
1

Network Services

SSL/TLS, SSH

Agenda

Symmetric/Asymmetric Cryptopgraphy

Symmetric/Secret Key
Cryptography

Sender A encrypts a message m with a Key k
Result is e(m)

Receiver B decrypts message e(m) with same
Key k
Key k has to be known by A+B
Application of Key on message is a
mathematical function

Encryption and decryption inverse functions

Asymmetric/Public Key
Cryptography

Key consists of private part + public part
Sender A encrypts a message m with a public
key part pu

Result is also e(m)
Receiver B decrypts message e(m) with
private key part priv
Public key known by anybody (also A)
Private key ONLY known by B
Encryption is application of public key
Decryption is application of private key

2

Asymmetric Signatures

Signation done by encrypting message with
private key

Results in Signature
Whole message consists of message + signature

Verification done by decrypting message with
public key
Usually hash over message contents+header
is used as signature
Digitnal Signature Algorithm (DSA)

Combining secret and public key
cryptography

Asymmetric algorithms
Rather slow
Used for key exchange of symmetric cryptographic
algorithms
Key requires structure (private+public)

Based on large prime numbers
RSA, El Gamal
Diffie-Hellman Key exchange algorithm

Symmetric
Rather fast
Key Usually unstructured (eg. 128bit random
number)
DES,3DES,AES (Rindjael)

Public Key Certificates

Critical that public key is not forged
Public Key Certificates

Identify subjects by subjects names
Usually identifies a host

Key information about a subject (usually
public key)
Issued by a trusted organization
(certification authority - CA)

X.509 Certificate

Issuer creates signature with
its private key over certificate

Vendor specific

Describes invididum who ones
the certificate

Time When valid

Cert. Authority

MD5 hash and RSA signing

Assigned by CA

Version of X.509 Standard

Description

0x4C2170...Signature

Extensions

RSA 0x308188...Subject's public key

Country Austria
Common Name NWS-
TUWien

Subject

Period of Validity

VeriSignIssuer

RSAAlgorithm Identifier

12345678Serial Number

3Version

ExampleField entry

3

Certification Authorities

Private authorities
Generate certifications strictly for their own users

Eg. Company for their employees' computer

Systems outside the company need/should not
accept certificates

Public authorities
Issues certificates to the general public
May prove identity by certificates themselves

Issuer and subject one and the same

Certificates
Validity of certificate authorities

Depends on browser manufactorers
Recognize certificates from important certificate authorities

Certificate Revocation Lists
Certificates that are no longer valid
No standardized way to check these lists

Hierarchies of certificate authorities
Subsidiary authorities assigned by certificate authorities

Build a trust hierarchy
Not necessary to identify all identities itself
Not required that all parties trust all certificate authorities

Recursive resolution
Somewhere authority that is trusted must be met

Certificate Hierarchy
Issuer: bigcomp

Subject: bigcomp

Issuer: bigcomp
Subject: Research

Issuer: bigcomp
Subject: Marketing Div.

Issuer: Marketing Div.
Subject: Spam

... Issuer: Research
Subject:Games

Issuer: Research
Subject:Office

SSL/TLS
Secure Sockets Layer (SSL)

Introduced by Netscape (SSL 1.0 1994)
Netscape Navigator ships with SSL 2.0 late 1994

Transport Layer Security (TLS) – RFC 2246
TLS is successor of SSL
Standardized by IETF
Published in 1999
Principally new version of SSL

Used in many applications
Primarily in Web applications (HTTP)
Also used in EMail

4

SSL
Separate protocol for security

Between Application specific protocol and TCP protocol
Advantage: arbitrary applications may use SSL/TLS

Different SSL protocols
Encryption
Authentication of server
Authentication of client
Continuation of previous negotiated session

