:-| Agenda

_ = Symmetric/Asymmetric Cryptopgraphy
* Network Services

SSL/TLS, SSH

Symmetric/Secret Key Asymmetric/Public Key
:.| Cryptography :-| Cryptography
= Sender A encrypts a message m with a Key k = Key consists of private part + public part
« Result is e(m) = Sender A encrypts a message m with a public
key part pu

= Receiver B decrypts message e(m) with same « Result is also e(m)
Key k = Receiver B decrypts message e(m) with
= Key k has to be known by A+B prlve_lte key part priv
= Application of Key on message is a Public key known by anybody (also A)
mathematical function Private key ONLY known by B

= Encryption and decryption inverse functions Encryptl_on I.S appll_catl_on of pu_bllc key
Decryption is application of private key

:-| Asymmetric Signatures

= Signation done by encrypting message with
private key
= Results in Signature
= Whole message consists of message + signature
= Verification done by decrypting message with
public key
= Usually hash over message contents+header
is used as signature

= Digitnal Signature Algorithm (DSA)

Combining secret and public key

:-| cryptography

= Asymmetric algorithms
= Rather slow

= Used for key exchange of symmetric cryptographic
algorithms

= Key requires structure (private+public)
= Based on large prime numbers
= RSA, El Gamal
= Diffie-Hellman Key exchange algorithm
= Symmetric
= Rather fast

= Key Usually unstructured (eg. 128bit random
number)

= DES,3DES,AES (Rindjael)

:-| Public Key Certificates

= Critical that public key is not forged

= Public Key Certificates
= ldentify subjects by subjects names
= Usually identifies a host
= Key information about a subject (usually
public key)
= Issued by a trusted organization
(certification authority - CA)

X.509 Certificate

Field entry Description Example
Version Version of X.509 Standard 3
Serial Number Assigned by CA 12345678
Algorithm Identifier MD5 hash and RSA signing RSA
Issuer Cert. Authority VeriSign
Period of Validity Time When valid
Subject Describes invididum who ones | Country Austria
the certificate Common Name NWS-
TUWien
Subject's public key RSA 0x308188...
Extensions Vendor specific
Signature Issuer creates signature with | 0x4C2170...
its private key over certificate

Certification Authorities

= Private authorities
= Generate certifications strictly for their own users
= Eg. Company for their employees' computer
= Systems outside the company need/should not
accept certificates
= Public authorities
= Issues certificates to the general public
= May prove identity by certificates themselves
= Issuer and subject one and the same

i Certificates

= Validity of certificate authorities
= Depends on browser manufactorers
= Recognize certificates from important certificate authorities
= Certificate Revocation Lists
= Certificates that are no longer valid
= No standardized way to check these lists
= Hierarchies of certificate authorities
= Subsidiary authorities assigned by certificate authorities
= Build a trust hierarchy
= Not necessary to identify all identities itself
= Not required that all parties trust all certificate authorities
= Recursive resolution
= Somewhere authority that is trusted must be met

Certificate Hierarchy

i SSL/TLS

= Secure Sockets Layer (SSL)
= Introduced by Netscape (SSL 1.0 1994)
= Netscape Navigator ships with SSL 2.0 late 1994
= Transport Layer Security (TLS) — RFC 2246
= TLS is successor of SSL
= Standardized by IETF
= Published in 1999
= Principally new version of SSL
= Used in many applications
= Primarily in Web applications (HTTP)
= Also used in EMail

SSL

= Separate protocol for security
= Between Application specific protocol and TCP protocol
= Advantage: arbitrary applications may use SSL/TLS
= Different SSL protocols
= Encryption
= Authentication of server
= Authentication of client
= Continuation of previous negotiated session
= Different cipher suites
= RSA, DH
= DES,3DES,RC4
= SHA,MD5

