
Network Services

Unix Shell Scripts

Johann Oberleitner
SS 2006

Agenda

Unix Command Line Processing
Filters

Shell Scripts
Regular Expressions

grep

sed
awk

UNIX Shells

Shells are normal programs
Provides a command-line interface to OS
One shell is started after login

Which shell is stored in /etc/passwd

May be started from a shell
subshell

Link between end-user and operating system

Supports execution of shell scripts
Available on most operating systems

Shells
sh - Bourne Shell

original shell
bash - Bourne Again Shell

Advanced version of sh
ksh – Korn Shell

Advanced version of ksh
csh - C Shell

Some operations taken from C prog. Language
tcsh – Tenex C Shell

Advanced version of csh
Cmd.exe – WinNT-WinXP

Poor
Powershell (MSH)

New Microsoft Shell
Many features as in UNIX shells

Bash

Most used shell on Linux systems
Available for most operating systems

also for Windows

Feature rich
Compatible with sh
Most features as in ksh

Commands

Command – name of command
Option(s)

Modifies how command works
Usually Character(s) preceded by +/-
Sometimes no +/-

Targets on which command operates

command options Argument1…

Builtin-Commands

Provided by the shell itself
cd – change directory
pushd,popd – directory stack
fg,bg – job control commands
shift – shift command line arguments
exit (logout) – exit from (login) shell
…

echo

Copies input arguments to output
Example:
$ echo simple test
simple test

man + help

man
Manual pages for commands
man find

Shows manual page for the find command

help
Help pages for built-in commands
help alias

Shows help page for the alias command

Commands for file system

pwd – print working directory
ls – list directory
cd – change directory
mkdir – make directory
rmdir - remove directory

Commands for files

cat – (con)catenates files
more – prints file

If more than one page, waits on space key
less similar – much better

Supports backward scrollingyx
cp – copy files/directories
mv – move files/directories

Also used for renaming
rm – remove files/directories

Find files/directories
find pathname criteria
Finds all files in the directory (and
subdirectories) given by pathname that
satisfy the given criteria
Example

find . –name abc
All files in local directory (and subdirectories) that have a
name containing abc

find . –type f
Returns all files that are regular files (no directories,
links, or other entities that are represented in the file
system)

Shell Variables
Variables have a name
Can be referenced with $name
$ echo $SHELL
/bin/bash

$SHELL is a predefined variable
Variables are defined with =
$ x=abcdefg
echo $x
Abcdefg

Variables are unset with unset
$ unset x

All variables printed with set

Exit status

On exit of a command a special variable
is filled
$?

Success: value is 0
Failer: value != 0

$ ls afilethatdoesnotexist; echo $?
1

Typed variables

Declares typed variable with
declare option var1 …
Option may be

-i integer

$ declare –i a=5 b=7
$ declare –i result
$ result=$a*$b
$ echo $result
35

$ a=5; b=7
$ result=$a*$b
$ echo $result
5*7

Arithmetic Evaluation

Bash supports arithmetic calcuations
Evaluation via $((expression))

Variables may be defined as strings!

Example
$ c=5
$ d=10
$ echo $((c+d*c+d))
58

Subshells

Variables only defined in current shell
When new shell is started variable is not
known. Has to be exported.

$ x=abc
$ export x
$ bash
$ echo $x
abc

$ x=abc
$ bash starts subshell
$ echo $x

(no output)

Standard Streams

Commands take input and output from
predefined standard streams

Some commands do not use this input
Standard Input (stream desciptor 0)
Standard Output (stream desciptor 1)
Standard Error (stream desciptor 2)
Streams may be redirected

Example: instead of keyboard a file may be used
as input

Input Redirection

Input redirection operator 0< (shorter: <)
Lets files be input source instead of keyboard

Principle syntax:
command 0< inputfile

Example
Files.txt contains a b

$ cat < files.txt
a b

Output redirection
Output redirection operator 1>, 1>>, 1>| (shorter: >,>>,>|)

