

Problem Analysis Using Small Problem Frames

M. A. Jackson

Independent Consultant
101 Hamilton Terrace, London, England, jacksonma@acm.org

Abstract
The notion of a problem frame is introduced and explained, and its use in analysing and structuring problems is illustrated.
A problem frame characterises a class of simple problem. Realistic problems are seen as compositions of simple problems of
recognised classes corresponding to known frames.

Keywords: Software Engineering, Problems, Frames, Frameworks, Patterns
CR Categories: D2, H1

1 Introduction
Software developers have aspired to the status of an
engineering profession since the NATO conferences of
thirty years ago [Naur 69, Buxton 70]. But few believe that
the aspiration has been fulfilled. A leader in the field
recently claimed [Parnas 97] that Software Engineering is
an ‘unconsummated marriage’: “The majority of engineers
understand very little about the science of programming or
the mathematics that one uses to analyse a program, and
most computer scientists don’t understand what it is to be an
engineer.” He continued: “Chemists are scientists; chemical
engineers are engineers. Software engineering and computer
science have the same relationship.”

The underlying assumption is that software engineers are
practising a single discipline, properly aspiring to become a
member of the same set as chemical, aeronautical, electrical,
civil or electronic engineers. Like them, we aim to build
useful products to serve practical purposes in the physical
world. And indeed we do build physical products. The
product of successful software development is a machine
that interacts with its human users and with other parts of
the world. The machine is almost always physically
embodied in a general-purpose computer built by hardware
engineers; but the software describes the particular machine
needed for the purpose in hand, and transforms the
computer into that machine.

1.1. The General SE Problem
We may characterise the general form of the software
development problem as presented in [Jackson 95] and
shown in Figure 1.

The striped rectangle represents the physical machine we
must build by specialising a general-purpose computer. The
plain rectangle represents the part of the world that interacts
with the machine. The solid line connecting the two
rectangles represents an interface of shared phenomena —
for example, shared events and shared state. The dotted
ellipse represents the intangible requirement, the dotted
arrow indicating that the requirement is a description — we
might say, a predicate — over the phenomena of the world.
In the terminology of Polya [Polya 57], the machine, the
world and the requirement are the principal parts of the
software development problem; the solution task is to
construct a machine such that its interactions with the world
will ensure satisfaction of the requirement.

1.2. Descriptions
Although the end product is a description of the machine, a
successful result can rarely be achieved by describing the
machine alone. In general we need to make the following
descriptions:

• The requirement is an explicit description of the
behaviour and properties that we want the world to
have as a result of its interaction with the machine.
is a description in the optative mood — that is, it
expresses what we would like to be true. It is a
description over the phenomena of the world that are of
interest to the customer of the development: it captures
the purpose for which the machine is to be built and
installed.

• The unconditional behaviour and properties of the
world that do not depend on the machine are expressed
in a world description . is an indicative
description — that is, it expresses what is true of the
world regardless of its interaction with the machine. It
is a description over any phenomena of the world
whose relationships are significant for the purpose in
hand; in particular, it is not restricted to phenomena
shared with the machine.

• The specification describes the behaviour and
properties that we want the machine to have at its
interface with the world. is an optative description. It
is a description over the shared phenomena at the

The
World

The
Machine

The
Requirement

Figure 1
The General SE Problem

South African Computer Journal 22; Special Issue on WOFACS’98, pp47-60, 1999

interface, consistent with the properties of the world
and satisfiable by appropriate action of the machine.

• The program describes the behaviour and properties
that we want the machine to have, without restriction to
its interface with the world. Again, is an optative
description. It is a description of the phenomena of the
machine, including those private machine phenomena
that are in the scope of the programming language.

• The unconditional behaviour and properties of the
machine that do not depend on the program are
expressed in a machine semantics . is an indicative
description: it expresses what it true of the general-
purpose computer independently of the specialisation
imposed by the program. It can be thought of as a
description of the programming language semantics in
terms of the behaviour of the concrete machine.

Two relationships among these descriptions constitute a
description of the original problem and a demonstration that
it has been solved. First, we must have

,

If the machine achieves the behaviour at its interface with
the world, then, given the known properties of the
world, the requirement will be satisfied. Second, we
must have

,

If the machine is as described in , then execution of the
program will ensure the behaviour at the machine’s
interface with the world.

Strictly, none of these descriptions may be omitted.
captures the purpose of the system: many systems have
failed because their requirements were not correctly
articulated. captures the properties of the environment:
these properties both constrain what the machine can do and
permit it to affect and be affected by world phenomena that
it does not directly share. provides a convenient staging
post in the often long chain of reasoning from the system’s
purpose to the program text; it also allows a practical
separation between those developers whose interests and
knowledge focus on the application domain world and those
who focus instead on the machine and its programs. is
the indispensable end product of the development.
provides the underlying justification for refinement steps in
the path from the specification to the program .

In practice, of course, is already available in the manuals
for programming language and its implementation in the
particular computer to be used. And the sometimes limited
attention paid to , and is a measure partly of the
development team’s competence and partly of their
assessment of the risk of system failure and its
consequences.

1.3. Specialisation
Unfortunately, this tidy characterisation of software
development problems is a grossly insufficient basis for
software engineering practice. Projects to develop systems
for program compilation, for telephone switching, for
banking, for controlling the brakes of a car, for word
processing, and for searching the web are radically different
and demand different engineering techniques. They differ
hugely in their principal parts: their requirements, their

worlds and their machines are so different that they need
different languages for their description, different
description structures, and different reasoning over those
descriptions. The worlds of telephone switching software
and car braking software are as different as the worlds of
communications engineering and automobile engineering.

Established engineers specialise for exactly this reason.
Communications engineers and automobile engineers build
completely different kinds of product to meet completely
different kinds of purpose. Each established engineering
field deals with a narrowly defined problem class, applies
narrowly defined design methods, and produces equally
narrowly constrained solutions. From a perspective that
embraces every established branch of engineering, this
year’s cars are indistinguishable from last year’s, and next
year’s will be no different. Each branch of engineering
adjusts its problem definitions and refines its products only
gradually, by small perturbations from an established
standard. This specialisation allows product function and
quality to improve by small steps over many generations of
products and engineers: today’s cars are recognisably
solving the same problem as the cars of 1930, but they are
much better in almost every way.

Against this background one can see that the notion of
software engineering as a single discipline is misconceived.
Software engineering can no more be a single discipline
than can ‘physical engineering’ — an imaginary discipline
that embraces all the established branches from aeronautical
to telecommunications engineering. Like the established
branches, it relies on a core body of fundamental
mathematics and science, but these fundamentals lie some
distance below the level at which the practising engineer
works. At this level, of practical technique, engineering
varies enormously from one specialised branch to another.

So too must it be for software engineering. We must deal in
specialities, not generalities. Already some established
specialities have emerged. Compiler construction, operating
systems, GUIs and expert systems are notable examples. As
each specialised branch emerges and begins to establish a
substantial body of practical technique of its own, it breaks
away from the parent tree. Compiler construction and
operating system design cease to provide illustrative
problems for courses on software engineering, and become
the rich subject matter of their own separate courses.

