* Network Services

Unix Shell Scripts

Johann Oberleitner
SS 2006

,_:| Agenda

= Unix Command Line Processing
= Filters

= Shell Scripts

= Regular Expressions
= grep

= sed

= awk

,_:| UNIX Shells

= Shells are normal programs
= Provides a command-line interface to OS

= One shell is started after login
= Which shell is stored in /etc/passwd

= May be started from a shell
= subshell

= Link between end-user and operating system
= Supports execution of shell scripts
= Available on most operating systems

Shells

= sh - Bourne Shell
= original shell
= bash - Bourne Again Shell
= Advanced version of sh
= ksh — Korn Shell
= Advanced version of ksh
= csh - C Shell
= Some operations taken from C prog. Language
= tcsh — Tenex C Shell
= Advanced version of csh
= Cmd.exe — WinNT-WinXP
= Poor
= Powershell (MSH)
= New Microsoft Shell
= Many features as in UNIX shells

;| Bash

= Most used shell on Linux systems

= Available for most operating systems
= also for Windows

= Feature rich
= Compatible with sh
= Most features as in ksh

Commands

‘ command ‘ options ‘Argumentl... ‘

= Command — name of command
= Option(s)
= Modifies how command works
= Usually Character(s) preceded by +/-
= Sometimes no +/-
= Targets on which command operates

;| Builtin-Commands

= Provided by the shell itself
= c¢d — change directory
= pushd,popd — directory stack
= fg,bg — job control commands
= shift — shift command line arguments
= exit (logout) — exit from (login) shell

;| echo

= Copies input arguments to output
= Example:

$ echo simple test

simple test

:-| man + help

= Mman
= Manual pages for commands
= man find
= Shows manual page for the find command
= help
= Help pages for built-in commands

= help alias
= Shows help page for the alias command

:-| Commands for file system

= pwd — print working directory
= Is — list directory

= cd — change directory

= mkdir — make directory

= rmdir - remove directory

:-| Commands for files

= cat — (con)catenates files
= more — prints file
= If more than one page, waits on space key
= less similar — much better
= Supports backward scrollingyx
= cp — copy files/directories
= mv — move files/directories
= Also used for renaming
= rm — remove files/directories

Find files/directories

= find pathname criteria

= Finds all files in the directory (and
subdirectories) given by pathname that
satisfy the given criteria
= Example
= find . —name abc
= All files in local directory (and subdirectories) that have a
name containing abc
= find . —type f
= Returns all files that are regular files (no directories,
links, or other entities that are represented in the file
system)

Shell Variables

= Variables have a name
= Can be referenced with $name
$ echo $SHELL
/bin/bash
$SHELL is a predefined variable
= Variables are defined with =
$ x=abcdefg
echo $x
Abcdefg
= Variables are unset with unset
$ unset x
= All variables printed with set

:-| Exit status

= On exit of a command a special variable
is filled

= $?
= Success: value is 0
= Failer: value 1= 0

$ Is afilethatdoesnotexist; echo $?

1

:-| Typed variables

= Declares typed variable with
= declare option varl ...
= Option may be
= - integer

35

$ a=5; b=7 $ declare —i a=5 b=7
$ result=%a*$b |$ declare —i result

$ echo $result $ result=%a*$b

5*7 $ echo $result

:-| Arithmetic Evaluation

= Bash supports arithmetic calcuations

= Evaluation via $((expression))
= Variables may be defined as strings!

= Example

$c=5

$ d=10

$ echo $((c+d*c+d))
58

:-| Subshells

= Variables only defined in current shell

= When new shell is started variable is not
known. Has to be exported.

