. The requirement SQI is no longer a requirement to 
evoke a particular sequence of lights, but rather to produce 
a sequence corresponding to the interpretation of the SQD 
domain. The phenomena marked as “G1”, “50s” &c in the 
diagram are the syntactic elements of the description SQD. 
They are shared with the Control Computer CTL, which has 
access to the Sequence Description — as it must if it is to 
satisfy the requirement. The marking ‘SQD: = “G1”, “50s”, 
&c’ on the interface between CTL and SQI indicates that 
these non-controllable phenomena are determined by SQD, 
not by the machine CTL. 

 

 

 

 

 

 

 

 

 

The difficulty recognised here, and its solution, are 
absolutely standard in software development: part of what 
might have been treated as compiled program is instead 
treated as data, and the compiled program then becomes 
responsible for interpreting that data.  

We are assuming here that the Sequence Description is a 
given part of the problem, fixed for any instance of the 
system. That is, we regard its construction as falling outside 
the problem context. The Controller CTL is capable of 
interpreting any instance of SQD that satisfies the syntactic 
and semantic rules of that problem part, but it is not 
responsible for constructing that instance. If instead the 
Sequence Description is to be created by the operator of the 
system, the problem fits a more complex, composite, frame. 
That frame, Simple Control Under Operator’s Regime, is 
discussed in a later section. The frame shown in Figure 6 is 
then only a partial frame: it addresses only one subproblem 
in the original problem. 
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4.2. Identities Difficulty 
An important and common class of difficulty is the 
identities difficulty. Whenever a domain contains multiple 
instances of entities of the same type that must be 
distinguished by the machine, the mechanism by which each 
instance is distinguished and identified becomes of interest. 
It can also become a source of major difficulty. The well-
known British Midland 737 crash at Kegworth [Neumann 
95] occurred because the engine safety-control system was 
‘cross-wired’, causing the pilot to shut off the starboard 
engine in response to smoke and vibration in the port 
engine. Subsequent inspection showed that many 737s were 
cross-wired in this way. 

A tiny manifestation of this difficulty appears in the traffic 
lights problem. There are two sets of lights to be 
distinguished by the machine. In the simplest version of the 
problem the distinction is actually not necessary, because 
both sets of lights are treated identically after system 
startup. But as soon as the sequences for the two sets must 
differ, because traffic in one direction is heavier or slower 
than in the other direction, the distinction may become 
important. 

A substantial — and life-threatening — version of the 
difficulty occurs in the well-known Patient Monitoring 
problem. Patients have names; they are in hospital beds; 
they are attached to analogue devices; the devices are 
plugged into ports on the monitoring computer; medical 
staff specify periods and ranges for monitoring each patient 
individually, referring to them by their names. The difficulty 
is evident: to satisfy the requirement, the machine’s reading 
of a patient’s pulse rate or temperature or blood pressure at 
a port must be associated with the correct patient. This 
association is mediated by mappings between patients’ 
names and patients, patients and devices, and devices and 
ports. Dealing correctly with these mappings is a vital and 
substantial aspect of the whole problem. 

Generally, solution of an identities difficulty requires the 
introduction of one or more explicit Mapping domains into 
the problem frame. In some cases a mapping may be 
degenerate: the two sets of traffic lights, for example, may 
be visibly labelled ‘1’ and ‘2’, and the operator instructed to 
plug them into ports 1 and 2 of the Control Computer. It is 
then unnecessary to treat the mapping as a distinct domain; 
it is enough to distinguish it as an element in other 
descriptions in the development.  

In the worst cases — and the Patient Monitoring problem is 
such a case — a Mapping domain is dynamic. The 
developers might reasonably ignore the case in which a 
patient changes her name while under monitoring, leaving 
the correct handling of this kind of change to the hospital 
staff. But certainly patients leave the hospital and new 
patients arrive; additional monitoring, and hence additional 
devices, may become necessary for an existing patient; and 
analogue devices could become unplugged from the 
computer and plugged into the same — or different — 
ports. The developers must build a system that deals 
correctly with all of these events. 

Introduction of an explicit Mapping domain raises similar 
issues to the introduction of a flexible requirement domain 
such as SQD in the traffic lights problem. If the Mapping 
domain is not a given domain in the problem context it must 

be created by the action of the system; the creation task is 
then a separate subproblem in its own right. 

