
Network Services

XML & Web 2.0

Johann Oberleitner

Agenda

XML
DTD & XML Schema
XPath & XSL
Web 2.0

Ajax

HTML

No Description in this lecture (!)
http://de.selfhtml.org/
http://www.w3.org/TR/REC-html40/

Every technician should be aware of
HTML

Especially computer scientists

SGML
Standard Generalized Markup Language

Initial goal to represent text in electronic form
Device & System Independent

Meta-Language
Means for formally describing a language
= Markup Language
Powerful
Very complex

Separation of Content, Structure and style
Logical ancestor of HTML, XML
Used in Publishing industry

Continously replaced by XML

XML
eXtended Markup Language

Initial goal to represent data in electronic form
Device & System independent

Meta-Language
Markup language
Less complex than SGML
Powerful
May be parsed by SGML parsers with special extensions

Base for almost all new data representation
languages

Motivation for XML

Problems with HTML
Intended for visualization
Mixes content and style (layout)
Difficult to automatically transform

XML
Describes information in a document
No visualization
Says what a document means

More HTML problems

HTML is static
Not extensible
Set of elements is fixed

No Semantic information
Not designed for device-independence

Different on desktop browsers, PDAs, ...

Layouting features rather weak
CSS

XML / 1
Meta-language

Defining new languages
Example: XHTML

Redesigned HTML, conforms to XML

Application of XML
Introducing such a language

Supports structure
Through structure of tags

Supports semantics
Meaning of tags

<Person>Mustermann</Person> vs. "Mustermann"
Important for automation

XML / Example 1

<Person>
<Nachname>Mustermann</Nachname>
<Vorname>Vorname</Vorname>
<Addresse>

<Strasse>Argentinierstrasse 8</Strasse>
<Ort>Wien</Ort>
<PLZ>1040</PLZ

</Addresse>
</Person>

XML / Example 2

Whitespaces don't matter:
<Person>
<Nachname>Mustermann</Nachname>

<Vorname>Vorname</Vorname><Add
resse <Strasse>Argentinierstrasse
8</Strasse><Ort>Wien</Ort><PLZ>1
040</PLZ</Addresse></Person>

Goals for XML

Easy to read and process
More important: easy for machines

Separation of layout and content
Typed documents
Compatible with SGML
Unicode

Application Areas / 1

World Wide Web
XML sent to client, rendering on client
XML rendered on server, HTML sent to
client

Separation of layout and content
Automatic generation of navigational
structures

Application Areas / 2

Data Exchange / Interoperability
SOAP (later)
WebDAV (later)
BPEL (Business Process Execution Language)

XML to enhance databases
Most commercial DBs support XML as result-set
Next generation:

Support XML as first class datatype
Supports querying within XML structures

XML as structured databases
Eg. Apache Xindice

Application Areas / 3

Domain Specific Languages (DSL)
MathML, SVG, MusicML, RDF, XMI
Ant build.xml
.NET Configuration files

<?xml version="1.0" encoding="UTF-
8"?>

<!DOCTYPE students="students.dtd">
<students>
<student matnr="e8888888">

<lastname>Meier</lastname>
<firstname>Klara</firstname>
<address/>

</student>
</students>

XML Structure

Attribute

Elements

XML Preamble

Document Type
Definition

Document Element

Empty tag

XML Parts
XML Preamble

Not required, highly recommended
"1.0" fixed version
Encoding: US-ASCII, UTF-8, ISO-8859-,1 UTF-16
Standalone: yes/no

Document Type Definition
defines structure of XML file (=XML Infoset)
Defines root element name
Only required for valid documents

Document Element
Root of XML tree
At the same level as Comments and processing instructions

Processing Instructions
At same level as XML Preamble
<?mso-application progid="Excel.Sheet"?>
Special meaning for some programs

XML Infoset
Elements

Structuring facility, can be nested
Opening and closing tag
Empty tags (closed)
Content Models

Elements only
Mixed (text & child element)

Attribute
Information bundled within attributes (name-value)
Multiple attributes
Never nested

Text
Strings & characters in encoding format
Meta character need to be escaped

< > & ' "e
Comments

<!- - an XML comment - ->

DTD / Schema

Valid XML documents
Well-Formed & conforms to rules in DTD or
Schema
An application may required a certain structure