Different cipher suites
RSA, DH
DES,3DES,RC4
SHA,MD5

SSL – Negotiation of Encrypted
Commands

Client ServerClientHello

ServerHello

ServerKeyExchange

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

SSL Commands / 1
ClientHello

Starts SSL communication between 2 parties
Parameter

Version - Sends hightest version number SSL client supports
(currently 3.0 for SSL, 3.1 for TLS)
RandomNumber - Sends a random number (includes date+time)
SessionID – empty in this operation mode
CypherSuites – cryptographic services client supports

Algorithms, key sizes
CompressionMethods

Must be applied before encryption
Not included in SSL

SSL Commands / 2

ServerHello
Version - of SSL protocol used
RandomNumber - chosen by server
SessionID – calculated by the server
CypherSuite – Cryptographic parameters
selected by the server from the client's
previous CypherSuites parameter
CompressionMethod

5

SSL Commands / 3

ServerKeyExchange
Transmits public key information itself
Example: algorithm=RSA,

Sends the public key
(modulus and public exponent of server's public key)

No encryption applied here

ServerHelloDone
Server has finished its negotiation

SSL Commands / 4
ClientKeyExchange

Transmits Client keys information
Key for Symmetric encryption algorithms
Different keys for sending/receiving
Client creates keys

Encrypted with Server's public key
Completes the preliminary SSL negotation

ChangeCipherSpec
Special command that "Activates" Security Services
"changes algorithms & keys"

Finished
Message is already encrypted, has to be decrypted by other party
Sends key information
Sends all previous SSL handshake messages

SSL Write/Read state
Client and Server maintain

Information about security services used
Specific Symmetric encryption algorithm
Specific Message integrity algorithm (Message authenthication Code)
Specific key material for those algorithms

Different for each direction!
Active and Pending fields for write+read state

Write fields for data the client/server sends
Read fields for date the client/server receives
Can only be activated when above (pending) information is complete

Activated by ChangeCipherSpec
Other Client and Server messages fills only Pending fields

Literature
Stephen Thomas: "SSL and TLS Essentials: Securing the Web"

Pending/Active states – Client
1

PndActPndAct

ReadWrite

?null?nullkey

?Null?NullMAC

?Null?NullEncr

PndActPndAct

ReadWrite

?Null?nullkey

MD5NullMD5NullMAC

DESNullDESnullEncr

ServerHello

ServerKeyExchange
ServerHelloDone

ClientHello

PndActPndAct

ReadWrite

xxxNullxyznullkey

MD5NullMD5NullMAC

DESNullDESnullEncr

ClientKeyExchange

(Active state to null=no security
, pending states are unknown)

(Client knows algorithms server has selected)

(pending Keys are created by client)

6

Pending/Active states – Client
2

PndActPndAct

ReadWrite

xxxNull?xyzkey

MD5Null?MD5MAC

DESNull?DESEncr

PndActPndAct

ReadWrite

?xxx?xyzkey

?MD5?MD5MAC

?DES?DESEncr

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

(switch Write/Send to Active)

(switch Read/Receive to Active)

SSL – Authenticating Server's
identity

Server sends certificate message
Certificate with Public key

Client verifies validity of certificate
Certificate Signatures, Validity Times, Revocation
Status
Checks domain name of web site with domain
name stored in certificate (Subject)

Eg. Server located at "www.mydomain.org" and
certificate valid only for www.otherdomain.org

Client's ClientKeyExchange uses public key in
certificate

Sometimes another public key may be used
Example US Export restrictions (cryptographic key lengths)

SSL – Authenticating Server
Client ServerClientHello

ServerHello

Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec

Finished

ChangeCipherSpec

Finished

SSL – Authenticating Client's
Identity

Client Server
ClientHello

ServerHello
Certificate

ServerHelloDone

ClientKeyExchange

ChangeCipherSpec
Finished

ChangeCipherSpec

Finished

CertificateRequest

Certificate

CertificateVerify

7

SSL – Authenticating Client's
Identity

Server wants to authenticate the Client's
identity

Server indicates wish to authenticate Client's
identity by sending a CertificateRequest message
Client sends its own Certificate within Certificate
message