4.3. Connection Difficulty & Model Domains 
In many problems the available connection between the 
machine and a domain of the world is not immediately 
adequate: the shared phenomena are deficient, or are 
displaced in time, in relation to the requirement.  

This is, of course, one fundamental reason why it is 
necessary to describe the world at all. We must describe the 
properties of the traffic light sets because the requirement is 
over the sequence of lights showing and the machine can 
control this only indirectly by causing signal events. The 
indicative properties of the traffic light sets guarantee that 
appropriate sequences of signal events will evoke the 
required sequences of lights. The specification   can then 
be written in terms of the signal events accessible to, and 
controllable by, the machine. Similarly, in the problem of 
responding to queries about the experimental voltages, the 
properties of the experimental set-up and the AD devices 
allow questions about real voltage values to be answered by 
inspection of integer registers accessible to the machine.  

A connection difficulty arises when even the most careful 
description and exploitation of the indicative properties of a 
domain in the world are not enough. It is then necessary to 
find an implementation of some of the ‘data freedom’ 
facilities discussed in [Balzer 82]. The standard technique is 
to create a model of the domain inside — or readily 
accessible to — the machine. The machine can then derive 
from the model information that it can not obtain directly 
from the modelled domain. For example, in a more 
demanding version of the experimental voltages problem in 
which a required response is the highest average voltage 
achieved at a specified point over any previous period of ten 
consecutive seconds, the machine must create, and 
continually maintain, a dynamic model of the domain of 
voltages. The required response can then be calculated from 
data available in the model. 

Creation of such a model becomes a problem in its own 
right, characterised by a partial problem frame such as that 
shown in Figure 7. 

 

 

 

 

 

 

 

 

The frame shown is for creation of a dynamic model. The 
Real World RW is dynamic and autonomously active, and 
controls phenomena C1 shared with the Machine MC. The 
Model MDL is passive; it is contained in the Machine MC 
and is created by the Machine when the system runs. The 
requirement is that the Model MDL should correspond to 
the Real World in respects specified by COR. Essentially 
the correspondence is an isomorphism between individuals 
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and relations in the two domains, possibly augmented by 
additional phenomena in the Model.  

The central concerns in the problem are selecting the 
Machine phenomena to be used in the Model — that is, 
choosing representation and abstraction functions — and 
capturing and exploiting knowledge of the properties of the 
Real World to overcome any mismatch between C1 and H1. 
Suppose, for example, that the Real World is wheeled 
traffic on a road segment, the purpose of the model being to 
allow traffic density to be monitored. Suppose also that C1 
are states of sensor tubes laid across the road to detect the 
passage of traffic, and that the set H1 consists of events 
such as ‘motor car passes’, ‘motor cycle passes’, ‘light lorry 
passes’ and ‘heavy lorry passes’. Then the Real World 
properties to be captured in the indicative world  description 

  are the relationships between the distinct kinds of traffic 
event in H1 and the accompanying distinct patterns of the 
sensor states in C1.  

The problem frame for constructing a static model is 
sometimes similar, mutatis mutandis, to the Dynamic Model 
frame. However, it is usually more elaborate, because static 
domains are often isolated from the Machine. It is then 
necessary to introduce a human Informant to convey the 
Real World phenomena to the Machine, and the Informant 
becomes an additional domain in the problem frame. In a 
problem concerned with the scheduling and control of a 
railway, for example, the system must have access to the 
details of the track layout. This will usually be achieved by 
manual entry of the layout information, and the manual 
entry process may be seen as execution of a problem fitting 
the partial frame Static Model with Informant. 

5 Composite Frames 
If we were to restrict our repertoire of problem frames to 
elementary and partial elementary frames, it would be 
necessary to decompose each realistic problem into a 
structure of subproblems, each small and simple enough to 
fit one such elementary frame. This in itself would be 
disadvantageous: we would be restricting ourselves, in the 
problem sphere, to the equivalent of a rather low-level 
programming language in the solution sphere.  