$ x=abc $ x=abc
$ bash starts subshell |$ export x
$ echo $x $ bash

$ echo $x
(no output) abc

:-| Standard Streams

= Commands take input and output from
predefined standard streams
= Some commands do not use this input
= Standard Input (stream desciptor 0)
= Standard Output (stream desciptor 1)
= Standard Error (stream desciptor 2)
= Streams may be redirected

= Example: instead of keyboard a file may be used
as input

:-| Input Redirection

= Input redirection operator 0< (shorter: <)
= Lets files be input source instead of keyboard
= Principle syntax:
command 0< inputfile
= Example
= Files.txt contains a b
$ cat < files.txt
ab

Output redirection

= Output redirection operator 1>, 1>>, 1>| (shorter: >,>>>|)
= Redirects output to file instead of monitor
= Principle syntax:
command 1> outputfile
if file exists, outcome depends on noclobber option
that forbids accidently destroying files by redirection,
noclobber: $ set —o noclobber
redirect to existing file leads to an error

command 1>> outputfile (appends to file)
command 1>| outputfile (always creates
output file)
= Example

= Is > filecontents.txt
= Error redirection
= Via 2>, 2>>, 2>|

:-| Output and Error redirection

= Redirecting to different files
= Is 2>| error.txt 1>| output.txt

= If same file is used this may lead to an
file already open error
= >& has to be used

= Redirecting Output and Error to same
file
= Is 1> output.txt target 2>&1

:-| Pipes

= Often output of one command needed as
input of another command
= Instead of using files
= Use | (=pipe) symbol
= Example (count files in a directory)
= Is /etc > /tmp/etc_list # copy dir to file
= wc —| /tmp/etc_list # wordcount files
= With Pipes:
= Is /etc | ws -|

:-| tee command

= Copies standard input
= to standard output
= AND to a file / multiple files

:-| Multiple commands

= Sequence
= Separated either by ;
= In different lines
= Example: echo abc; Is .
= Grouped
= Inround braces ()
= Affects redirection
= Example: (echo abc; Is .) > result.txt
= Conditional
= Shell logical operators: && (=and) , || (=or)
= Shortcut evaluation as in C/Java/C#
= Example: cp nonExistingFile temp || echo "Copy failed"

:-| Escape character

= Some characters have special meaning
(metacharacters)
= Example:
= <space> separates command parts
= | <pipe> chains commands
= $ initiates variable substitution
 \, < > >
= If character should be printed:
= Escape with backslash \
= Example: \$, \\, \|

:-| Quotes

= Text in single quotes ' ' is removes meaning
of metacharacters:
« $ x="abc$ dfdf|xyz'; echo $x
abc$ dfdf|xyz
= Text in double quotes " " is similar
= Except: dollar sign ($) keeps its meaning
= Allows variable substitution in strings
= $ y="begin $x end"; echo $y
begin abc$ dfdf|xyz end

:-| Command substitution

= Execution of commands within strings
= $(command)
= In addition to variable substitution
= Example
echo "Das ist das heutige Datum: $(date)"
Das ist das heutige Datum: Thu Apr 27 ...

= Supports that (command) strings are built
dynamically and executed via command
substitution

:-| Aliases

= Allows assigning a name to a command string
= alias aliasname=command
= Has to put into quotes!
= Example: alias lIhome="Is $HOME"
= Lhome is a new command that lists all entries of
the home directory (stored in the $HOME
environment variable)
= Alias without arguments shows all defined
aliases

:-| Filter Commands

= Chaining different commands

= Most commands support input and
output streams in text formats

= Filters support transformation of these
text formats

= Chained via the pipe

= See Pipe & Filter Architectural Style
= In software Architecture

:-| Filter Commands

= cat — catenate
= Concatenates files
= head — beginning of a file
= tail — end of a file
= cut — extracts columns
= paste — combines lines together

= Columns of input files are put together for
each row

:-| Filter Commands

= sort - Sorts a file
= Row-wise by fields as sort key

= uniq — deletes duplicate lines in
sorted(!) files

= WC — count words,lines,characters
= diff — difference of two files
= Comm — commonalities among two files