Meta-Information about documents
DTD / Schema describe a set of documents
(that conform to the rules)

Parsers and representation classes can be
generated from DTDs / Schemas

DTD (Document Type Definition)

Written in its own language
not XML

Rules
Which elements may be used
Which content models they have

element, text, empty, mixed, any
How may elements be nested
Which Attributes are allowed

External vs. Internal
If DTD is external to XML document

DTD Sample
<!ELEMENT students(student+)>
<!ELEMENT student(lastname,firstname,adress)>
<!ATTLIST student matnr CDATA #required>
<!ELEMENT lastname(#PCDATA)>
<!ELEMENT firstname(#PCDATA)>
<!ELEMENT adress(#PCDATA)>
<!ENTITY city "Vienna">

<students>
<student matnr="e8888888">

<lastname>Meier</lastname>
<firstname>Klara</firstname>
<adress>&city;</adress>

</student>
</students>

XML Schema

Successor of DTD
Formulated in XML
Context-free regular grammar for defining
arbitrary XML structures
Better support for versions of elements and
attributes

More restrictions, more checks
No support for Entities!

Entities in DTDs are like macros

XML Namespaces
Avoid name clashes when documents are
merged or interchanged

Unique naming
<Address> element of two different origins do not
have necessarily the same structure
Otherwise complete XML file (or schema) has to
be parsed

Prefix + Unique identifier
Prefix is abbreviation for unique identifier
Unique identifier is usually a URL

Used namespaces are declared in document
element

XML Schema / Sample
<student matnr="e8888888">

<lastname>Meier</lastname>
<firstname>Klara</firstname>
<adress>Vienna</adress>

</student>

<element name="student">
<complexType>

<sequence>
<element name="lastname" type="string"/>
<element name="firstname" type="string"/>
<element name="address" type="string"/>

</sequence>
</complexType>

</element>

XML – Valid & Wellformed
Wellformed

Minimal Requirements for "good" XML document
= syntactic correctness

For all start tags exist end tag
Exactly one document element
Correct cascading of elements
Only comments and PIs out of document element
All attributes in quotes
No double attributes in one element

Valid
XML file conforms to one particular DTD or XML Schema file
= structural correctness

No elements that are not defined within Schema
Correct order, correct attributes, …

Cascading Style Sheets - CSS

Allows attachment of style information
to HTML
Modifies Layout of Input elements
Nesting / Cascading of stylesheets
External vs. Internal
May also be applied to XML files!

Eg. Automatic rendering of XML files in
tabular form (instead of tree)

CSS - Structure

Generic Structure for Styles
Selector { Property: Value }

Selector specifies class that is modified
Property denotes a particular property
which value is modified

CSS - Sample

HTML: <body bgcolor="#FF0000">

CSS: body { background-color: #FF0000; }

Selector Property Value

CSS – Used within HTML
1. In-line

Using style attribute in arbitrary HTML tags
<body style="background-color: #FF0000;">

2. Internal
Using style tag in HTML header (eg. after <title></title>) that contains
whole CSS

<style type="text/css">
Body { background-color: #FF0000;"}
</style

3. External
Link to a style sheet in HTML header (after <title></title>)
Example

<head>
<title>My homepage with stylesheet</title>

<link rel="stylesheet" type="text/css" href="style/style.css"/>
</head>

Cascading Style Sheets - CSS

Allows attachment of style information
to HTML
Modifies Layout of Input elements
Nesting / Cascading of stylesheets
External vs. Internal
May also be applied to XML files!