More important, we would be forgoing the opportunity to 
build a repository of experience about problem and solution 
composition. A substantial part of the knowledge and 
experience of established engineering branches is concerned 
with putting parts together to make a complete product. 
Automobile engineering is not just about engines, 
gearboxes, steering, differentials and other components of a 
motor car: it is also, crucially, about their composition into 
a well-designed whole. One of the most important advances 
was the recognition that the availability of large powerful 
presses for sheet steel permitted the integration of the 
chassis with the body, two components that had previously 
been regarded as separate. This kind of advance is a 
nourishing fruit of specialisation. 

Being concerned with the residue of non-specialised 
problems that is the subject matter of Software Engineering, 
we can go only a short way towards identifying composite 
problem frames. If we go very far we will give birth to new 
specialities that will immediately leave their parents’ house. 
Unselfishly, we must go as far as we can. In this section we 
identify and discuss some small composite frames and some 
characteristic difficulties they can raise. 

5.1. Simple Information System Frames 
We use the term Simple Information System for a system in 
which the primary decomposition is into the construction of 
a model of a Real World domain and the use of the model to 
provide information about the Real World.  

Figure 8 shows the undecomposed problem frame for a 
static information system with a human informant.  

 

 

 

 

 

 

 

 

 

 

 

 

An example of such a problem is the answering of queries 
about a text such as Tyndale’s Bible. The decomposition 
into the two constituent subproblems is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The original requirement IRQ, over RW, ENQ and OUT, is 
satisfied by the obvious composition of the subrequirements 
COR, over RW and MDL, and IRL, over MDL, ENQ and 

Figure 8 
Composite Frame: Static IS with Informant 
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OUT. The two machine domains, MC1 and MC2, both 
contain the same Model domain MDL. They must therefore 
share at least the phenomena of MDL, and in practice this 
means that they must both be implemented in the same 
computer. If we choose to make MDL a domain external to 
the machine, such as a removable disk, the two machines 
can then be implemented in different computers. 

The obvious scheduling of the two machines is to run MC1 
to completion before running MC2. However, it may be 
possible and useful to overlap their executions. In the Bible 
problem, for example, if the transcription of the text takes 
several months it will be useful to provide responses to 
queries of certain kinds on the basis of a model restricted to 
the books already transcribed. 

5.2. Simple Control Under Operator Regime 
In Section 4.1 the Traffic Lights problem was elaborated to 
provide flexibility in the required sequencing of lights. A 
common composite frame in control programs is shown, 
decomposed, in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first subproblem, in which the operator constructs the 
Current Regime, fits the Workpieces frame; the second fits 
the Simple Control frame with the Current Regime as an 
explicit description of all or part of the requirement. The 
Current Regime domain is, as will often be the case, of 
different types in the different subproblems. The world is 
not typed — let alone  strongly typed. 

A major concern in the composition of the two subroblems 
here is the scheduling of the machines CM1 and CM2. In 
the simplest case CM1 can be run to completion before 
CM2 is run. In the Traffic Lights problem this means that 
the operator must set up the regime before using the lights 
to control the traffic, and can not then alter it. However, it 
may be necessary to alter the regime during a period of 
traffic control — for example, because the regime must be 
altered to handle morning and evening rush hours; 
execution of the machines must then be interleaved in some 
way.  

There are several possibilities for this interleaving. For 
example:  

• Machine CM2 is halted from the start to the finish of 
the creation of CRG by CM1. In the traffic lights 
problem this is unlikely to be acceptable because traffic 
in at least one direction must then wait while the 
operator changes the regime. This is the coarsest grain 
of interleaving. 

• Machine CM2 is halted while the operator alters CRG 
from one valid state to another, and machine CM1 is 
halted while CM2 progesses through one cycle of CRG. 
This scheme gives a finer granularity of interleaving 
while maintaining the invariant ‘CRG is a valid 
regime’. 

• Two copies of CRG are used. Machine CM2 runs on 
one copy concurrently with the creation of the other 
copy by CM1. At the end of the creation process CM2 
switches to the new copy, and the other is now 
available for updating by CM1. 

Describing and managing the last of these possibilities is a 
non-trivial problem in itself, justifying its own problem 
frame. In this subproblem a third machine treats CM1 and 
CM2 as parts of the world, controlling their behaviour in 
relation to controllable phenomena of other domains. 