2 SE Problems for Generalists
As its specialised branches emerge and take their leave,
software engineering finds itself concerned with those
particular problems and solutions that are not yet well
enough understood to furnish the subject matter for
additional specialities. This problem set is very rich indeed:
the computer is so versatile that its applications are virtually
unbounded. Today most realistic development problems fall
into this set: only a few fall squarely into an established
speciality. We are not at liberty to disdain these problems
on the grounds that specialised knowledge is absent or
inadequate. We must do what we can, approaching them as
competent generalists.

In the best case this means recognising that the problem is a
composition of simpler problems that we do know how to
solve, and that a solution can be constructed from the
known solutions to those simpler problems. An alarm clock
satisfies a certain requirement; a radio satisfies another. A

clock radio satisfies both requirements. Similarly, a
breakdown truck satisfies the requirements of a crane and a
vehicle. The combination may satisfy additional
requirements — for example, the alarm can be set to turn on
the radio; and it may exploit common solution parts — for
example, the breakdown truck powers uses the same engine
to power both the crane and the vehicle.

The work on object-oriented patterns [Gamma 94,
Buschmann 96, Pree 97] addresses the need to identify a
repertoire of software components and to consider their
properties and the ways in which they can interact. Work on
software architecture [Shaw 96, Bass 98] addresses larger
structures of interaction. Both patterns and architecture are
primarily concerned with the space of solutions. Inevitably
they pay some attention to the problems being solved, but
this attention is focused chiefly on the impact of the
problem on the solution. There is a need to address problem
structure and classification in a more sharply focused and
explicit way. That is the theme of this paper.

2.1. Problem Structures and Problem Frames
We regard particular problem classes as characterised by
problem frames. Each frame is an elaboration of the general
form shown above in Figure 1. Each frame is either
elementary or composite. A problem of the class
characterised by an elementary frame is to be captured by
building descriptions appropriate to the frame. A problem
of a composite class is first decomposed into subproblems
characterised by elementary frames.

A particular problem frame elaborates and specialises the
general form of Figure 1 in the following ways:

• The world is decomposed into domains. For example,
if the problem concerns the production of an output text
stream from an input text stream, we may decompose
the world into the domains InputText and OutputText.
(The term domain is considered to include the machine.
The machine is not decomposed within one elementary
problem frame, but there is a submachine — a
projection of the machine — for each subproblem of a
composite problem.)

• Different types of domain are distinguished according
to the role they play in the problem. For example, one
domain may embody a tangible description of another
domain; or one domain may be given, while another is
created by the action of the system.

• Interfaces of phenomena shared between domains are
shown by connecting lines as in Figure 1. Not all
domains need be connected to the machine. For
example, in the well-known Patient Monitoring
problem [Stevens 74] the Patients and the Analogue
Devices are two domains: the Analogue Devices are
connected to the machine, but the Patients are
connected only to the Analogue Devices.

• The connections among the parts of the problem frame
are more closely characterised in terms of the types of
the connecting phenomena. For example, an interface
connecting two domains may have only shared event
phenomena, while another interface between two other
domains may have both shared events and shared
states. The control of phenomena is also indicated, as
explained in the following section.

• The phenomena related by the requirement are
similarly characterised according to their types. Also,
they are identified, where appropriate, with phenomena
at interfaces in the frame.

• The characteristics of domains at their interfaces with
other domains are classified. For example, an Inert
Reactive domain initiates no events; it responds to each
shared event initiated by the connected domain by
changing the shared state, and returns to an inert state
until a fresh shared event occurs. In general, the
characteristics of a domain are different at its interfaces
with different sharing domains: in the Patient
Monitoring problem, the Analogue Devices are Inert
Reactive at their interface with the Patients, but Active
at their interface with the machine.

These elaborations are illustrated and discussed in
subsequent sections. They support a repertoire of
elementary frames, each very simple.

Composite frames, also illustrated in subsequent sections,
are essentially parallel compositions of elementary frames.
For some composite frames it is necessary to introduce
additional created domains that mediate between
subproblems, somewhat after the fashion of local program
variables. In general the creation of such an additional
domain becomes a subproblem in its own right, with its own
elementary problem frame. Such an elementary frame is
called a partial elementary frame, because the problems it
characterises — like the creation of a local variable — can
never be independent problems in their own right but occur
only as subproblems. Other partial elementary frames, as
discussed in subsequent sections, arise from explicating
implicit assumptions about the environment of a problem.

2.2. Phenomena and Control
Domains and interfaces, and hence problems, differ in their
phenomenological characteristics. For example, a static
domain, in which there are no events and no state changes,
is different from a dynamic domain in which events and
state changes occur over time. They will raise different
considerations in the treatment of problems in which they
appear, and will demand different kinds of description.

We must also consider the control of events and state
changes at the domain interfaces of shared phenomena. For
example, in a problem to control a lift, the pressing of
buttons is controlled by the users, the polarity of the
winding motor is controlled by the computer, and the
closing and opening of sensors in the lift shaft is controlled
by the lift mechanism itself through the movement of the lift
car. (We are, of course, concerned here with proximate
control by one of the sharing domains. The sensors are
controlled by the lift mechanism, not by the computer,
because the proximate cause of the closing of a sensor is the
arrival of the lift car; the fact that the computer can
indirectly cause the lift car to travel in the shaft is not
relevant here.)

In characterising interface properties we use a simple
classification of phenomena. We recognise three kinds of
individual:

• Values (‘V’) are timeless individuals: for example,
integers and characters.

• Entities (‘N’) are individuals that change over time: for

example, people and bicycles and bank accounts.
• Events (‘E’) are atomic events occurring in time: for

example, the pressing of a lift button or the starting of
the winding motor.

We recognise three kinds of relation over individuals:

• Truths (‘U’) are timeless relations: for example, ‘x>y’
over integers.

• States (‘S’) are relations that change over time: for
example, ‘IsChild(x)’ over human beings. Changes of
an entity over time are changes in states in which it
participates.

• Roles (‘R’) are relations indicating participation of an
individual in an event: for example, ‘IsButtonIn(b,p)’
over buttons and button-press events.

We must also express the temporal ordering of events and
capture the relationship between events and states. In
[Jackson 93], [Zave 93] and [Jackson 95] this relationship
was captured by introducing intervals between events as
explicit individuals. Here, as in [Bhargavan 98], we use
instead a convention in which state symbols are decorated
with the prefix or suffix ‘Then’ and the argument list
augmented by an event identifier. For example,
‘IsChildThen(x,e)’ means ‘IsChild(x) is true immediately
before event e occurs’, and ‘ThenIsChild(x,e)’ may mean
‘IsChild(x) is true immediately after event e occurs’. These
relationships will not play a part in the discussion of
problem frames, and we will not pursue them further here.

Larger classes of phenomenon that will be useful are:

• All phenomena (‘H’) is the class containing all the
phenomena.