:-| Command-Line Processing / 1

= Processing Order of Commands

= 1. Split into tokens

= 2. Check if 1st token is opening token
= Restart processing with nested command

= 3. Check if 1st token is alias

= Substitute alias string instead of alias,
restart

:-| Command-Line Processing / 2

= 4. Brace expansion
=« Example: a{b,c} becomes ab ac

= 5. Tilde Expansion

=~ will be replaced with home directory
= "Is ~" equivalent to "Is $SHOME"

= 6. Perform variable substitution $name
= 7. Perform command substitution $(cmd)
= 8. Evaluate arithmetic expressions $((a+b))

Command-Line Processing / 3

= 9. Splits result into words
= 10. Pathname expansion (expand *, ? with
files on disc)

= Pathnames are substituted by shell

= Unlike DOS or Windows shells
= 11. Uses first word as command

= Searches command:

Function in a script

Built-in command
File in any of the directories in $PATH

= 12. Setup redirection & start command

:-| Shell Scripts

= Text file that contains shell commands
= Supports writing reuseable commands
= Shells provide constructs

= Variables

= Control flow (if,switch,loops)

= Execution of commands

:-| Shell Script Structure

= Interpreter Designator
= First line of shell script

= Example:
= #!/bin/bash

= On start of the shell designator is used to find
correct shell interpreter for this script

= Shell commands
= Comments
= Initiated with #
= Shell designator is also comment

:-| Execute Permissions

= Shell Scripts need Execute permissions

= Can be assigned with the chmod
command

= Example:
= chmod o+x myscript

= Gives owner of the file execut permissions
= chmod a+x myscript

= Gives all users permission to execute script

:-| A simple Script

#!/bin/bash

first script

echo "A simple script"
Is /etc | we

$./myScript
A simple script

74 74 739

Conditionals

= For commands based on exit code

= Logical operators !, &&,|| supported
= Executes commands, evaluation based on exit codes
= Condition tests
= Condition within [] does not execute commands
= String comparisons (=,!=,<,>,-n,-z)
= -n tests string not null, -z tests string is null
= File attribute checking
= -a file exists
= -d file exists and is a directory
= -f file exists and is a regular file
= Integer Conditionals
= -It, -le, -eq, -ge, -gt, -ne (less than, less than or equal, ...)

Conditional Constructs -

:-| Samples

1. Is filedoesnotExist
= true if Is finds the file "filedoesnotExist"
2. [-a $filename]
= True if a file with name $filename
3 [$s ="xyz"]
= true if s contains the value xyz
4 [$i-eq4d2]

= true if icontains the integer value 42

10

Control Constructs / if

= Structure 1
if condition
then
statements
fi
= Structure 2
if condition
then
statements
else
statements
fi

Control Constructs -

:-| Conditions

#1/bin/bash
if [-a fileexists]
then
echo "fileexists exists"
else
echo "fileexists does not exist"
fi

Parameters & Variables

= Variables identically used as on the command line
= name=abc; echo $name

= Parameters

Can be provided on script startup

Referenced with $1,$2,$3,...

$0 is name of command

$# number of arguments

$* combines all arguments in one string

= not possible to use arguments in calls to other commands

= $@ list of all arguments

= Shift

= Shifts command-line arguments left

= shift 1: 1=%2; 2=%$3; 3=%4; ...

Control Constructs - loops

= While loop (as in Java)

= Loops until condition becomes false
while condition do

Statements
done
= Until loop

= Loops until condition becomes true
until condition do

Statements
done

11

:-| Control constructs - loops

= for loop

= Lets you iterate over a fixed list of
values

for varname in list
do

statements that use $varname
done

1.