Client's public key within the certificate is used for
signatures only – no encryption

Client proves that it posseses the certificate by
submitting a CertificateVerify message

Encrypted with private key
Over key information + all previous SSL handshake
messages exchanged by both systems

SSL - Limitations
Protocol limitations

Requires connection-oriented transport protocol such as TCP
Does not support non-repudiation

Tool limitations
Relies on other components such as cryptographic
algorithms

Environmental limitation
Security provided only on the transmission network
The path to the network and from the network is not
secured

TLS – Differences to SSL
Protocol version 3.1
More procedures for potential and actual
security alerts

23 instead of 12
Eg. Certificate-Revoked

Message authentication standardized
Uses H-MAC (hashed Message Authentication
Code)

Combines (Sequence number,TLS protocol message
type, TLS version, Message length, Message contents)

Instead of SSL combination of key information and
application data

More cipher suites

HTTPS
HTTPS (HTTP over TLS) – RFC 2818

HTTP Client starts with sending TLS ClientHello
Standard Port 443

Upgrading to TLS within HTTP/1.1 – RFC 2817
Allows secured and unsecured HTTP to share the same port
Client may send an HTTP/1.1 request with an "Upgrade:
TLS/1.0" header field

Server may either respond with normal response or switch to
secured TLS communication

If the Upgrade is mandatory the client must send an
OPTIONS request with an Upgrade TLS/1.0 header field
Server may respond to normal request with with "426
Upgrade Required" response

The request requires secure communication

8

HTTPS / Example
Client:

OPTIONS * HTTP/1.1
Host: dsg.infosys.tuwien.ac.at
Upgrade: TLS/1.0
Connection: Upgrade

Server:

HTTP/1.1 101 Switching Protocols
Upgrade: TLS/1.0, HTTP/1.1
Connection: Upgrade

Secure Shell (SSH)

RFCs 4250-4256, and others
"Protocol for secure remote login and other
secure network services over an insecure
network"
SSH Standard means for secure shell access
on Unix machines
Supports Automatic host key authentication

Clients that come from one particular HOST can
automatically be authenticated

SSH Transport Layer Protocol
Supports

Strong encryption
Server authentication
Integrity protection
May support compression

Supports different algorithms
Key Exchange (eg. Diffie-Helmann)

Used to exchange keys between client / server
Server Host Key Algorithms (ssh-rsa,ssh-dss)
Encryption Algorithms (symmetric) (aes128, 3des,…)

Data encryption
Mac Algorithms (hmac-md5, mac-sha1, …)

For generating message authentication code
Compression Algorithms (zlib)

Algorithms negotiated during Key Exchange Messages

SSH Transport Layer Protocol
/ 1

Usually over TCP/IP, Standard Port 22
Client initiates connection to server

1. Server responds with identification string
Example: Server sends SSH-2.0-OpenSSH_3.9p1

2. Client sends also identification string
3. Server sends Key Exchange Init

Includes supported algorithms
4. Client sends also Key Exchange Init

Includes supported algorithms

9

SSH Transport Layer Protocol
/ 2

5. Client sends Key Exchange Message
Eg. Diffie-Hellman GEX Request

6. Server replies Key Exchange Reply
7. Client sends Diffie-Hellman GEX Init
8. Server sends Diffie-Hellman GEX Reply
9. Client sends "New Keys"

From this point on all communication is
encrypted

SSH Channels

Channels are means for communicating with
SSH

Each channels has a specific number
Multiple channels possible at the same time
SSH_MSG_CHANNEL_REQUEST

Channels
X11 Forwarding ("x11" parameter)
Starting a remote Command ("exec" command)
Starting a remote shell ("shell")

Summary

Most important cryptography
SSL/TLS
SSH