• Controllable phenomena (‘C’) is the class containing
those phenomena that can be controlled by a sharing
domain. They are roles, states and events.

Controllable phenomena at a domain interface may be
initiated (‘+’) by one of the sharing domains. For example,
a state change of the lift shaft sensors is initiated by the lift
mechanism, and the pressing of a button is initiated by the
intending passenger. Truths at a domain interface are
determined (‘=’) by one of the sharing domains. For
example, an ordering over strings may be shared by the
machine and a strings domain, and is determined by the
strings domain. In some cases a domain may exercise
inhibition (‘-‘) over a controllable phenomenon. For
example, the user of a personal computer may initiate a key
depression, and the computer may inhibit it by locking the
keyboard.

The use of these classifications and control indications is
illustrated in subsequent sections.

2.3. Frames, Subproblems and Methods
The use of tightly constrained problem frames can offer two
important advantages. The first advantage is that it
underpins a repertoire of known and recognised subproblem
classes into which realistic problems can be decomposed.
The difficulties of unguided problem decomposition are
now widely accepted. The traditional top-down process
involves decomposing a problem of no recognised class into
a number of subproblems also of no recognised class, and

continuing recursively until — if the process succeeds —
elementary subproblems are recognised at the lowest level.
This process can not be expected to produce a good result.
Fred Brooks [Brooks 75] sums up his experience in the
aphorism: “Plan to throw one away; you will anyhow.” The
outcome of the process is not a good decomposition; it is a
degree of insight into the difficulties of the problem, so that
a second complete attempt can then be based — at least in
part — on recognised problem characteristics. A sufficient
repertoire of problem frames would allow the first
decomposition to be guided by a more systematic problem
taxonomy.

The second advantage is that a problem frame is, ideally,
associated with one or more methods for capturing the
problem in full detail and developing a solution. Software
development method is chiefly concerned with stipulating
the descriptions to be made, the languages to be used, and
the large structures within which the descriptions are
related. The decomposition of a problem into subproblems
of recognised classes allows the appropriate method to be
used for each subproblem. Within each frame the method
stipulates descriptions of the problem’s principal parts, and
the particular way in which their large structures specialise
the general structure outlined in Section 1.2 above.

A method associated with a tightly constrained problem
frame can take advantage of the known characteristics of the
problem in several ways. In particular, it can stipulate a less
expressive language than might be needed in a more
unconstrained problem. For example, a method may
stipulate the use of a regular expression language. A
problem whose relevant part can not be described by a
regular expression may be deemed to fall outside the frame.
Or, in some cases, the method may provide a technique for
overcoming the difficulty. For example, the description may
consist of two or more regular expressions over intersecting
alphabets, perhaps with a corresponding problem
decomposition.

More fundamental difficulties may demand a further
decomposition of the problem. The use of a model within
the machine, simulating a part of the world outside it, may
be the result of such a decomposition. This difficulty, and
others, are illustrated in subsequent sections.

3 Elementary Problem Frames
In this section some elementary problem frames, including
partial frames, are outlined and briefly discussed.
Composite frames are discussed in the following section.

3.1. Simple Control Frame
The Simple Control frame characterises problems in which
the machine is required to control a simple device. An
example of such a problem is the control of a simple pair of
traffic lights used to ensure one-way traffic in alternating
directions over a stretch of road undergoing repair. The
problem frame diagram is shown in Figure 2.

In this frame the general form of a software development
problem has been elaborated only by more specialised
names for the principal parts and by markings on the
connecting lines indicating the types and control of the
phenomena concerned. The markings indicate that:

• The Required Behaviour RBV is a condition over
controllable phenomena (C3).

• The interface between the Machine MC and the
Controlled Domain CD consists of two sets of shared
controllable phenomena: C1, controlled by MC, and
C2, controlled by CD.

In the traffic light control problem, the Machine is the
control computer and the Controlled Domain is the pair of
traffic lights. The Required Behaviour is a specified
sequence of displayed light states: for example
(Stop1+Stop2; Stop1+Go2; Stop1+Stop2; Go1+Stop2;)*,
each state being required to persist for 50 seconds. The
phenomena C3 are the states Stop1, Go1 etc. The
phenomena C1 controlled by the Machine are events Red1,
Green1, On1, Off1, Red2, Green2, On2 and Off2. The set
of phenomena C2 is empty, since the traffic light devices
control no phenomena that they share with the control
computer.

The relationship between the traffic light states {Stop, Go}
and the events {Red, Green, On, Off} is obscure. This
obscurity illustrates the need, in capturing any Simple
Control problem, to describe the internal properties of the
Controlled Domain CD explicitly, even when they are not
obscure. In the traffic lights problem is it necessary to
describe explicitly how the states Stop and Go are
determined by sequences of the Machine-controlled events
Red1 etc. This description, of course, is the indicative
description of the real world discussed in Section 1.2
above.

3.2. Simple Enquiry Frame
The Simple Enquiry frame characterises problems in which
the machine is required to answer enquiries about a
connected part of the world. An example of such a problem
is an experimental laboratory set-up in which voltages are
measured at sixteen points and communicated to a computer
by A/D devices. The experimenter can enter enquiries
asking for the current value at any of the sixteen points, the
current highest value, the current average value, and so on.

The problem frame diagram is shown in Figure 3. In this
frame the general form of a software development problem
has been elaborated not only by more specialised names for
the principal parts and by markings on the connecting lines
indicating the phenomena concerned, but also by a
decomposition of the World into distinct domains. The part
of the world about which information is sought is the Real
World RW; the source of the enquiries is the Enquirer

ENQ; and the responses produced by the Machine are the
Responses domain RSP. The single vertical stripe on the
RSP domain indicates that it is not given, but is created
when the system runs.

The markings indicate that:

• The requirement IRL is a condition over phenomena of
RW (H2), events of RSP (E2) and events of ENQ (E1).
For example, for the E1 enquiry ‘V5’, occurring when
the voltage at point 5 is 3.2 volts (a state phenomenon
in H2), the response event in E2 must be ‘3.2’.

• The interface between the Machine MC and the Real
World RW consists of a set of shared phenomena of
any type (H1), controlled by RW. Since RW has no
interface at which it shares phenomena controlled by
another domain, it is autonomous.

• The interface between the Machine MC and the RSP
domain consists of a set of shared events (E2),
controlled by the Machine. RSP controls no phenomena
at any interface, but shares phenomena controlled by
MC: it is passive.

• The interface between the Machine MC and the ENQ
domain consists of a set of shared events (E1),
controlled by ENQ. ENQ is active.

One aspect of the simplicity of this frame is that the
requirement is over the phenomena of RSP and ENQ that
those domains share with MC. Further, each response event
E2 is a function of the Real World phenomena and of the
enquiry event E1 to which it responds, not of preceding or
otherwise related enquiry events. More precisely, RSP has
no structure more complex than E2*, and ENQ no structure
more complex than E1*. There is therefore no need to
consider the internal behaviours of those domains.