3.

for-loop Example

foriin $@ 2. foriin $(Is /etc)
do do

wce $i wc "/etc/$i"
done done

numbers="12 3"
for i in $(echo $numbers)
do
echo $i
done

:-| Shell functions

= Functions within shell scripts

= Declared with "function name"
= Body inside curly braces {}

= Variables are global

= Local variables possible with local
keyword

Shell functions example
#!/bin/bash

function myfunc

{echo "$# args"”

}

myfunc "$*"

myfunc "$@"

12

:-| Exit Status

= Return Code to Calling Shall
= exit N
= exit0
= Command was ok
= return code=0
= exitl
= Error code 1

:-| Other constructs

= Case
= Similar to switch statement
= select
= Provides a menu and waits for a selection
= Like for loop
= Arithmetic for loop
= Like for loop in C/Java/C#

:-| Startup / Logoff scripts

= When user logs in
= Login shell is started

= Bash executes scripts from user's home directory
= .bash_profile, .bash_login, .profile
Not normally shown because of . Prefix
Sets search path, terminal settings, environment variables

= On ending login shell .bash_logout executed
= cleanup
= When a bash subshell is started
= executes .bash_rc from user's home directory

Regular Expressions

= Patterns of characters that are matched against text
= Used by grep, sed, awk to address target lines
= Atoms
= Specify what text is to be matched and where it is found
= Operators

= Important to know which elements are supported in
a tool

13

Atoms

Single character

= Must appear in the target text

Dot (.)

= Any character in the target text

Class []

= [ABC] or [A-Z] matches a class of characters
= ["BC] characters not B or C

= Anchors

= ™ beginning of line, $ end of line

Operators

= Sequence
= Series of atoms, all atoms must be matched
= Alternation |
= Either one or the other atom must be matched
= Repetition \{m,n\}
= An atom must be matched from m to n times
= NOT SUPPORTED by all tools!
= Short form *,+,?
= * means zero or more times
=+ means one or more times
= ? Means zero or one time
= Groupings ()
= Next operator after group applies to entire grouping

grep

= Name comes from a command in ed editor
= Global regular expression print (g/re/p)
= Variants:
= egrep (extended grep),
= fgrep (fast grep)
= Example:
= egrep '"~e|fun)' *

= Searches if lines exist that have either an e at the start
of a line or a fun.

sed

= sed=Stream Editor
= Not a real editor, no modification of input file
= Text Files
= Line-oriented
= Each line of input file is scanned
= Applies instructions to each line of a text file
= Scripts may contain multiple instructions

14

:-| sed - buffers

= "Pattern Space"
= Buffer that sed uses for operations

= Each input line is read and stored in the pattern
space

= "Hold Space"

= Additional buffer that is used for further
operations

= Usually spaces work line-oriented
= Larger amounts are supported
= Must be constructed manually

:-| sed — working principle

foreach line in input file {

copy line to "pattern space"

foreach instruction in sed-script {
if instruction.address matches line

apply instruction.command

:-| sed — options

= -N
= No automatic output of pattern space
= Allows scripts control of printing
= -e 'script’
= Inline script (within calling command)
= -f scriptfilename
= Invocation of file

:-| sed — Script Format

‘ address ‘ ! H command ‘

= Address specifies which input lines shall be processed
= | (optional) denotes if the address denotes denotes
the complement (= if it denotes all lines that shall
not be processed)
= Command specifies what shall be done with a line.
Usually specified with a single character
= Example p=print

15

:-| Sed — Addresses

= Specifies which lines shall be processed

= 4 address types
= Single-Line Address
= Set-of-Line Addresses
= Range Addresses
= Nested Addresses

Sed — Single Line Address

= Matches one single line
= Specified via line number
= Eg. 377 denotes 377th line
= Last line denoted via $

= Example
= sed -n —e '2p'
= Prints second line
= sed —n —e '$p’
= Print last line
= sed —n —e "2!p'
= Print all except second line

:-| sed — Set-of-Line Addresses

= Matches each line that matches a
regular expression
= /regular expression/
= Example (sed command omitted):
= '/Zeile/p’ input.txt
= Prints all lines that contain the string "Zeile"

:-| sed — Range Addresses

= May match zero or more lines
= start-address,end-address
= Each address may be line-number
= Each address may be a regular expression
= Example (sed command omitted)
= 2,4p prints lines 2-4
« /Das/,/Das/p prints lines from first
/Das/ to last.
= 1, /Das/p prints lines from 1 to last
with /Das/.

