!'_ Network Services

XML & Web 2.0

Johann Oberleltner

s DTD & XML Schema
s XPath & XSL

s Web 2.0
= Ajax

i HTML

= No Description in this lecture (1)
s http://de.selfhtml.org/
s http://www.w3.org/TR/REC-html40/

= Every technician should be aware of
HTML

= Especially computer scientists

SGML

= Standard Generalized Markup Language
= Initial goal to represent text in electronic form
= Device & System Independent
= Meta-Language
= Means for formally describing a language
= Markup Language
= Powerful
= Very complex
= Separation of Content, Structure and style
= Logical ancestor of HTML, XML

= Used in Publishing industry
= Continously replaced by XML

i XML

= eXtended Markup Language
= Initial goal to represent data in electronic form
= Device & System independent

= Meta-Language
= Markup language
= Less complex than SGML
= Powerful
= May be parsed by SGML parsers with special extensions

= Base for almost all new data representation
languages

i Motivation for XML

= Problems with HTML
= Intended for visualization
= Mixes content and style (layout)
= Difficult to automatically transform

s XML
= Describes information in a document
= No visualization
= Says what a document means

i More HTML problems

= HTML Is static
= Not extensible
= Set of elements is fixed

= No Semantic information
= Not designed for device-independence
» Different on desktop browsers, PDAs, ...

= Layouting features rather weak
s CSS

iXI\/ILll

= Meta-language
= Defining new languages

= Example: XHTML
=« Redesigned HTML, conforms to XML

= Application of XML
= Introducing such a language

= Supports structure
= Through structure of tags

= Supports semantics

= Meaning of tags
= <Person>Mustermann</Person> vs. "Mustermann"

= Important for automation

i XML / Example 1

<Person>
<Nachname>Mustermann</Nachname=>
<Vorname=>\Vorname</Vorname>
<Addresse=>
<Strasse=>Argentinierstrasse 8</Strasse>
<Ort>Wien</Ort>
<PLZ>1040</PLZ
</Addresse=>

</Person>

i XML / Example 2

= Whitespaces don't matter:

<Person>

<Nachname>Mustermann</Nachname=>
<Vorname=>\Vorname</Vorname><Add
resse <Strasse=>Argentinierstrasse
8</Strasse><0Ort>Wien</Ort><PLZ>1
040</PLZ</Addresse></Person>

i Goals for XML

= Easy to read and process
= More important: easy for machines

= Separation of layout and content
= Typed documents

= Compatible with SGML

= Unicode

i Application Areas / 1

= World Wide Web

= XML sent to client, rendering on client

= XML rendered on server, HTML sent to
client

= Separation of layout and content

= Automatic generation of navigational
structures

i Application Areas / 2

= Data Exchange / Interoperability
= SOAP (later)
= WebDAV (later)
= BPEL (Business Process Execution Language)

= XML to enhance databases
= Most commercial DBs support XML as result-set

= Next generation:
= Support XML as first class datatype
= Supports querying within XML structures

s XML as structured databases
= Eg. Apache Xindice

i Application Areas / 3

= Domain Specific Languages (DSL)
= MathML, SVG, MusicML, RDF, XMI
= Ant build.xml
= .NET Configuration files

/

i XML Structure

<?xml version="1.0" encoding="UTF-

—— Document Type

8"7> Definition
<IDOCTYPE students="students.dtd">
<students> T Attribute

<student matnr="e8888888">
. Elements
<lastname>Meler</lastname> -
<firsthname>Klara</firsthame>
<address/> Empty tag

</student>
</students> Document Element

_

i XML Parts

XML Preamble
= Not required, highly recommended
"1.0" fixed version

= Encoding: US-ASCII, UTF-8, 1SO-8859-,1 UTF-16

= Standalone: yes/no
= Document Type Definition

= defines structure of XML file (=XML Infoset)

= Defines root element name

= Only required for valid documents
= Document Element

= Root of XML tree

= At the same level as Comments and processing instructions
= Processing Instructions

= At same level as XML Preamble

= <?mso-application progid="Excel.Sheet"?>

= Special meaning for some programs

XML Infoset

= ' Elements
= Structuring facility, can be nested
= Opening and closing tag
= Empty tags (closed)
= Content Models

=« Elements only
= Mixed (text & child element)