5.3. Visible Workpieces Frame 
The Simple Workpieces frame discussed in Section 3.4 
above is very unrealistic. It is hard, though not impossible, 
to think of a practical problem, however small, that could fit 
it. The lack of realism lies in the absence of any feedback to 
the source of the Operation Requests: the operator must 
perform the editing operations ‘blind’, without seeing any 
representation of the object being edited. A slightly more 
realistic version is the Visible Workpieces frame shown in 
Figure 11. 

 

 

 

 

 

 

 

 

 

 

The feedback is provided by the Display domain DSP, 
whose state is the set S1 of phenomena shared with the 
Operator. The Work Support requirement WSP stipulates 
not only the effects of the operations requested by the 
operator but also the visible state of the Display in relation 
to the states of the Workpieces. This visible state of the 
display is not shared by the Tool TL, although it is 
indirectly controlled by TL through its control of the events 
E1. If the relationship between the Display state and the 
Workpieces state is not simple, it may be necessary for the 
Tool to create and maintain its own model of the state of the 
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Display. (This would, of course, be a third subproblem in 
addition to the two shown in Figure 12.)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first subproblem is a Simple Workpieces problem, in 
which the source of operation requests is the union of the 
Display and Operator domains: the initiation of a request 
event (E2) is controlled by the Operator, but the selection of 
the operands that play roles (R) in the event is controlled by 
the Display. The second subproblem is an Information 
Display problem, in which the Real World about which 
information is to be displayed is the union of the Operator 
and Workpieces domains.   

For the present discussion, the most important point about 
the Visible Workpieces frame is that it exemplifies the 
advances that can be made by even a modest degreee of 
specialisation. The problem class is, of course, the class 
addressed by the MVC object pattern: in MVC, roughly, the 
Workpieces are the Model, the Display is the View, and the 
Tool is the Controller. It is notable that the MVC pattern 
has received much attention — because it is a common 
fundamental component of GUI systems — and undergone 
much discussion, criticism and improvement [Buschmann 
96] in the ten years or so since its introduction [Krasner 88]. 
This process is very similar to the improvement that takes 
place in products like motor cars; only a specialised focus 
on a particular problem class allows a sufficient 
concentration of attention for significant improvement to 
take place. The problem frame of Figure 12 is only a first 
crude characterisation of the problem class. 

6 Decomposing a More Realistic Problem 
A realistic problem in Software Engineering will always 
demand a fresh decomposition. The most to be hoped for by 
a developer who commands a good repertoire of elementary 
and composite frames is that meeting the challenge  of 
decomposition will be eased by the ready recognition of 
familiar subproblems. Each subproblem class has an 
associated repertoire of potential characteristic difficulties: 
checking for each such difficulty can lead readily to the 
recognition of further subproblems. The task of composing 

the solution elements, at least above the level of the well-
explored composite frames, will be unique to the problem in 
hand. 

6.1. The Package Router Problem 
As an example of a nearly realistic problem we take the 
problem of controlling a Package Router [Swartout 82]. The 
treatment of this problem here is based on the treatment in 
[Jackson 96]. Here is the problem as described in [Swartout 
82], translated from the original German version of 
Hommel: 

“The package router is a system for distributing packages 
into destination bins. The packages arrive at a source 
station, which is connected to the bins via a series of 
pipes. A single pipe leaves the source station. The pipes 
are linked together by two-position switches. A switch 
enables a package sliding down its input pipe to be 
directed to either of its two output pipes. There is a 
unique path from the source station to any particular bin.  

“Packages arriving at the source station are scanned by a 
reading device which determines a destination bin for 
the package. The package is then allowed to slide down 
the pipe leaving the source station. The package router 
must set its switches ahead of each package sliding 
through the pipes so that each package is routed to the 
bin determined for it by the source station.  

“After a package's destination has been determined, it is 
delayed for a fixed time before being released into the 
first pipe. This is done to prevent packages from 
following one another so closely that a switch cannot be 
reset between successive packages when necessary. 
However, if a package’s destination is the same as that 
of the package which preceded it through the source 
station, it is not delayed, since there will be no need to 
reset switches between the two packages. 

“There will generally be many packages sliding down the 
pipes at once. The packages slide at different and 
unpredictable speeds, so it is impossible to calculate 
when a given package will reach a particular switch. 
However, the switches contain sensors strategically 
placed at their entries and exits to detect the packages. 