A source of potential difficulty in this problem frame is that
the information to be provided is over phenomena H2 of
RW, while the Machine MC has access only to phenomena
H1. If the sets H1 and H2 are identical, or if H1 contains
H2, there is no difficulty. Otherwise it will be necessary to
examine and describe the relationship between H1 and H2.
This relationship is embodied in the internal properties and
behaviour of RW. In the experimental voltages problem, a
trivial relationship presenting no difficulty is that a voltage v
at point n (an element of H2) corresponds to a value v in
AD register n (an element of H1). A more complex
relationship would be one in which an enquiry may refer to
voltages at past times. This kind of difficulty and its
consequences are discussed in subsequent sections.

Figure 3
Elementary Frame: Simple Enquiry

MC:+E2

E2

Responses

Machine Information
Relation MC

IRL RSP

Enquirer

Real
World

RW

ENQ E1

H2

ENQ:+E1

RW:+H1

Figure 2
Elementary Frame: Simple Control

MC:+C1
CD: +C2

C3 Controlled
Domain

Machine Required
Behaviour MC

RBV

CD

3.3. Information Display Frame
The Information Display frame characterises problems in
which the machine is required to maintain a display about a
connected part of the world. An example of such a problem
is the provision of a display in a hotel lobby showing the
current positions of the hotel lifts. The problem frame
diagram is shown in Figure 4.

The Display Machine MC is connected to the Real World
RW about which information is to be displayed by an
interface of shared controllable phenomena controlled by
RW. In the lift problem these phenomena may be the states
of sensors in the lift shafts and button-press events.

The Information Display domain DIS is controlled by the
Machine through the shared phenomena C2. The
requirement DRL stipulates the states S2 of the Display
domain that must correspond to states S1 of the Real World.
For example, in the lift problem DRL may stipulate that
whenever a lift is ascending an Up arrow should be
illuminated in the column corresponding to that lift.

In an Information Display problem it is necessary to
describe the internal properties of both DIS and RW. The
relationship between the phenomena C2 and their effects on
the states S2 of the Display must be examined and
described. The properties of RW are likely to be more
complex. For example, in the lift problem it may be that the
Display must show outstanding requests: an outstanding
request is a member of S1. The phenomena C1 shared by
RW with the Machine may be only button-press events and
lift-shaft sensor states. It will then be a non-trivial task to
determine how the Machine should calculate S1 from C1.
We will return to this topic in a later section.

3.4. Simple Workpieces Frame
A Simple Workpieces problem requires the provision of a
tool for constructing and editing intangible artifacts such as
texts or graphics. The artifacts are restricted to extremely
simple objects that can be edited ‘blind’ as shown in the
problem frame in Figure 5.

The machine to be built is the Tool TL. The Workpieces
WP are constructed by the Tool and are entirely contained
within it, the containment being shown by the heavy dot on
the connecting line representing the interface. Containment
means that all the phenomena of the contained domain are
shared with the containing domain; in the Workpieces frame
shown above we can infer that WP has no phenomena other
than E2 and S1.

The Operation Requests domain is a stream of events E1,
each requesting an operation on a workpiece. Because some
requests — for example, a request to delete an

element from a non-existent workpiece — are unacceptable,
the Tool can inhibit E1 events. Inhibition by the Tool is, of
course, quite different from returning a null result to an
accepted request — for example, a request to change all
occurrences of ‘1’ to ‘2’ in a text containing no occurrence
of ‘1’. Inhibition might be implemented by ignoring the E1
input except to respond with a bleep.

In this simple frame, requests are mutually independent: the
meaning of a request does not depend on any other request.
Similarly, the workpieces are mutually independent: no
operation involves more than one workpiece. The
requirement stipulates the effect of each operation in terms
of the preceding and resulting states of the affected
workpiece.

The Workpieces domain WP is Inert Reactive at its
interface with the Tool. That is to say, it responds to each
event in E2 by a (possibly null) state change in S1, and
immediately returns to quiescence. WP never initiates state
changes in S1 except in response to events in E2.

3.5. Methods and Descriptions
The characteristics of the principal parts of a problem frame
and of their interfaces govern the choice of method, both for
capturing the problem in full detail and for developing a
solution.

For example, the inert reactive nature of the Workpieces
domain WP in the Simple Workpieces frame allows WP to
be described as a set of instances of an abstract data type:
the events E2 are the operations of the type, and the states
S1 define the data representation. In developing a solution
this description of WP may be refined into the definition of
an object class. Because WP is inert reactive, and not
active, the object class definition needs no ‘run’ or ‘live’
method: its methods are all externally invoked and executed
sequentially. Both the problem statement and the solution
therefore avoid the potential complexities of concurrency.

The domain RQ, of requests for operations on Workpieces,
is active and autonomous. The requirement EFF therefore
can not constrain RQ in any way although it constrains the
relationship between RQ events E1 and WP states S1: EFF
must be satisfied solely by constraints on the behaviour of
TL and WP. Further, the domain RQ has the trivial structure
request*. Hence RQ needs only an indicative description of
a simple kind.

MC

DRL
RW

DIS

MC:+C2 S2

S1 RW: +C1

Information
Display Display

Rules

Display
Machine

Real
World

Figure 4
Elementary Frame: Information Display

Figure 5
Elementary Frame: Simple Workpieces

TL:+E2
WP:+S1

Tool Operation
Effects TL

EFF

Work-
Pieces

Operation
Requests

RQ

WP

S1

E1
RW:+E1
TL:-E1

In the Simple Control frame discussed in Section 3.1 above,
the properties of the Controlled Domain CD and of its
interface with the Machine MC will govern the kinds of
description needed to capture the problem and to develop a
solution. In the very simple case of the traffic lights problem
the following descriptions will be appropriate:

• The requirement is described as a finite-state
machine in which the states denote the pairs of lights
showing in the two sets of lights and the transitions
denote timeouts for the delays.

• The world description is a finite-state machine in
which the states denote the single light showing in one
set of lights and the transitions denote the events shared
with the control computer. Additional states may be
needed if more than one event must occur for the light
to change. The same finite-state machine describes the
properties of both sets of lights.

• The specification is given as a Mealy machine in
which transitions are timeouts for the delays and
outputs on the transitions are events shared with the
lights. The states are not significant: in a diagrammatic
representation of the Mealy machine they need not be
named; in a transition-list representation their names
are bound variables.

More complex variants of the Simple Control frame may
demand more expressive languages. But, as a rule, a
problem that demands a more elaborate descriptive structure
is not a problem of the class characterised by the frame.

4 Difficulties and Problem Frames
Possession of a set of close-fitting frames and associated
methods arms the developer to recognise and deal with
problems of the corresponding classes. A method should not
be used if the problem does not fit its frame. Construction of
a compiler, for example, can not be treated as a Simple
Control problem: the compiler world must be structured into
at least two domains — the input source program and the
output object program; further, the output object program is
not given but must be created when the system runs.
Similarly, developing a controller for a chemical plant is not
a Simple Workpieces problem. The plant evidently does not
have the characteristics stipulated for the Operation
Requests domain, and it is certainly not inert: even in the
absence of shared events initiated by the control computer
liquids and gases will continue to flow, to condense or
evaporate, and to rise or fall in temperature. Development
of an avionics system is not an Information Display
problem: the aircraft is neither autonomous like the Real
World domain nor inert reactive like the Information
Display domain. Developers of an avionics system who
mistakenly try to use the Information Display frame will
find that the associated methods are quite unable to handle
many of their most important concerns. (Regrettably, such
misfits between problem and method are often ignored by
proponents of development methods that claim very wide,
or even universal, validity.)