SSL — Negotiation of Encrypted
Commands

Client ClientHello Server

ServerHello

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

SSL Commands / 1

= ClientHello
= Starts SSL communication between 2 parties
= Parameter
= Version - Sends hightest version number SSL client supports
(currently 3.0 for SSL, 3.1 for TLS)
= RandomNumber - Sends a random number (includes date+time)
= SessionID — empty in this operation mode
= CypherSuites — cryptographic services client supports
= Algorithms, key sizes
= CompressionMethods
= Must be applied before encryption
= Not included in SSL

SSL Commands / 2

= ServerHello
= Version - of SSL protocol used
= RandomNumber - chosen by server
= SessionlID — calculated by the server

= CypherSuite — Cryptographic parameters
selected by the server from the client's
previous CypherSuites parameter

= CompressionMethod

SSL Commands / 3

= ServerKeyExchange
= Transmits public key information itself
= Example: algorithm=RSA,

= Sends the public key
(modulus and public exponent of server's public key)

= No encryption applied here
= ServerHelloDone
= Server has finished its negotiation

SSL Commands / 4

= ClientkeyExchange
= Transmits Client keys information
= Key for Symmetric encryption algorithms
« Different keys for sending/receiving
= Client creates keys
= Encrypted with Server's public key
= Completes the preliminary SSL negotation
= ChangeCipherSpec
= Special command that “Activates” Security Services
= "changes algorithms & keys"
= Finished
= Message is already encrypted, has to be decrypted by other party
= Sends key information
= Sends all previous SSL handshake messages

SSL Write/Read state

= Client and Server maintain
= Information about security services used
= Specific Symmetric encryption algorithm
= Specific Message integrity algorithm (Message authenthication Code)
= Specific key material for those algorithms
Different for each direction!
= Active and Pending fields for write+read state
= Write fields for data the client/server sends
= Read fields for date the client/server receives
= Can only be activated when above (pending) information is complete
Activated by ChangeCipherSpec
= Other Client and Server messages fills only Pending fields
= Literature
= Stephen Thomas: “SSL and TLS Essentials: Securing the Web"

Pending/Active states — Client

Write Read ClientHello
Act_|Pnd | Act | Pnd (Active state to null=no security
Encr | Null | ? Null_|? , pending states are unknown)
MAC | Null | ? Null | ?
key null | ? null ? s Hell
erverHello
Write Read

(Client knows algorithms server has selected),
Act Pnd | Act Pnd

Encr |null | DES |Null |DES

MAC |Null | MD5 |Null |MD5 ServerKeyExchange
key [nul |2 Null | ? ServerHelloDone
Write Read .
Act |Pnd | Act |Pnd ClientKeyExchange
Encr | null | DES | Null | DES (pending Keys are created by client)

MAC | Null | MD5 | Null MD5

key | null | xyz Null | xxx

Pending/Active states — Client

i Write Read ChangeCipherSpec

(switch Write/Send to Active)
Act Pnd Act Pnd
Encr | DES |? Null | DES
MAC |MD5 |? Null | MD5 Finished
key Xyz ? Null XXX
ChangeCipherSpec
Write Read

(switch Read/Receive to Active)

Encr | DES |? DES |?

MAC | MD5 |? MD5 | ? .
Finished

key Xyz ? XXX ?

SSL — Authenticating Server's
identity

= Server sends certificate message
= Certificate with Public key
= Client verifies validity of certificate
= Certificate Signatures, Validity Times, Revocation
Status
= Checks domain name of web site with domain
name stored in certificate (Subject)
= Eg. Server located at “www.mydomain.org" and
certificate valid only for www.otherdomain.org
= Client's ClientKeyExchange uses public key in
certificate
= Sometimes another public key may be used
Example US Export restrictions (cryptographic key lengths)

SSL — Authenticating Server

ClientHello .
ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

SSL — Authenticating Client's
Identity

ClientHello
ServerHello

Certificate

CertificateRequest
ServerHelloDone

Certificate

ClientKeyExchange

CertificateVerify

ChangeCipherSpec

Finished
ChangeCipherSpec
Finished

SSL — Authenticating Client's
Identity

= Server wants to authenticate the Client's
identity
= Server indicates wish to authenticate Client's
identity by sending a CertificateRequest message
= Client sends its own Certificate within Certificate
message
= Client's public key within the certificate is used for
signatures only — no encryption
= Client proves that it posseses the certificate by
submitting a CertificateVerify message
= Encrypted with private key