Eg. Automatic rendering of XML files in
tabular form (instead of tree)

XSL

eXtended Stylesheet Language
Consists of

XPath (XML Path Language)
XSLT (XSL Transformations)
XSL-FO XSL Formatting Objects

XPath

Selection and addressing language
for XML (of course)
Based on XML's tree structure

Result of XPath expressions
Select single nodes or nodesets (collection
of nodes)

Evaluation always based on local node
(context)

XPath - Example
<students>

<student matnr="7523333">
<lastname>Gates</lastname></student>

<student matnr="8524234">
<lastname>Torvalds</lastname></student>

</students>

/
/student
/student/lastname
//lastname
/students/*/lastname
/students/*/lastname/../
/student[@matnr='7523333']/lastname

XPath - Axes
Navigation within XML tree with so-called axes

child, parent (abbreviation ..), self (.)
ancestor, ancestor-or-self (parent)
descendant,descendant-or-self (children)
following, following-sibling (sequence)
preceding, preceding-sibling (sequence)

Within XPath: [axis-name]::[node-name]
/student/child::lastname = /student/lastname

attributes axis (@)
namespace axis

XPath – testing with
predicates

Predicate within []
evaluated relative to a node expression

/student/[predicate]/lastname
Multiple predicates in one expression

/student[@matnr='7523333']/name[@nametype='first']

Attribute testing by value good
Element testing by value may be difficult

because of whitespaces

XPath – Selecting other nodes

Text Nodes: text()
Example:
/student[@matnr='7523333']/lastname/text()

Any node
node()
/student/* <> /student/node()
Difference: node() selects any node, *
selects only element nodes

XPath – Expression Types

Node sets
All Node selecting expressions

Boolean
Numbers
Strings
Result tree fragments

Portion of XML document not complete
node or node set
May be converted to string

XPath – Expressions and
Functions

Functions may be used in predicates
Node-sets

position() returns number of current node in node-
set

eg. /student[position() = 2]
last() (= last node)
count(node-set)

eg. count(//students)
name(node-set)

Name of first node in node set
local-name, namespace-uri

XPath – Datatypes
Boolean & Numbers

Boolean values
Predefined: true & false
Results of relational operators (=,!=,<,>,<=,>=)

Use < instead of <

Numbers
Expressions implicitly converted to a number
Arithmetic operators

+, -, *, div, mod
Functions: floor(), ceiling(), round(), sum()

XPath – String

Functions on string
starts-with(s, prefix)
contains(s, substring)
substring(s, offset, length)
normalize-space(s)
string-length
concat(s1,s2)
format-number(number, format-string)
...

XSL Transformations
Transformation language

Written In XML
Input is XML
Output may be

XML
Text
HTML
Other formats supported via extensions

Rule based
Rules are matched against input

XSLT Transformation

Input File(s)
XML

XSLT
Stylesheet

XSLT
Processor

Output
File

XSLT – Basic principles

Transformation rule
<xsl:template match="[XPath-Expression]">

Substitution-Part
</xsl:template>

When XPath-Expression evaluates to true for a
node the substitution part is applied and
allows modification of the tested node.

XSLT – Elements for Substitution

<xsl:value-of select="xpath-expr">
Inserts the text value of an XPath
expression into the output

<xsl:template match="//student">
<xsl:value-of select="lastname"/>

</xsl:template>

XSLT – Elements for Substitution

<xsl:apply-templates select="xpath-expr">
Specifies where processing shall continue
Searches for template rules in select attribute
If select omitted processing is done for all
elements

<xsl:text>
Outputs normal text

<xsl:element>, <xsl:attribute>
Outputs an element or an attribute
Only useful for XML-like output

XSLT - Sample
<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">
<xsl:apply-templates select="student">

</xsl:template>

<xsl:template match="student">
<xsl:text>Student:</xsl:text>
<xsl:value-of select="lastname/text()"/>

</xsl:template>
</xsl:stylesheet>

XSLT – Default Rules

Normally each node requires a rule
Otherwise processing stops
Tedious to write a node for all elements

Solution: Default Rules
<xsl:template match="*|/">

<xsl:apply-templates/>

</xsl:template>

XSLT Sample – Generate HTML
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl=http://www.w3.org/1999/XSL/Transform>
<xsl:output method="html"/>
<html>

<head>...</head>
<body>

<xsl:apply-templates select="//student"/>

</body>

</html>

<xsl:template match="student">
<lil><xsl:value-of select="lastname/text()"/>

</xsl:template>
</xsl:stylesheet>

XSLT Sample – Resulting HTML

Gates
Torvalds

XSLT Choices

<xsl:if test="xpath-expr">
Supports conditional processing based on an
expression
Thee is No else (!)