Recognition of a frame misfit may simply lead to the
selection of another available frame. But sometimes it will
lead to recognition of a difficulty of a known kind to which
the solution may be a standard elaboration of the misfitting
frame or a standard decomposition into two or more frames.
In this section some simple illustrations are given.

4.1. Flexible Requirements Difficulty
A common difficulty that can occur in almost any problem
frame is a need for flexibility, when a fixed requirement is
inappropriate. In the traffic lights problem, for example, the
sequencing of light states and the delay for each transition
are fixed in the requirement; they will then become fixed in
the control computer’s program. It may be necessary to
arrange for the sequences and delays to be conveniently
specified by insertion of a floppy disk or setting switches on
a console attached to the computer. The disk or console
then becomes a distinct domain, playing the part of a
description in the problem frame as shown in Figure 6.

The oval outline of the Sequence Description domain SQD
indicates that it plays the part of a description in the
problem; the outline is solid — unlike the outline of the
requirement — because it has a tangible embodiment in the
problem. The requirement SQI is no longer a requirement to
evoke a particular sequence of lights, but rather to produce
a sequence corresponding to the interpretation of the SQD
domain. The phenomena marked as “G1”, “50s” &c in the
diagram are the syntactic elements of the description SQD.
They are shared with the Control Computer CTL, which has
access to the Sequence Description — as it must if it is to
satisfy the requirement. The marking ‘SQD: = “G1”, “50s”,
&c’ on the interface between CTL and SQI indicates that
these non-controllable phenomena are determined by SQD,
not by the machine CTL.

The difficulty recognised here, and its solution, are
absolutely standard in software development: part of what
might have been treated as compiled program is instead
treated as data, and the compiled program then becomes
responsible for interpreting that data.

We are assuming here that the Sequence Description is a
given part of the problem, fixed for any instance of the
system. That is, we regard its construction as falling outside
the problem context. The Controller CTL is capable of
interpreting any instance of SQD that satisfies the syntactic
and semantic rules of that problem part, but it is not
responsible for constructing that instance. If instead the
Sequence Description is to be created by the operator of the
system, the problem fits a more complex, composite, frame.
That frame, Simple Control Under Operator’s Regime, is
discussed in a later section. The frame shown in Figure 6 is
then only a partial frame: it addresses only one subproblem
in the original problem.

Figure 6
Flexible Traffic Lights Problem

CTL

SQD

TLG SQI
Control
Computer

Sequence
Description

Traffic
Lights

Sequence
Interpretation

CTL:
+Red,
On &c

Go1, wait,
 &c

 G1”,
“50s”, &c

SQD: =
“G1”, “50s”, &c

4.2. Identities Difficulty
An important and common class of difficulty is the
identities difficulty. Whenever a domain contains multiple
instances of entities of the same type that must be
distinguished by the machine, the mechanism by which each
instance is distinguished and identified becomes of interest.
It can also become a source of major difficulty. The well-
known British Midland 737 crash at Kegworth [Neumann
95] occurred because the engine safety-control system was
‘cross-wired’, causing the pilot to shut off the starboard
engine in response to smoke and vibration in the port
engine. Subsequent inspection showed that many 737s were
cross-wired in this way.

A tiny manifestation of this difficulty appears in the traffic
lights problem. There are two sets of lights to be
distinguished by the machine. In the simplest version of the
problem the distinction is actually not necessary, because
both sets of lights are treated identically after system
startup. But as soon as the sequences for the two sets must
differ, because traffic in one direction is heavier or slower
than in the other direction, the distinction may become
important.

A substantial — and life-threatening — version of the
difficulty occurs in the well-known Patient Monitoring
problem. Patients have names; they are in hospital beds;
they are attached to analogue devices; the devices are
plugged into ports on the monitoring computer; medical
staff specify periods and ranges for monitoring each patient
individually, referring to them by their names. The difficulty
is evident: to satisfy the requirement, the machine’s reading
of a patient’s pulse rate or temperature or blood pressure at
a port must be associated with the correct patient. This
association is mediated by mappings between patients’
names and patients, patients and devices, and devices and
ports. Dealing correctly with these mappings is a vital and
substantial aspect of the whole problem.

Generally, solution of an identities difficulty requires the
introduction of one or more explicit Mapping domains into
the problem frame. In some cases a mapping may be
degenerate: the two sets of traffic lights, for example, may
be visibly labelled ‘1’ and ‘2’, and the operator instructed to
plug them into ports 1 and 2 of the Control Computer. It is
then unnecessary to treat the mapping as a distinct domain;
it is enough to distinguish it as an element in other
descriptions in the development.

In the worst cases — and the Patient Monitoring problem is
such a case — a Mapping domain is dynamic. The
developers might reasonably ignore the case in which a
patient changes her name while under monitoring, leaving
the correct handling of this kind of change to the hospital
staff. But certainly patients leave the hospital and new
patients arrive; additional monitoring, and hence additional
devices, may become necessary for an existing patient; and
analogue devices could become unplugged from the
computer and plugged into the same — or different —
ports. The developers must build a system that deals
correctly with all of these events.

Introduction of an explicit Mapping domain raises similar
issues to the introduction of a flexible requirement domain
such as SQD in the traffic lights problem. If the Mapping
domain is not a given domain in the problem context it must

be created by the action of the system; the creation task is
then a separate subproblem in its own right.

4.3. Connection Difficulty & Model Domains
In many problems the available connection between the
machine and a domain of the world is not immediately
adequate: the shared phenomena are deficient, or are
displaced in time, in relation to the requirement.

This is, of course, one fundamental reason why it is
necessary to describe the world at all. We must describe the
properties of the traffic light sets because the requirement is
over the sequence of lights showing and the machine can
control this only indirectly by causing signal events. The
indicative properties of the traffic light sets guarantee that
appropriate sequences of signal events will evoke the
required sequences of lights. The specification can then
be written in terms of the signal events accessible to, and
controllable by, the machine. Similarly, in the problem of
responding to queries about the experimental voltages, the
properties of the experimental set-up and the AD devices
allow questions about real voltage values to be answered by
inspection of integer registers accessible to the machine.

A connection difficulty arises when even the most careful
description and exploitation of the indicative properties of a
domain in the world are not enough. It is then necessary to
find an implementation of some of the ‘data freedom’
facilities discussed in [Balzer 82]. The standard technique is
to create a model of the domain inside — or readily
accessible to — the machine. The machine can then derive
from the model information that it can not obtain directly
from the modelled domain. For example, in a more
demanding version of the experimental voltages problem in
which a required response is the highest average voltage
achieved at a specified point over any previous period of ten
consecutive seconds, the machine must create, and
continually maintain, a dynamic model of the domain of
voltages. The required response can then be calculated from
data available in the model.