16

:-| sed — Nested Addresses

= Address contained in another address
= Nested address & command within { }
= Command within nested address
= Example:
= 1,3{
/[E|e]ine/!p
}

Prints all lines within the first three lines that
contain neither the word 'Eine' nor ‘eine’.

:-| sed - Commands

= Modify Commands
= insert (i) — inserts a text before address
= append (a) — appends a text after address
= change (c) — replaces line with text
= delete (d) — deletes line
= Substitute (s) — replaces text

sed — Modify Command
Samples

#lInsert text before first line
1i\
/*\
* Class: \
* Task:\
* Creation Date: 22.02.2006\

*/

sed —f creationsig.sed MyClass.java

:-| sed - substitute

‘ address ‘ s ‘ /regexp/newtext/ -

= Deletes text matched by regexp

= Instead uses newtext

= Flags:
= 1,2,3,... replacement of n-th occurence of regexp
= g = global replacement within line
= No flags means first occurence

17

sed — substitute Samples

m sed 's/ists/ISTs/'
= Replaces first ist
m sed 's/ists/ISTs/g'
= Replaces global (flag=g) within line
m sed 's/ists/ISTs/2'
= Replaces second occurence within line
= sed 's/ists//g’
= Removes all ists from all lines

sed — substitute back
references

= Parts of regular expressions may be reused in
the new added text

= & adds whole regular expression

= 9 buffers may be used

= Sub regular expression within \('\)

= Referenced with \1 - \9

Example: switch position of 2 tab-separated
columns

SACFOWCR)A2\NL/

sed — Hold space

= Secondary buffer
= Transfer between pattern space with commands

= Hold and destroy (h)
= Overwrites hold space with a copy of pattern space
= Hold and append (H)
= Appends pattern space to hold space
= Get and destroy (g)
= Overwrites pattern space with hold space
= Get and append (G)
= Appends hold space to pattern space
= Exchange
= Swaps hold space and pattern space

sed —Hold Space Example / 1

= Task: delete text between two words (first,second) that are

not in the same line

= First approach: isolate lines that are spanned by these words

= Address Range: /BEGIN/,/END/

= /BEGIN/,/JEND/d

Deletes too much(!), sed works normally line-oriented

= Solution:

1. Accumulate all lines from /BEGIN/ to /END/ into hold space

2. Copy/Exchange hold space to pattern space

s Substitute within this pattern space (remove /BEGIN.*END/)
= Only /BEGIN/ and /END/ are known!

= Add line with /BEGIN/

= Add lines between /BEGIN/ and /END/

= Add line with /END/

18

sed —Hold Space Example / 2

= Put line with /BEGIN/ in hold space

= /BEGIN/{
h # overwrite hold space
d # delete pattern space
Hold space Contains line with /BEGIN/, pattern space
empty
= Append lines without /END/ in hold
= /END/! {
H # append each line to hold space
d # delete pattern space

}

Hold space contains line with /BEGIN/, and lines
before /END/

:-| sed —Hold Space Example / 3

= Exchange hold space and pattern space
/END/{

X

G # append hold (END line) to pattern
}
pattern space contains now all lines
s/BEGIN.*END//

awk

= awk=
= Aho, Alfred V.
= Weinberger, Peter J.
= Kernigham, Brian W.

= Treats files as collection of records and
fields

:-| Awk- input file

93111111 Meier Mustermann 526
05222222 Susi Malermeister 534
98765432 Hubsi Muller 937

19

:-| Awk — basics :-| Awk — Script Layout

Record | BEGIN { Initial Processing Action}
Feld1 |[Field2 |[Field3 | [Fieldn | Pattern1 {Action}
Pattern2 {Action}
Pattern3 {Action}

= Iterates over records

= Records are read from file and stored
into a record buffer
= Called $0

END End Processing Action
= Fields can be referenced by $1, ... $n { g }

each part is optional!