Redirects output to file instead of monitor
Principle syntax:
command 1> outputfile

if file exists, outcome depends on noclobber option
that forbids accidently destroying files by redirection,
noclobber: $ set –o noclobber
redirect to existing file leads to an error

command 1>> outputfile (appends to file)
command 1>| outputfile (always creates

output file)
Example

ls > filecontents.txt
Error redirection

Via 2>, 2>>, 2>|

Output and Error redirection

Redirecting to different files
ls 2>| error.txt 1>| output.txt

If same file is used this may lead to an
file already open error

>& has to be used
Redirecting Output and Error to same
file

ls 1> output.txt target 2>&1

Pipes

Often output of one command needed as
input of another command
Instead of using files

Use | (=pipe) symbol
Example (count files in a directory)

ls /etc > /tmp/etc_list # copy dir to file
wc –l /tmp/etc_list # wordcount files

With Pipes:
ls /etc | ws -l

tee command

Copies standard input
to standard output
AND to a file / multiple files

Multiple commands
Sequence

Separated either by ;
In different lines
Example: echo abc; ls .

Grouped
In round braces ()
Affects redirection
Example: (echo abc; ls .) > result.txt

Conditional
Shell logical operators: && (=and) , || (=or)
Shortcut evaluation as in C/Java/C#
Example: cp nonExistingFile temp || echo "Copy failed"

Escape character
Some characters have special meaning
(metacharacters)
Example:

<space> separates command parts
| <pipe> chains commands
$ initiates variable substitution
\, <, >, >>

If character should be printed:
Escape with backslash \
Example: \$, \\, \|

Quotes

Text in single quotes ' ' is removes meaning
of metacharacters:

$ x='abc$ dfdf|xyz'; echo $x
abc$ dfdf|xyz

Text in double quotes " " is similar
Except: dollar sign ($) keeps its meaning

Allows variable substitution in strings

$ y="begin $x end"; echo $y
begin abc$ dfdf|xyz end

Command substitution

Execution of commands within strings
$(command)
In addition to variable substitution
Example
echo "Das ist das heutige Datum: $(date)"
Das ist das heutige Datum: Thu Apr 27 …

Supports that (command) strings are built
dynamically and executed via command
substitution

Aliases

Allows assigning a name to a command string
alias aliasname=command

Has to put into quotes!

Example: alias lhome="ls $HOME"
Lhome is a new command that lists all entries of
the home directory (stored in the $HOME
environment variable)

Alias without arguments shows all defined
aliases

Filter Commands

Chaining different commands
Most commands support input and
output streams in text formats
Filters support transformation of these
text formats
Chained via the pipe
See Pipe & Filter Architectural Style

In software Architecture

Filter Commands

cat – catenate
Concatenates files

head – beginning of a file
tail – end of a file
cut – extracts columns
paste – combines lines together

Columns of input files are put together for
each row

Filter Commands

sort - Sorts a file
Row-wise by fields as sort key

uniq – deletes duplicate lines in
sorted(!) files
wc – count words,lines,characters
diff – difference of two files
Comm – commonalities among two files

Command-Line Processing / 1

Processing Order of Commands

1. Split into tokens
2. Check if 1st token is opening token

Restart processing with nested command
3. Check if 1st token is alias

Substitute alias string instead of alias,
restart

Command-Line Processing / 2

4. Brace expansion
Example: a{b,c} becomes ab ac

5. Tilde Expansion
~ will be replaced with home directory

"ls ~" equivalent to "ls $HOME"

6. Perform variable substitution $name
7. Perform command substitution $(cmd)
8. Evaluate arithmetic expressions $((a+b))

Command-Line Processing / 3
9. Splits result into words
10. Pathname expansion (expand *, ? with
files on disc)

Pathnames are substituted by shell
Unlike DOS or Windows shells

11. Uses first word as command
Searches command:

1. Function in a script
2. Built-in command
3. File in any of the directories in $PATH

12. Setup redirection & start command

Shell Scripts

Text file that contains shell commands
Supports writing reuseable commands
Shells provide constructs

Variables
Control flow (if,switch,loops)
Execution of commands

Shell Script Structure

Interpreter Designator
First line of shell script
Example:

#!/bin/bash
On start of the shell designator is used to find
correct shell interpreter for this script

Shell commands
Comments

Initiated with #
Shell designator is also comment

Execute Permissions

Shell Scripts need Execute permissions
Can be assigned with the chmod
command
Example:
chmod o+x myscript