“The sensors are placed in such a way that it is safe to 
change a switch setting if and only if no packages are 
present between the entry sensor of a switch and either 
of its exit sensors. The pipes are bent at the sensor 
locations in such a way that the sensors are guaranteed 
to detect a separation between two packages, no matter 
how closely they follow one another.  

“Due to the unpredictable sliding characteristics of the 
packages, it is possible, in spite of the source station 
delay, that packages will get so close together that it is 
not possible to reset a switch in time to properly route a 
package. Misrouted packages may be routed to any bin, 
but must not cause the misrouting of other packages. 
The bins too have sensors located at their entry, and 
upon arrival of a misrouted package at a wrong bin, the 
routing machine is to signal that package’s intended 
destination bin and the bin it actually reached”. 

6.2. Recognising Some Subproblems 
Initially this problem appears to be essentially a control 
problem. The machine must flip the switches so that the 
packages arrive at their proper destinations. The switch 
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must be flipped when a package passes the sensor at the 
bottom of the pipe leading into the switch.  

Brief consideration of the phenomena concerned 
immediately reveals a connection difficulty. The package 
destination is read at the source station, but is no longer 
available when the package passes the sensor. The shared 
phenomena between the machine and each sensor s are no 
more than the states SensorOpen(s) and SensorClosed(s): 
the package causing the state change is anonymous, and its 
destination bin is unknown. This connection difficulty is 
soluble by a dynamic model. Since the packages can not 
overtake one another, the state of the packages and pipes 
can be regarded as a set of queues. The package arriving at 
a sensor above a switch is the package at the head of the 
queue in the pipe to which the sensor is attached. Package 
destinations, read at the source station, are attached to the 
package objects in this queue model. When a switch is to be 
flipped the controlling machine consults the queue model to 
identify the package destination and hence the required 
switch setting. 

There is a further connection difficulty. The switch to be set 
is determined by the router topology — the positioning of 
sensors on pipes, and the pipe and switch layout. Evidently 
a static model is needed here. Augmented with bins, the 
same model will allow the required setting of the 
determined switch to be chosen according to the route from 
the switch to the bin. 

The switches are attached to ports of the controlling 
machine. This is the standard form of an Identities problem. 
An exactly similar problem is present for the sensors. 

Signalling arrival of a misrouted package at a wrong bin is, 
of course, a Simple Information Display problem. 

6.3. Another Concern 
In discussing software engineering problems it is always 
tempting to look for the sixpence under the light. We 
naturally asume that the most important problem aspects are 
those for which we have suitable techniques ready in our 
toolkit. The list of recognisable subproblems in the previous 
section illustrates the point. An important concern in 
operating the package router in practice will undoubtedly be 
the behaviour of the router and its controller when a 
package becomes stuck in a switch. So far, this concern has 
been ignored because our repertoire contains no appropriate 
problem frame. 

In fact, this concern — handling a malfunctioning physical 
world — is very common in problems of many kinds. How 
it might be captured in a problem frame is left as an exercise 
for the reader. 

7 Summary 
This informal paper has sketched a selection of elementary, 
partial and composite problem frames. No claim, of course, 
is made that the selection is complete or canonical, or even 
that any particular frame presented truly characterises a set 
of problems that are best considered as a class: other 
classifications are surely possible. But it is claimed that the 
approach is valuable in at least these respects: 

• It is useful to consider problems largely — though not 
entirely — independently of their putative solutions.  

• Software Engineering problems are located in the 
world, and their analysis and structuring is primarily an 
analysis and structuring of the world, not of the 
machine. 

• The classification of phenomena and the consideration 
of their control is a central ingredient in problem 
analysis. Mathematical abstractions alone are not 
enough. 

• A repertoire of recognised problem classes, with 
associated characteristic difficulties and solution 
methods, provides an important structure for the 
discipline of Software Engineering. Within this 
structure specialisations can emerge and achieve 
incremental advances that can not be achieved by 
attacks on a more abstract or a broader front.  

In short, it is claimed that problem frames are a contribution 
to making Software Engineering more like the established 
branches of engineering that it aspires to emulate.  
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