Creation of such a model becomes a problem in its own
right, characterised by a partial problem frame such as that
shown in Figure 7.

The frame shown is for creation of a dynamic model. The
Real World RW is dynamic and autonomously active, and
controls phenomena C1 shared with the Machine MC. The
Model MDL is passive; it is contained in the Machine MC
and is created by the Machine when the system runs. The
requirement is that the Model MDL should correspond to
the Real World in respects specified by COR. Essentially
the correspondence is an isomorphism between individuals

MC

MDL

RW

COR

Machine

Model

Real
World

Model
Corres’ce

RW:+C1
H1

H2

MC:
+C2

Figure 7
Partial Frame: Dynamic Model

and relations in the two domains, possibly augmented by
additional phenomena in the Model.

The central concerns in the problem are selecting the
Machine phenomena to be used in the Model — that is,
choosing representation and abstraction functions — and
capturing and exploiting knowledge of the properties of the
Real World to overcome any mismatch between C1 and H1.
Suppose, for example, that the Real World is wheeled
traffic on a road segment, the purpose of the model being to
allow traffic density to be monitored. Suppose also that C1
are states of sensor tubes laid across the road to detect the
passage of traffic, and that the set H1 consists of events
such as ‘motor car passes’, ‘motor cycle passes’, ‘light lorry
passes’ and ‘heavy lorry passes’. Then the Real World
properties to be captured in the indicative world description

 are the relationships between the distinct kinds of traffic
event in H1 and the accompanying distinct patterns of the
sensor states in C1.

The problem frame for constructing a static model is
sometimes similar, mutatis mutandis, to the Dynamic Model
frame. However, it is usually more elaborate, because static
domains are often isolated from the Machine. It is then
necessary to introduce a human Informant to convey the
Real World phenomena to the Machine, and the Informant
becomes an additional domain in the problem frame. In a
problem concerned with the scheduling and control of a
railway, for example, the system must have access to the
details of the track layout. This will usually be achieved by
manual entry of the layout information, and the manual
entry process may be seen as execution of a problem fitting
the partial frame Static Model with Informant.

5 Composite Frames
If we were to restrict our repertoire of problem frames to
elementary and partial elementary frames, it would be
necessary to decompose each realistic problem into a
structure of subproblems, each small and simple enough to
fit one such elementary frame. This in itself would be
disadvantageous: we would be restricting ourselves, in the
problem sphere, to the equivalent of a rather low-level
programming language in the solution sphere.

More important, we would be forgoing the opportunity to
build a repository of experience about problem and solution
composition. A substantial part of the knowledge and
experience of established engineering branches is concerned
with putting parts together to make a complete product.
Automobile engineering is not just about engines,
gearboxes, steering, differentials and other components of a
motor car: it is also, crucially, about their composition into
a well-designed whole. One of the most important advances
was the recognition that the availability of large powerful
presses for sheet steel permitted the integration of the
chassis with the body, two components that had previously
been regarded as separate. This kind of advance is a
nourishing fruit of specialisation.

Being concerned with the residue of non-specialised
problems that is the subject matter of Software Engineering,
we can go only a short way towards identifying composite
problem frames. If we go very far we will give birth to new
specialities that will immediately leave their parents’ house.
Unselfishly, we must go as far as we can. In this section we
identify and discuss some small composite frames and some
characteristic difficulties they can raise.

5.1. Simple Information System Frames
We use the term Simple Information System for a system in
which the primary decomposition is into the construction of
a model of a Real World domain and the use of the model to
provide information about the Real World.

Figure 8 shows the undecomposed problem frame for a
static information system with a human informant.

An example of such a problem is the answering of queries
about a text such as Tyndale’s Bible. The decomposition
into the two constituent subproblems is shown in Figure 9.

The original requirement IRQ, over RW, ENQ and OUT, is
satisfied by the obvious composition of the subrequirements
COR, over RW and MDL, and IRL, over MDL, ENQ and

Figure 8
Composite Frame: Static IS with Informant

ENQ:+E E1 Machine Information
Requirement MC

IRQ

Info
Outputs

OUT

Enquiries

Real
World

RW

ENQ

C1

U2

MC:+C1

RW:=U1

INF
Informant

INF:+E2
MC:-E2

Figure 9
Decomposition of
Static IS Frame with Informant

MC1:+C1
H3 Machine

Model/RW
Corresp’ce MC1

COR

Model
MDL

Real
World

RW
U2

RW:=U1

INF
Informant

INF:+E2
MC:-E2

ENQ:+E1 E1 Machine Information
Relation MC2

IRL

Info
Outputs

OUT

Enquiries
ENQ

C2

U3

MC2:+C2

Model
MDL

MDL:+U3

OUT. The two machine domains, MC1 and MC2, both
contain the same Model domain MDL. They must therefore
share at least the phenomena of MDL, and in practice this
means that they must both be implemented in the same
computer. If we choose to make MDL a domain external to
the machine, such as a removable disk, the two machines
can then be implemented in different computers.

The obvious scheduling of the two machines is to run MC1
to completion before running MC2. However, it may be
possible and useful to overlap their executions. In the Bible
problem, for example, if the transcription of the text takes
several months it will be useful to provide responses to
queries of certain kinds on the basis of a model restricted to
the books already transcribed.

5.2. Simple Control Under Operator Regime
In Section 4.1 the Traffic Lights problem was elaborated to
provide flexibility in the required sequencing of lights. A
common composite frame in control programs is shown,
decomposed, in Figure 10.

The first subproblem, in which the operator constructs the
Current Regime, fits the Workpieces frame; the second fits
the Simple Control frame with the Current Regime as an
explicit description of all or part of the requirement. The
Current Regime domain is, as will often be the case, of
different types in the different subproblems. The world is
not typed — let alone strongly typed.

A major concern in the composition of the two subroblems
here is the scheduling of the machines CM1 and CM2. In
the simplest case CM1 can be run to completion before
CM2 is run. In the Traffic Lights problem this means that
the operator must set up the regime before using the lights
to control the traffic, and can not then alter it. However, it
may be necessary to alter the regime during a period of
traffic control — for example, because the regime must be
altered to handle morning and evening rush hours;
execution of the machines must then be interleaved in some
way.

There are several possibilities for this interleaving. For
example:

• Machine CM2 is halted from the start to the finish of
the creation of CRG by CM1. In the traffic lights
problem this is unlikely to be acceptable because traffic
in at least one direction must then wait while the
operator changes the regime. This is the coarsest grain
of interleaving.

• Machine CM2 is halted while the operator alters CRG
from one valid state to another, and machine CM1 is
halted while CM2 progesses through one cycle of CRG.
This scheme gives a finer granularity of interleaving
while maintaining the invariant ‘CRG is a valid
regime’.