= Attribute
= Information bundled within attributes (name-value)
= Multiple attributes
= Never nested
m [Jext
= Strings & characters in encoding format
= Meta character need to be escaped
« < > & ' "e
= Comments
s <!--an XML comment - ->

i DTD / Schema

s Valid XML documents

= Well-Formed & conforms to rules in DTD or
Schema

= An application may required a certain structure

s Meta-Information about documents

= DTD / Schema describe a set of documents
(that conform to the rules)

= Parsers and representation classes can be
generated from DTDs / Schemas

i DTD (Document Type Definition)

= Written in its own language
= not XML

s Rules
= Which elements may be used

= Which content models they have
= element, text, empty, mixed, any

= How may elements be nested
= Which Attributes are allowed

s External vs. Internal
= If DTD Is external to XML document

DTD Sample

<!ELEMENT students(student+)>

<!ELEMENT student(lastname,firstname,adress)>
<IATTLIST student matnr CDATA #required>
<IELEMENT lastname(#PCDATA)>

<!ELEMENT firstname(#PCDATA)>

<IELEMENT adress(#PCDATA)>

<IENTITY city "Vienna">

<students>
<student matnr="e8888888">
<lasthame>Meier</lasthame>
<firstname>Klara</firstname>
<adress>&city;</adress>
</student>
</students>

i XML Schema

s Successor of DTD
s Formulated in XML

= Context-free regular grammar for defining
arbitrary XML structures

= Better support for versions of elements and
attributes

= More restrictions, more checks

= No support for Entities!
= Entities in DTDs are like macros

i XML Namespaces

= Avoid name clashes when documents are
merged or interchanged

= Unique naming

= <Address> element of two different origins do not
have necessarily the same structure

= Otherwise complete XML file (or schema) has to
be parsed

= Prefix + Unique identifier
= Prefix is abbreviation for unique identifier
= Unique identifier is usually a URL

= Used namespaces are declared in document
element

XML Schema / Sample

<student matnr="e8888888">
<lasthame>Meier</lasthame>
<firstname=>Klara</firstname>
<adress>Vienna</adress>
</student>

<element name="student">
<complexType=>
<sequence>
<element name="lasthame" type="string"/>
<element name="firstname" type="string"/>
<element name="address" type="string"/>
</sequence>
</complexType>
</element>

XML — Valid & Wellformed

Wellformed
= Minimal Requirements for "good" XML document

E = syntactic correctness
= For all start tags exist end tag
= Exactly one document element
= Correct cascading of elements
= Only comments and Pls out of document element
= All attributes in quotes
= No double attributes in one element

Valid
= XML file conforms to one particular DTD or XML Schema file

s = structural correctness
= No elements that are not defined within Schema
= Correct order, correct attributes, ...

i Cascading Style Sheets - CSS

= Allows attachment of style information
to HTML

= Modifies Layout of Input elements
= Nesting / Cascading of stylesheets
= External vs. Internal

= May also be applied to XML files!

= Eg. Automatic rendering of XML files In
tabular form (instead of tree)

i CSS - Structure

= Generic Structure for Styles
Selector { Property: Value }

= Selector specifies class that is modified

= Property denotes a particular property
which value is modified

i CSS - Sample
HTML: <body bgcolor="#FF0000">

CSS: body { background-color: #FF0000; }

/o

Selector Property Value

i CSS — Used within HTML

1. In-line

. Using style attribute in arbitrary HTML tags
. <body style="background-color: #FF0000;">

2. Internal
. Using style tag in HTML header (eg. after <title></title>) that contains
whole CSS
. <style type="text/css">
Body { background-color: #FF0000;"}
</style
3. External
. Link to a style sheet in HTML header (after <title></title>)
= Example
<head>

<title>=My homepage with stylesheet</title>
<link rel="stylesheet" type="text/css" href="style/style.css"/>

</head>

i Cascading Style Sheets - CSS

= Allows attachment of style information
to HTML

= Modifies Layout of Input elements
= Nesting / Cascading of stylesheets
= External vs. Internal

= May also be applied to XML files!