Gives owner of the file execut permissions
chmod a+x myscript

Gives all users permission to execute script

A simple Script

#!/bin/bash
first script
echo "A simple script"
ls /etc | wc

$./myScript

A simple script

74 74 739

Conditionals
For commands based on exit code
Logical operators !, &&,|| supported

Executes commands, evaluation based on exit codes
Condition tests

Condition within [] does not execute commands
String comparisons (=,!=,<,>,-n,-z)

-n tests string not null, -z tests string is null
File attribute checking

-a file exists
-d file exists and is a directory
-f file exists and is a regular file

Integer Conditionals
-lt, -le, -eq, -ge, -gt, -ne (less than, less than or equal, …)

Conditional Constructs -
Samples

1. ls filedoesnotExist
true if ls finds the file "filedoesnotExist"

2. [-a $filename]
True if a file with name $filename

3. [$s = "xyz"]
true if s contains the value xyz

4. [$i –eq 42]
true if i contains the integer value 42

Control Constructs / if
Structure 1

if condition
then

statements
fi

Structure 2
if condition
then

statements
else

statements
fi

Control Constructs -
Conditions

#!/bin/bash
if [-a fileexists]
then

echo "fileexists exists"
else

echo "fileexists does not exist"
fi

Parameters & Variables
Variables identically used as on the command line

name=abc; echo $name
Parameters

Can be provided on script startup
Referenced with $1,$2,$3,…
$0 is name of command
$# number of arguments
$* combines all arguments in one string

not possible to use arguments in calls to other commands
$@ list of all arguments

Shift
Shifts command-line arguments left
shift 1 : 1=$2; 2=$3; 3=$4; …

Control Constructs - loops
While loop (as in Java)

Loops until condition becomes false
while condition do

Statements
done

Until loop
Loops until condition becomes true

until condition do
Statements

done

Control constructs - loops

for loop
Lets you iterate over a fixed list of
values

for varname in list
do

statements that use $varname
done

for-loop Example
for i in $@
do

wc $i
done

numbers="1 2 3"
for i in $(echo $numbers)
do

echo $i
done

for i in $(ls /etc)
do

wc "/etc/$i"
done

1.

3.

2.

Shell functions

Functions within shell scripts
Declared with "function name"
Body inside curly braces {}
Variables are global
Local variables possible with local
keyword

Shell functions example
#!/bin/bash

function myfunc
{
echo "$# args"

}

myfunc "$*"

myfunc "$@"

Exit Status

Return Code to Calling Shall
exit N

exit 0
Command was ok
return code=0

exit 1
Error code 1

…

Other constructs

case
Similar to switch statement

select
Provides a menu and waits for a selection
Like for loop

Arithmetic for loop
Like for loop in C/Java/C#

Startup / Logoff scripts

When user logs in
Login shell is started
Bash executes scripts from user's home directory

.bash_profile, .bash_login, .profile
Not normally shown because of . Prefix
Sets search path, terminal settings, environment variables

On ending login shell .bash_logout executed
cleanup

When a bash subshell is started
executes .bash_rc from user's home directory

Regular Expressions
Patterns of characters that are matched against text
Used by grep, sed, awk to address target lines
Atoms

Specify what text is to be matched and where it is found
Operators

Important to know which elements are supported in
a tool

Atoms

Single character
Must appear in the target text

Dot (.)
Any character in the target text

Class []
[ABC] or [A-Z] matches a class of characters
[^BC] characters not B or C

Anchors
^ beginning of line, $ end of line

Operators
Sequence

Series of atoms, all atoms must be matched
Alternation |

Either one or the other atom must be matched
Repetition \{m,n\}

An atom must be matched from m to n times
NOT SUPPORTED by all tools!

Short form *,+,?
* means zero or more times
+ means one or more times
? Means zero or one time

Groupings ()
Next operator after group applies to entire grouping

grep

Name comes from a command in ed editor
Global regular expression print (g/re/p)
Variants:

egrep (extended grep),
fgrep (fast grep)

Example:
egrep '^(e|fun)' *

Searches if lines exist that have either an e at the start
of a line or a fun.

sed

sed=Stream Editor
Not a real editor, no modification of input file

Text Files
Line-oriented

Each line of input file is scanned
Applies instructions to each line of a text file
Scripts may contain multiple instructions

sed - buffers

"Pattern Space"
Buffer that sed uses for operations
Each input line is read and stored in the pattern
space