• Two copies of CRG are used. Machine CM2 runs on
one copy concurrently with the creation of the other
copy by CM1. At the end of the creation process CM2
switches to the new copy, and the other is now
available for updating by CM1.

Describing and managing the last of these possibilities is a
non-trivial problem in itself, justifying its own problem
frame. In this subproblem a third machine treats CM1 and
CM2 as parts of the world, controlling their behaviour in
relation to controllable phenomena of other domains.

5.3. Visible Workpieces Frame
The Simple Workpieces frame discussed in Section 3.4
above is very unrealistic. It is hard, though not impossible,
to think of a practical problem, however small, that could fit
it. The lack of realism lies in the absence of any feedback to
the source of the Operation Requests: the operator must
perform the editing operations ‘blind’, without seeing any
representation of the object being edited. A slightly more
realistic version is the Visible Workpieces frame shown in
Figure 11.

The feedback is provided by the Display domain DSP,
whose state is the set S1 of phenomena shared with the
Operator. The Work Support requirement WSP stipulates
not only the effects of the operations requested by the
operator but also the visible state of the Display in relation
to the states of the Workpieces. This visible state of the
display is not shared by the Tool TL, although it is
indirectly controlled by TL through its control of the events
E1. If the relationship between the Display state and the
Workpieces state is not simple, it may be necessary for the
Tool to create and maintain its own model of the state of the

Controlled
Domain

CD CC

Current
Regime

CRG

Control
Machine

CM2

C4

H1
CRG:
+S1

MC:+C1
CD:+C2

Figure 10
Decomposition of Simple Control
Frame Under Operator’s Regime

Regime
Adjustment

RAJ

Current
Regime

CRG

Control
Machine

CM1

Operator

OP:+E1
CMC:-E1

MC:+E2
CRG:+S1

OP E1

S1

Changeable
Control

Figure 11
Composite Frame: Visible Workpieces

OP:+E2 E2

Operator

Tool Work
Support TL

WSP
OP

Work-
pieces

Display
DSP

WP S2

S1

TL:+E3
WP:+S2

TL:+E1

TL:-E2

DSP+S1

Display. (This would, of course, be a third subproblem in
addition to the two shown in Figure 12.)

The first subproblem is a Simple Workpieces problem, in
which the source of operation requests is the union of the
Display and Operator domains: the initiation of a request
event (E2) is controlled by the Operator, but the selection of
the operands that play roles (R) in the event is controlled by
the Display. The second subproblem is an Information
Display problem, in which the Real World about which
information is to be displayed is the union of the Operator
and Workpieces domains.

For the present discussion, the most important point about
the Visible Workpieces frame is that it exemplifies the
advances that can be made by even a modest degreee of
specialisation. The problem class is, of course, the class
addressed by the MVC object pattern: in MVC, roughly, the
Workpieces are the Model, the Display is the View, and the
Tool is the Controller. It is notable that the MVC pattern
has received much attention — because it is a common
fundamental component of GUI systems — and undergone
much discussion, criticism and improvement [Buschmann
96] in the ten years or so since its introduction [Krasner 88].
This process is very similar to the improvement that takes
place in products like motor cars; only a specialised focus
on a particular problem class allows a sufficient
concentration of attention for significant improvement to
take place. The problem frame of Figure 12 is only a first
crude characterisation of the problem class.

6 Decomposing a More Realistic Problem
A realistic problem in Software Engineering will always
demand a fresh decomposition. The most to be hoped for by
a developer who commands a good repertoire of elementary
and composite frames is that meeting the challenge of
decomposition will be eased by the ready recognition of
familiar subproblems. Each subproblem class has an
associated repertoire of potential characteristic difficulties:
checking for each such difficulty can lead readily to the
recognition of further subproblems. The task of composing

the solution elements, at least above the level of the well-
explored composite frames, will be unique to the problem in
hand.

6.1. The Package Router Problem
As an example of a nearly realistic problem we take the
problem of controlling a Package Router [Swartout 82]. The
treatment of this problem here is based on the treatment in
[Jackson 96]. Here is the problem as described in [Swartout
82], translated from the original German version of
Hommel:

“The package router is a system for distributing packages
into destination bins. The packages arrive at a source
station, which is connected to the bins via a series of
pipes. A single pipe leaves the source station. The pipes
are linked together by two-position switches. A switch
enables a package sliding down its input pipe to be
directed to either of its two output pipes. There is a
unique path from the source station to any particular bin.

“Packages arriving at the source station are scanned by a
reading device which determines a destination bin for
the package. The package is then allowed to slide down
the pipe leaving the source station. The package router
must set its switches ahead of each package sliding
through the pipes so that each package is routed to the
bin determined for it by the source station.

“After a package's destination has been determined, it is
delayed for a fixed time before being released into the
first pipe. This is done to prevent packages from
following one another so closely that a switch cannot be
reset between successive packages when necessary.
However, if a package’s destination is the same as that
of the package which preceded it through the source
station, it is not delayed, since there will be no need to
reset switches between the two packages.

“There will generally be many packages sliding down the
pipes at once. The packages slide at different and
unpredictable speeds, so it is impossible to calculate
when a given package will reach a particular switch.
However, the switches contain sensors strategically
placed at their entries and exits to detect the packages.

“The sensors are placed in such a way that it is safe to
change a switch setting if and only if no packages are
present between the entry sensor of a switch and either
of its exit sensors. The pipes are bent at the sensor
locations in such a way that the sensors are guaranteed
to detect a separation between two packages, no matter
how closely they follow one another.

“Due to the unpredictable sliding characteristics of the
packages, it is possible, in spite of the source station
delay, that packages will get so close together that it is
not possible to reset a switch in time to properly route a
package. Misrouted packages may be routed to any bin,
but must not cause the misrouting of other packages.
The bins too have sensors located at their entry, and
upon arrival of a misrouted package at a wrong bin, the
routing machine is to signal that package’s intended
destination bin and the bin it actually reached”.

6.2. Recognising Some Subproblems
Initially this problem appears to be essentially a control
problem. The machine must flip the switches so that the
packages arrive at their proper destinations. The switch

TL:+E3
WP:+S2

TL1

DOP

WP

Tool

Work-
pieces

Editing
Rules

Display ∪
Operator ERU

DOP:+E2,+R
TL:-E2 E2

S2

TL2
DSP

OWP

Tool

Operator ∪
Workpieces

Display
Function

Display DFU

OWP:+C2

TL:+S1 S1

C2

Figure 12
Decomposition of Visible Workpieces Frame

must be flipped when a package passes the sensor at the
bottom of the pipe leading into the switch.

Brief consideration of the phenomena concerned
immediately reveals a connection difficulty. The package
destination is read at the source station, but is no longer
available when the package passes the sensor. The shared
phenomena between the machine and each sensor s are no
more than the states SensorOpen(s) and SensorClosed(s):
the package causing the state change is anonymous, and its
destination bin is unknown. This connection difficulty is
soluble by a dynamic model. Since the packages can not
overtake one another, the state of the packages and pipes
can be regarded as a set of queues. The package arriving at
a sensor above a switch is the package at the head of the
queue in the pipe to which the sensor is attached. Package
destinations, read at the source station, are attached to the
package objects in this queue model. When a switch is to be
flipped the controlling machine consults the queue model to
identify the package destination and hence the required
switch setting.