= Eg. Automatic rendering of XML files In
tabular form (instead of tree)

i XSL

= eXtended Stylesheet Language

= Consists of
« XPath (XML Path Language)
= XSLT (XSL Transformations)
= XSL-FO XSL Formatting Objects

i XPath

= Selection and addressing language
= for XML (of course)
= Based on XML's tree structure

= Result of XPath expressions

= Select single nodes or nodesets (collection
of nodes)

= Evaluation always based on local node
(context)

XPath - Example

<students>
<student matnr="7523333">
<lastname>Gates</lasthame></student>
<student matnr="8524234">
<lastname>Torvalds</lasthame></student>
</students>

/

/student

/student/lastname

//lasthname

/students/*/lastname
/students/*/lastname/../
/studentf@matnr="7523333']/lasthname

i XPath - Axes

= Navigation within XML tree with so-called axes
= child, parent (abbreviation ..), self (.)
= ancestor, ancestor-or-self (parent)
= descendant,descendant-or-self (children)
= following, following-sibling (sequence)
= preceding, preceding-sibling (sequence)
= Within XPath: [axis-name]::[node-name]
= /student/child::lastname = /student/lastname
= attributes axis (@)

= Nhamespace axis

XPath — testing with
i predicates

= Predicate within []
= evaluated relative to a node expression

= /student/[predicate]/lasthame

= Multiple predicates in one expression
= /student[@matnr='7523333']/name[@nametype="first']

= Attribute testing by value good

= Element testing by value may be difficult
= because of whitespaces

i XPath — Selecting other nodes

= Text Nodes: text()

= Example:
/student[@matnr="'7523333"']/lastname/text()

= Any node
O nOde()
= /student/* <> /student/node()

= Difference: node() selects any node, *
selects only element nodes

i XPath — Expression Types

= Node sets
= All Node selecting expressions

= Boolean

= Numbers

= Strings

= Result tree fragments

« Portion of XML document not complete
node or node set

= May be converted to string

XPath — Expressions and

i Functions

= Functions may be used in predicates

s Node-sets

= position() returns number of current node in node-
set

= eg. /student[position() = 2]
= last() (= last node)
= count(node-set)

= eg. count(//students)

= hame(node-set)
= Name of first node in node set
= local-name, namespace-uri

XPath — Datatypes
i Boolean & Numbers

= Boolean values
= Predefined: true & false
= Results of relational operators (=,!1=,<,>,<=,>=)
« Use < instead of <
= Numbers
= Expressions implicitly converted to a number

= Arithmetic operators
« +, -, *, div, mod
= Functions: floor(), ceiling(), round(), sum()

i XPath — String

= Functions on string
= starts-with(s, prefix)
= contains(s, substring)
= substring(s, offset, length)
= normalize-space(s)
= string-length
= concat(sl,s2)
» format-number(number, format-string)

i XSL Transformations

= Transformation language
= Written In XML

= Input is XML

= Output may be
= XML
s [ext

« HTML
= Other formats supported via extensions

= Rule based
= Rules are matched against input

i XSLT Transformation

—

XSLT
Stylesheet

i XSLT — Basic principles

= Transformation rule

<xsl:template match="[XPath-Expression]">
Substitution-Part

</xsl:template>

When XPath-Expression evaluates to true for a
node the substitution part is applied and
allows modification of the tested node.

i XSLT — Elements for Substitution

= <xsl:value-of select="xpath-expr'>

= Inserts the text value of an XPath
expression into the output

s <xsl:template match="//student">
<xsl:value-of select="lasthame"/>

s </xsl:template>

i XSLT — Elements for Substitution

s <xsl:apply-templates select="xpath-expr'>
= Specifies where processing shall continue
= Searches for template rules in select attribute

= If select omitted processing is done for all
elements

m <Xsl:text>
= Outputs normal text

s <xsl:element>, <xsl:attribute>
= Outputs an element or an attribute
= Only useful for XML-like output

i XSLT - Sample

<?xml version="1.0"?>

<xsl:stylesheet version="1.0"
xmlins:xsl="http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<xsl:apply-templates select="student">
</xsl.template>

<xsl:template match="student">
<xsl:text>Student:</xsl:text>
<xsl:value-of select="lasthname/text()"/>
</xsl.template>
</xsl:stylesheet>

i XSLT — Default Rules

= Normally each node requires a rule
= Otherwise processing stops
= Tedious to write a node for all elements

s Solution: Default Rules

= <xsl:template match="*|/">
« <Xsl:apply-templates/>

» </xsl:template>

i XSLT Sample — Generate HTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmins:xsl=http://www.w3.0rg/1999/XSL/Transform>
<xsl:output method="html"/>
<html>
<head>...</head>
<body>

<xsl:apply-templates select="//student"/>

</body>
</html|>

<xsl:template match="student">
<lil><xsl:value-of select="lastname/text()"/>
</xsl:template>
</xsl:stylesheet>

i XSLT Sample — Resulting HTML

s Gates
= Torvalds

i XSLT Choices

s <xsl:if test="xpath-expr'>

= Supports conditional processing based on an
expression

= Thee is No else (1)