"Hold Space"
Additional buffer that is used for further
operations

Usually spaces work line-oriented
Larger amounts are supported
Must be constructed manually

sed – working principle

foreach line in input file {
copy line to "pattern space"
foreach instruction in sed-script {

if instruction.address matches line

apply instruction.command
}

}

sed – options

-n
No automatic output of pattern space
Allows scripts control of printing

-e 'script'
Inline script (within calling command)

-f scriptfilename
Invocation of file

sed – Script Format

Address specifies which input lines shall be processed
! (optional) denotes if the address denotes denotes
the complement (= if it denotes all lines that shall
not be processed)
Command specifies what shall be done with a line.

Usually specified with a single character
Example p=print

address ! command

Sed – Addresses

Specifies which lines shall be processed
4 address types

Single-Line Address
Set-of-Line Addresses
Range Addresses
Nested Addresses

Sed – Single Line Address
Matches one single line

Specified via line number
Eg. 377 denotes 377th line

Last line denoted via $
Example

sed –n –e '2p'
Prints second line

sed –n –e '$p'
Print last line

sed –n –e '2!p'
Print all except second line

sed – Set-of-Line Addresses

Matches each line that matches a
regular expression

/regular expression/

Example (sed command omitted):
'/Zeile/p' input.txt

Prints all lines that contain the string "Zeile"

sed – Range Addresses

May match zero or more lines
start-address,end-address

Each address may be line-number
Each address may be a regular expression

Example (sed command omitted)
2,4p prints lines 2-4
/Das/,/Das/p prints lines from first

/Das/ to last.
1, /Das/p prints lines from 1 to last

with /Das/.

sed – Nested Addresses

Address contained in another address
Nested address & command within { }
Command within nested address

Example:
1,3{

/[E|e]ine/!p
}
Prints all lines within the first three lines that

contain neither the word 'Eine' nor 'eine'.

sed - Commands

Modify Commands
insert (i) – inserts a text before address
append (a) – appends a text after address
change (c) – replaces line with text
delete (d) – deletes line
Substitute (s) – replaces text

sed – Modify Command
Samples
#Insert text before first line
1i\
/*\

* Class: \
* Task:\
* Creation Date: 22.02.2006\
…

*/

sed –f creationsig.sed MyClass.java

sed - substitute

Deletes text matched by regexp
Instead uses newtext
Flags:

1,2,3,… replacement of n-th occurence of regexp
g = global replacement within line
No flags means first occurence

address s flag/regexp/newtext/

sed – substitute Samples

sed 's/ists/ISTs/'
Replaces first ist

sed 's/ists/ISTs/g'
Replaces global (flag=g) within line

sed 's/ists/ISTs/2'
Replaces second occurence within line

sed 's/ists//g'
Removes all ists from all lines

sed – substitute back
references

Parts of regular expressions may be reused in
the new added text
& adds whole regular expression
9 buffers may be used

Sub regular expression within \(\)
Referenced with \1 - \9

Example: switch position of 2 tab-separated
columns

s/\(.*\)\t\(.*\)/\2\t\1/

sed – Hold space
Secondary buffer

Transfer between pattern space with commands

Hold and destroy (h)
Overwrites hold space with a copy of pattern space

Hold and append (H)
Appends pattern space to hold space

Get and destroy (g)
Overwrites pattern space with hold space

Get and append (G)
Appends hold space to pattern space

Exchange
Swaps hold space and pattern space

sed –Hold Space Example / 1
Task: delete text between two words (first,second) that are
not in the same line

First approach: isolate lines that are spanned by these words
Address Range: /BEGIN/,/END/
/BEGIN/,/END/d

Deletes too much(!), sed works normally line-oriented
Solution:

1. Accumulate all lines from /BEGIN/ to /END/ into hold space
2. Copy/Exchange hold space to pattern space
3. Substitute within this pattern space (remove /BEGIN.*END/)
Only /BEGIN/ and /END/ are known!