:-| Awk — Begin Processing :-| Awk — Body Processing

= Initial processing is done ONCE = Data in a file is processed in a loop
= BEFORE awk starts reading the file foreach record do
= Used for setting awk variables

foreach action pattern
= Used for printing output headers

if (pattern matches current-record)
apply-action to record
end
end

:-| Awk - Patterns

= Simple Patterns

= BEGIN, END

= "No pattern" means apply always
= Regular Expressions

= ~ matches text: $0 ~ /regexp/

= !~ must not match text $2 !~ /otherregexp/
= Arithmetic Expressions (+,-,*,/,...)

= Matches when expressions evaluates not to 0: $3
+$1-%4

:-| Awk — Combined Patterns

= Patterns may be combined with
= Relational Expressions
=)= < > > <=
= Logical Expressions
= 1,&&,]| as in Java
= Range Patterns
= Start-pattern, end-pattern

:-| Awk — end processing

= Invoked once after all input data has
been read and all actions have been
invoked

:-| Awk - Sample

= Adds numbers in a file
BEGIN { print "Gesamtsumme"

total = 0}
{ total +=$1}
END { print "------ "

print "Total Sales", total }

21

:-| Awk - Statements

= print
= Prints Text and variables
= When separated via , printed into fields of output format
= Formatted print with printf or sprintf (see C language)
= Variable assignment
= name=value
= Variable usage
= With its name
= Within strings $name
= Fields with $1 to $n, Records with $0

:-| Awk — Control constructs

= if-else
= next

= Skips processing of record
= Like continue in Java

= getline
= Reads next record but continues processing at current script
posmon
= Loops
= while,do-while,for
= Associative arrays
= Similar to Java Hashtable

:-| Record types

= Awk controls the format of records and
fields with predefined variables

= FS = Input Field Separator

= RS = Input Record Separator

= OFS = Output Field Separator

= ORS = OQutput Record Separator
= May be changed in BEGIN block

:-| Other record types

BEGIN { FS=""
OFS=":"

{ print $1, $2, $3 }

22

,_:| Awk — Predefined variables

= NF — number of non empty fields within

Awk - Functions

= String functions
= Length, Index, Substring, Split, substitution, global

a record " ;l:bstitu;ionl
= athematical
= NR — number of records read from all « int - round to integer
il = rand,srand (random numbers),
les = Angle functions (cos,sin,...)
= FNR — number of records read in . UseErxfnf;'I’e‘?d functions
current file function m)}OwnFunction(x,y) {
. 1 ;
= FILENAME — name of current file } e
,_:| Awk — system functions Literatur

= Calling System functions from awk scripts
= Syntax: system("UNIX command")
= Return value is exit code

BEGIN {
if (system ("wc input.txt") !=0) {

= Shells and Unix Commands

= Forouzan and Gilberg: UNIX and Shell Programming,
Brooks/Cole

Peek et al: UNIX Power Tools, O'Reilly
= Newham and Rosenblatt: Learning the bash Shell, O'Reilly
= GNU Bash Manual:
http://www.gnu.org/software/bash/manual/bash.html
= sed & awk
= Dougherty & Robbins: sed & awk, O'Reilly
= GNU awk http://www.gnu.org/software/gawk/manual/
= GNU sed http://www.gnu.org/software/sed/manual/sed.html

23

:-| Summary / 1

= Shells
= Link between end user and operating
system
= Power comes from chaining Unix
commands
= File system operations
= Filters
= Scripts build new commands
= Command Line Processing

:-| Summary / 2

= Regular Expressions
= grep
= Editors
= Sed
= Line based
= Awk
= Record & Field based

24