= <xsl:choose>
= Like statements switch in Java
= Single cases in <xsl:when test="xpe"> elements
= With <xsl:otherwise> else clause possible

XSLT — lteration / 1

s <Xxsl:for-each>
= |terates over a node-set

= Example

= <xsl:template match="/">

= <Xsl:for-each select="student">
<xsl:value-of select="lastname"/>

« </xsl:for-each>
« </xsl:template>

= What's the difference to <xsl:apply-
templates>?

i XSLT — Other Features / 1

s <variable>

= Supports declaration of variables that refer
to xpath expressions

= Variables can be reused with $varname
s <for-each>

= Supports iteration
= Over xpath expressions

XSLT — Other Features / 2

m <Sort>

= Supports arranging of elements in different order
= As child of <xsl:for-each>, <xsl:apply-templates>

s <number>

= Inserts formatted integer numbers in output
document

= Named templates
= Parameterized processing
=« Like a subroutine call
= Recursion is possible and important

= <include>, <import>

i XSL:FO

= XSL — Formatting Objects
= XML vocabulary
« for Formatting documents (layout)
= Page oriented
= >50 elements defined for layouting
= Similar to what word-processors use
s ldea

= Document content is written in XML
= Without considering layout

= Transformed to XSL:FO file with XSLT
= XSLT adds layout to document

i XSL:FO

s XSL:FO Renderer

= ransforms XSL:FO file into other formats
=« Eg. PDF (Apache FOP)
= RTF, Latex

= Used by publishers

= XSL:FO Formatting model
= Content broken in pages
= Each contains number of areas
= Similarities to RTF

i Web 2.0

= Web Is currently moving to
= Rich clients
= Real applications that run in browsers

= Support for cooperation of Web
applications

Problem of "Web1.0"
i applications

= Each get/post HTTP request
= Sends a request to Web Server

= Walts until response comes back from Web
Server

« Until the response comes back the browser
blocks working with Web applications

AJAX - Asynchronous
i JavaScript

= Solves this problem
= by sending requests in the background
= Waits for answers in the background

= Updates the screen asynchronously

= End users don't have to wait until page is
reloaded

i AJAX — Key Components

= JavaScript

= Embedded in HTML pages
= Executed in the Web browser at the client

= Supports quicker Ul interaction mechanisms in the browser
= without interaction with the Web server

= DOM Tree
= (X)HTML is modified directly by JavaScript

= CSS

= XMLHttpRequest

= JavaScript object that supports submitting HTTP Requests
asynchronously

i Ajax - Principle

Loads main page via HTTP

[
»

»

Requests other information from
Server via HTTP HTTP Server

i Ajax —Working Principle / 1

= JavaScript Startup Code registers
JavaScript functions as notification
handlers

=« Being called when HTML hyperlinks or
HTML form elements are clicked/used

« Example: Text is entered in a text field
« Example: Hyperlink is clicked

= Result: JavaScript handler is invoked when
hyperlink clicked, form element is used

Ajax —Working Principle / 2

= JavaScript notification handler is invoked
synchronously by browser
= As in rich GUI applications

= Uses HTTPXMLRequest object to setup a HTTP request

= Often a Web Service is called via SOAP
But May just be a request to a Web page

= Registers another JavaScript function as a HTTP response
notification handler

A different function is used(!)

= The HTTP request is sent asynchronously

= Notification handler for the GUI elements is returned after
starting the HTTP request

= User can continue working in the browser

i Ajax —Working Principle / 3

= Some time later the HTTP request is
received by the Web Server

= Sends a response

= Response comes to the XMLHttpRequest
object
= Processes the response asynchronously

= Invokes the previously registered Response
notification handler

i Ajax —Working Principle / 4

= Response notification handler

= Modifies DOM tree (=XML tree) of the
HTML document currently displayed in the
browser

= Supports asynchronous modification of the
GUI without stopping the end user In
working with the currently displayed
window

Web 2.0 / Other
developments

= RSS
= Really Simple Syndication (RSS 2.0)
= Rich Site Summary (RSS 0.91, RSS 1.0)
= RDF Site Summary (RSS 0.9, 1.0)

= Goal
= Sharing news
= Subscription to parts of web pages
= So-called Feeds are sent when web page changes

= XML based

= RSS 1.0 — based on RDF (resource description framework)
= RSS 2.0 — not based on RFD(!)

= Feed readers may be used to read this news

= Ascii of 21st century
s XPath & XSLT
= Web 2.0 Technologies