There is a further connection difficulty. The switch to be set
is determined by the router topology — the positioning of
sensors on pipes, and the pipe and switch layout. Evidently
a static model is needed here. Augmented with bins, the
same model will allow the required setting of the
determined switch to be chosen according to the route from
the switch to the bin.

The switches are attached to ports of the controlling
machine. This is the standard form of an Identities problem.
An exactly similar problem is present for the sensors.

Signalling arrival of a misrouted package at a wrong bin is,
of course, a Simple Information Display problem.

6.3. Another Concern
In discussing software engineering problems it is always
tempting to look for the sixpence under the light. We
naturally asume that the most important problem aspects are
those for which we have suitable techniques ready in our
toolkit. The list of recognisable subproblems in the previous
section illustrates the point. An important concern in
operating the package router in practice will undoubtedly be
the behaviour of the router and its controller when a
package becomes stuck in a switch. So far, this concern has
been ignored because our repertoire contains no appropriate
problem frame.

In fact, this concern — handling a malfunctioning physical
world — is very common in problems of many kinds. How
it might be captured in a problem frame is left as an exercise
for the reader.

7 Summary
This informal paper has sketched a selection of elementary,
partial and composite problem frames. No claim, of course,
is made that the selection is complete or canonical, or even
that any particular frame presented truly characterises a set
of problems that are best considered as a class: other
classifications are surely possible. But it is claimed that the
approach is valuable in at least these respects:

• It is useful to consider problems largely — though not
entirely — independently of their putative solutions.

• Software Engineering problems are located in the
world, and their analysis and structuring is primarily an
analysis and structuring of the world, not of the
machine.

• The classification of phenomena and the consideration
of their control is a central ingredient in problem
analysis. Mathematical abstractions alone are not
enough.

• A repertoire of recognised problem classes, with
associated characteristic difficulties and solution
methods, provides an important structure for the
discipline of Software Engineering. Within this
structure specialisations can emerge and achieve
incremental advances that can not be achieved by
attacks on a more abstract or a broader front.

In short, it is claimed that problem frames are a contribution
to making Software Engineering more like the established
branches of engineering that it aspires to emulate.

Acknowledgements
This paper has been much improved by discussion with
Daniel Jackson.

References
[Balzer 82] Robert M Balzer, Neil M Goldman and David

S Wile; Operational Specification as the Basis for
Rapid Prototyping; ACM Sigsoft SE Notes 7, 5,
December 1982, pages 3-16; reprinted in New
Paradigms for Software Development; W W Agresti;
IEEE Tutorial Text, IEEE Computer Society Press,
1986.

 [Bass 98] Len Bass, Paul Clements and Rick Kazman;
Software Architecture in Practice; Addison-Wesley
1998.

[Bhargavan 98] Karthikeyan Bhargavan, Carl A Gunter,
Elsa L Gunter, Michael Jackson, Davor Obradovic and
Pamela Zave; The Village Telephone System: A Case
Study in Formal Software Engineering; in Proc 11th
International Conference on Theorem Proving in
Higher-Order Logics TPHOLs98.

 [Brooks 75] Frederick P Brooks Jr; The Mythical Man-
month: Essays on Software Engineering; Addison-
Wesley 1975.

[Buschmann 96] Frank Buschmann, Regine Meunier, Hans
Rohnert, Peter Sommerlad and Michael Stahl;
Pattern-Oriented Software Architecture: A System of
Patterns; John Wiley 1996.

[Buxton 70] J N Buxton and B Randell eds; Software
Engineering Techniques; Report on a conference
sponsored by the NATO SCIENCE COMMITTEE,
Rome, Italy, 27th to 31st October 1969; NATO April
1970.

[Gamma 94] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides; Design Patterns: Elements of
Object-Oriented Software; Addison-Wesley 1994.

[Jackson 93] Michael Jackson and Pamela Zave; Domain
Descriptions; in Proceedings of the IEEE International
Symposium on Requirements Engineering, pages 56-
64; IEEE CS Press, 1993.

[Jackson 95] Michael Jackson; Software Requirements &

Specifications: a lexicon of practice, principles and
prejudices; Addison-Wesley and ACM Press 1995.

[Jackson 96] Daniel Jackson and Michael Jackson; Problem
Decomposition for Reuse; Software Engineering
Journal 11,1 pages 19-30, January 1996.

[Krasner 88] G E Krasner and S T Pope; A cookbook for
using the Model-View-Controller user interface
paradigm in Smalltalk-80; Journal of Object-Oriented
Programming 1, 3, August/September 1988, pages 26-
49.

[Naur 69] Peter Naur and Brian Randell eds; Software
Engineering: Report on a conference sponsored by the
NATO SCIENCE COMMITTEE, Garmisch,
Germany, 7th to 11th October 1968; NATO January
1969.

[Neumann 95] Peter G Neumann; Computer-Related Risks;
Addison-Wesley 1995, pages 44-45.

[Parnas 97] D L Parnas; Software Engineering: An
Unconsummated Marriage; CACM 40, 9, September
1997, page 128.

[Polya 57] G Polya; How To Solve It; Princeton University
Press, 2nd Edition 1957.

[Pree 97] Wolfgang Pree; Design Patterns for Object-
Oriented Software Development; Addison-Wesley
1995.

[Shaw 96] Mary Shaw and David Garlan; Software
Architecture: Perspectives on an Emerging Discipline;
Prentice-Hall 1996.

[Stevens 74] W P Stevens, G J Myers, and L L
Constantine; Structured Design; IBM Systems Journal
13, 2, 1974, pages 115-139; reprinted in Tutorial on
Software Design Techniques, Peter Freeman and
Anthony I Wasserman eds; IEEE Computer Society
Press, 4th edition 1983.

[Swartout 82] William Swartout and Robert Balzer; On the
Inevitable Intertwining of Specification and
Implementation; CACM 25, 7, July 1982, pages 438-
440.

[Zave 93] Pamela Zave and Michael Jackson; Conjunction
as Composition; ACM Transactions on Software
Engineering and Methodology, October 1993, pages
379-411.

	Introduction
	The General SE Problem
	Descriptions
	Specialisation

	SE Problems for Generalists
	Problem Structures and Problem Frames
	Phenomena and Control
	Frames, Subproblems and Methods

	Elementary Problem Frames
	Simple Control Frame
	Simple Enquiry Frame
	Information Display Frame
	Simple Workpieces Frame
	Methods and Descriptions

	Difficulties and Problem Frames
	Flexible Requirements Difficulty
	Identities Difficulty
	Connection Difficulty & Model Domains

	Composite Frames
	Simple Information System Frames
	Simple Control Under Operator Regime
	Visible Workpieces Frame

	Decomposing a More Realistic Problem
	The Package Router Problem
	Recognising Some Subproblems
	Another Concern

	Summary