= Over key information + all previous SSL handshake
messages exchanged by both systems

SSL - Limitations

= Protocol limitations
= Requires connection-oriented transport protocol such as TCP
= Does not support non-repudiation
= Tool limitations
= Relies on other components such as cryptographic
algorithms
= Environmental limitation
= Security provided only on the transmission network

= The path to the network and from the network is not
secured

TLS — Differences to SSL

Protocol version 3.1

More procedures for potential and actual

security alerts

= 23 instead of 12

= Eg. Certificate-Revoked

Message authentication standardized

= Uses H-MAC (hashed Message Authentication
Code)

= Combines (Sequence number,TLS protocol message
type, TLS version, Message length, Message contents)

= Instead of SSL combination of key information and
application data

More cipher suites

HTTPS

= HTTPS (HTTP over TLS) — RFC 2818
= HTTP Client starts with sending TLS ClientHello
= Standard Port 443
= Upgrading to TLS within HTTP/1.1 — RFC 2817
= Allows secured and unsecured HTTP to share the same port
= Client may send an HTTP/1.1 request with an "Upgrade:
TLS/1.0" header field

= Server may either respond with normal response or switch to
secured TLS communication

If the Upgrade is mandatory the client must send an
OPTIONS request with an Upgrade TLS/1.0 header field
= Server may respond to normal request with with "426
Upgrade Required" response

= The request requires secure communication

HTTPS / Example

Client:

OPTIONS * HTTP/1.1

Host: dsg.infosys.tuwien.ac.at
Upgrade: TLS/1.0
Connection: Upgrade

Server:
HTTP/1.1 101 Switching Protocols

Upgrade: TLS/1.0, HTTP/1.1
Connection: Upgrade

Secure Shell (SSH)

s RFCs 4250-4256, and others

= "Protocol for secure remote login and other
secure network services over an insecure
network"

= SSH Standard means for secure shell access
on Unix machines

= Supports Automatic host key authentication

= Clients that come from one particular HOST can
automatically be authenticated

SSH Transport Layer Protocol

= Supports
= Strong encryption
= Server authentication
= Integrity protection
= May support compression
= Supports different algorithms
= Key Exchange (eg. Diffie-Helmann)
= Used to exchange keys between client / server
= Server Host Key Algorithms (ssh-rsa,ssh-dss)
= Encryption Algorithms (symmetric) (aes128, 3des,...)
« Data encryption
= Mac Algorithms (hmac-md5, mac-shal, ...)
= For generating message authentication code
= Compression Algorithms (zlib)
= Algorithms negotiated during Key Exchange Messages

SSH Transport Layer Protocol
/1

= Usually over TCP/IP, Standard Port 22
Client initiates connection to server
1. Server responds with identification string

= Example: Server sends SSH-2.0-OpenSSH_3.9p1
2. Client sends also identification string
3. Server sends Key Exchange Init

= Includes supported algorithms
4. Client sends also Key Exchange Init

= Includes supported algorithms

SSH Transport Layer Protocol

:-|/2

5. Client sends Key Exchange Message
= Eg. Diffie-Hellman GEX Request
6. Server replies Key Exchange Reply
7. Client sends Diffie-Hellman GEX Init
s. Server sends Diffie-Hellman GEX Reply
o. Client sends "New Keys"

= From this point on all communication is
encrypted

:-| SSH Channels

= Channels are means for communicating with
SSH
= Each channels has a specific number
= Multiple channels possible at the same time
= SSH_MSG_CHANNEL_REQUEST
= Channels
= X11 Forwarding ("x11" parameter)
= Starting a remote Command ("exec" command)
= Starting a remote shell ("shell")

:-| Summary

= Most important cryptography
= SSL/TLS
= SSH