<xsl:choose>
Like statements switch in Java
Single cases in <xsl:when test="xpe"> elements
With <xsl:otherwise> else clause possible

XSLT – Iteration / 1

<xsl:for-each>
Iterates over a node-set

Example
<xsl:template match="/">

<xsl:for-each select="student">
<xsl:value-of select="lastname"/>

</xsl:for-each>

</xsl:template>

What's the difference to <xsl:apply-
templates>?

XSLT – Other Features / 1

<variable>
Supports declaration of variables that refer
to xpath expressions
Variables can be reused with $varname

<for-each>
Supports iteration

Over xpath expressions

XSLT – Other Features / 2

<sort>
Supports arranging of elements in different order

As child of <xsl:for-each>, <xsl:apply-templates>

<number>
Inserts formatted integer numbers in output
document

Named templates
Parameterized processing
Like a subroutine call
Recursion is possible and important

<include>, <import>

XSL:FO

XSL – Formatting Objects
XML vocabulary
for Formatting documents (layout)
Page oriented
>50 elements defined for layouting

Similar to what word-processors use

Idea
Document content is written in XML

Without considering layout
Transformed to XSL:FO file with XSLT

XSLT adds layout to document

XSL:FO

XSL:FO Renderer
Transforms XSL:FO file into other formats

Eg. PDF (Apache FOP)
RTF, Latex

Used by publishers
XSL:FO Formatting model

Content broken in pages
Each contains number of areas
Similarities to RTF

Web 2.0

Web is currently moving to
Rich clients

Real applications that run in browsers

Support for cooperation of Web
applications

Problem of "Web1.0"
applications

Each get/post HTTP request
Sends a request to Web Server
Waits until response comes back from Web
Server
Until the response comes back the browser
blocks working with Web applications

AJAX - Asynchronous
JavaScript

Solves this problem
by sending requests in the background
Waits for answers in the background
Updates the screen asynchronously

End users don't have to wait until page is
reloaded

AJAX – Key Components
JavaScript

Embedded in HTML pages
Executed in the Web browser at the client

Supports quicker UI interaction mechanisms in the browser
without interaction with the Web server

DOM Tree
(X)HTML is modified directly by JavaScript

CSS
XMLHttpRequest

JavaScript object that supports submitting HTTP Requests
asynchronously

Ajax - Principle

HTTP Server

Loads main page via HTTP

Requests other information from
Server via HTTP

Ajax –Working Principle / 1

JavaScript Startup Code registers
JavaScript functions as notification
handlers

Being called when HTML hyperlinks or
HTML form elements are clicked/used

Example: Text is entered in a text field
Example: Hyperlink is clicked

Result: JavaScript handler is invoked when
hyperlink clicked, form element is used

Ajax –Working Principle / 2
JavaScript notification handler is invoked
synchronously by browser

As in rich GUI applications
Uses HTTPXMLRequest object to setup a HTTP request

Often a Web Service is called via SOAP
But May just be a request to a Web page

Registers another JavaScript function as a HTTP response
notification handler

A different function is used(!)

The HTTP request is sent asynchronously
Notification handler for the GUI elements is returned after
starting the HTTP request
User can continue working in the browser

Ajax –Working Principle / 3

Some time later the HTTP request is
received by the Web Server

Sends a response
Response comes to the XMLHttpRequest
object

Processes the response asynchronously
Invokes the previously registered Response
notification handler

Ajax –Working Principle / 4

Response notification handler
Modifies DOM tree (=XML tree) of the
HTML document currently displayed in the
browser
Supports asynchronous modification of the
GUI without stopping the end user in
working with the currently displayed
window

Web 2.0 / Other
developments

RSS
Really Simple Syndication (RSS 2.0)
Rich Site Summary (RSS 0.91, RSS 1.0)
RDF Site Summary (RSS 0.9, 1.0)

Goal
Sharing news
Subscription to parts of web pages
So-called Feeds are sent when web page changes

XML based
RSS 1.0 – based on RDF (resource description framework)
RSS 2.0 – not based on RFD(!)

Feed readers may be used to read this news

Summary

XML
Ascii of 21st century

XPath & XSLT
Web 2.0 Technologies