Add line with /BEGIN/
Add lines between /BEGIN/ and /END/
Add line with /END/

sed –Hold Space Example / 2
Put line with /BEGIN/ in hold space

/BEGIN/{
h # overwrite hold space
d # delete pattern space

}
Hold space Contains line with /BEGIN/, pattern space
empty

Append lines without /END/ in hold
/END/! {

H # append each line to hold space
d # delete pattern space

}
Hold space contains line with /BEGIN/, and lines
before /END/

sed –Hold Space Example / 3

Exchange hold space and pattern space
/END/{

x
G # append hold (END line) to pattern

}
pattern space contains now all lines
s/BEGIN.*END//

awk

awk=
Aho, Alfred V.
Weinberger, Peter J.
Kernigham, Brian W.

Treats files as collection of records and
fields

Awk- input file

93111111 Meier Mustermann 526
05222222 Susi Malermeister 534
98765432 Hubsi Müller 937

Awk – basics

Iterates over records
Records are read from file and stored
into a record buffer

Called $0

Fields can be referenced by $1, … $n

Record

Field 1 Field 2 Field 3 Field n…

Awk – Script Layout

BEGIN { Initial Processing Action}
Pattern1 {Action}
Pattern2 {Action}
Pattern3 {Action}

…
END { End Processing Action }
each part is optional!

Awk – Begin Processing

Initial processing is done ONCE
BEFORE awk starts reading the file
Used for setting awk variables
Used for printing output headers

Awk – Body Processing

Data in a file is processed in a loop
foreach record do

foreach action pattern
if (pattern matches current-record)

apply-action to record
end

end

Awk - Patterns

Simple Patterns
BEGIN, END
"No pattern" means apply always

Regular Expressions
~ matches text: $0 ~ /regexp/
!~ must not match text $2 !~ /otherregexp/

Arithmetic Expressions (+,-,*,/,…)
Matches when expressions evaluates not to 0: $3
+ $1 - $4

Awk – Combined Patterns

Patterns may be combined with
Relational Expressions

==,!=,<,>,>=,<=

Logical Expressions
!,&&,|| as in Java

Range Patterns
Start-pattern, end-pattern

Awk – end processing

Invoked once after all input data has
been read and all actions have been
invoked

Awk - Sample

Adds numbers in a file
BEGIN { print "Gesamtsumme"

total = 0}
{ total += $1 }

END { print "------"
print "Total Sales", total }

Awk - Statements
print

Prints Text and variables
When separated via , printed into fields of output format
Formatted print with printf or sprintf (see C language)

Variable assignment
name=value

Variable usage
With its name
Within strings $name
Fields with $1 to $n, Records with $0

Awk – Control constructs
if-else
next

Skips processing of record
Like continue in Java

getline
Reads next record but continues processing at current script
position

Loops
while,do-while,for

Associative arrays
Similar to Java Hashtable

Record types

Awk controls the format of records and
fields with predefined variables
FS = Input Field Separator
RS = Input Record Separator
OFS = Output Field Separator
ORS = Output Record Separator
May be changed in BEGIN block

Other record types

BEGIN { FS=","
OFS=":"

}
{ print $1, $2, $3 }

Awk – Predefined variables

NF – number of non empty fields within
a record
NR – number of records read from all
files
FNR – number of records read in
current file
FILENAME – name of current file

Awk - Functions
String functions

Length, Index, Substring, Split, substitution, global
substitution

Mathematical
int – round to integer
rand,srand (random numbers),
Angle functions (cos,sin,…)

User defined functions
Example:

function myOwnFunction(x,y) {
return x;

}

Awk – system functions

Calling System functions from awk scripts
Syntax: system("UNIX command")
Return value is exit code

BEGIN {
if (system ("wc input.txt") != 0) {
….
}

}

Literatur
Shells and Unix Commands

Forouzan and Gilberg: UNIX and Shell Programming,
Brooks/Cole
Peek et al: UNIX Power Tools, O'Reilly
Newham and Rosenblatt: Learning the bash Shell, O'Reilly
GNU Bash Manual:
http://www.gnu.org/software/bash/manual/bash.html

sed & awk
Dougherty & Robbins: sed & awk, O'Reilly
GNU awk http://www.gnu.org/software/gawk/manual/
GNU sed http://www.gnu.org/software/sed/manual/sed.html

Summary / 1

Shells
Link between end user and operating
system
Power comes from chaining Unix
commands

File system operations
Filters
Scripts build new commands

Command Line Processing

Summary / 2

Regular Expressions
grep

Editors
Sed

Line based

Awk
Record & Field based

