!-| Agenda

= URIs

* Network Services = HTTP
T = Authentication

= Dynamic Web Technologies
= CGI

Johann Oberleitner = Java Servlets
SS 2006 = WebDAV

= Web Caching

HTTP, Web

URI !-| URI Examples

= Unique Resource ldentifier » ftp://ftp.is.co.za/rfc/rfc1808.txt
: 'erglggiiﬁirg?np;?g I:etwork resource to another = hitp://wviw.jetl.org/ric/ric2396.04
-> characters accessible on each keyboard = Idap://[2001:db8::7]/c=GB?0bjectClass?one
= RFC 3896 = mailto:John.Doe@example.com
= URI = = news:comp.infosystems.www.servers.unix

scheme:hierachical-part

[2query] [#fragment] = tel:+43-1-58801-§8400
= Hierarchical-part absolute or relative = telnet://192.0.1.8:25/
= Hierarchical-part may contain authority part = urn:oasis:names:specification:docbook:dtd:x

ml:4.1.2

:-| URI/ 1

" http://www.ietf.orc@rfc/rfc2396.txt

/N

Scheme part Authority part Hierarchical part

!-| URI / 2

= http://www.example.at/search?xyz=abc

Query-Part

= http://www.exl.at/abc.html#my-anchor

Anchor

URLs & URNs

= Specialized Subtypes of URIs
= URLs (=Uniform Resource Locator) identify a
resource via
= Access mechanism (scheme) and
= Location within computer networks
= URNs (=Uniform Resource Name) identify a resource
via
= urn:<NID>:<NID-specific-ID>
= NID = Namespace identifier
= Example: urn:1SBN:0130888931
= Location independent
= URNSs are retained even if location is changed

HTTP /1

= Protocol for Information Systems
= Distributed, collaborative, hypermedia
= In use by WWW initiative since 1990
= General idea: request-response
= HTTP/0.9
= Simple protocol for raw data transfer across Internet
= HTTP/1.0 (RFC 1945)
= Extended by allowing messages to use MIME-format
= HTTP/1.1 (RFC 2616)
= More strict
= Standard Port: TCP 80
= Uses NVT protocol

,_:| HTTP / 2

= HTTP Request sends
= Request method (GET,POST, ...)
= URI (what is requested)
= Protocol version
= MIME-like message
= Request modifiers
= Client information
= Body content
= Generic syntax: "Method Request-URI HTTP-Version"

,_:| HTTP /3

= HTTP Response
= Status line
= including message protocol version
= Success or error code
= MIME-like message
= Server information

= Entity metainformation (content-type, length,
date of modification, ...)

= Entity-body content

:-| HTTP / 4 — Request methods

s GET
= Retrieve information identified by Request-URI
= May refer to a process instead to a data entity
= See Dynamic Web
= Conditional GET
= if request message contains additional header
fields
= Eg. If-Modified Since, If-Match, If-None-Match, If-Range
= Goal to reduce bandwidth
= HEAD
= Like GET but does not return message-body
= HTTP header identical

:-| HTTP / 5 — Request methods

s POST
= Requests entity enclosed in request as additional
item for entity identified in Request-URI
= URI determines handler for the post
= Examples
= Annotation of existing resources
= Posting a message to bulleting boards, newsgroups, ...

= Providing a block of data, such as the result of
submitting a form, to a data-handling process

= Extending a database through append operation
= Actual Function determined by server
= Response contains result of the action

HTTP / 6 — Request methods

= OPTIONS

= Communication options availabe on the request/response
chain identified by URI-Request

= PUT
= Enclosed entity shall be stored under supplied Request-URI
= DELETE
= Delete resource identified by Request-URI
= TRACE
= Debugging method
= CONNECT
= For proxies to dynamically switch being a tunnel (SSL)

HTTP - Status Codes

= Informational 1xx

= Prior regular response

= If unexpected May be ignored

= Proxies must forward 1xx responses

= 100 Continue

= Client SHOULD continue with its request

= Successful 2xx

= Request successful

= 200 OK

= 201 Created, 202 Accepted,...

HTTP - Status Codes

= Redirection 3xx
= Further actions need to be taken by user to fulfill request
= 301 Moved Permanently
= New URI given in Location field of response
= If possible client shall change link
= 302 Found
= New URI given in Location field of
= 303 See Other
= Similar to 302 but different URI should be retrieved with GET

= Primarily to allow output of POST-activated script to redirect
user agent

= 304 Not Modified
= For conditional GET requests

HTTP — Status Codes

= Client Error 4xx
= 400 Bad request
= 401 Unautorized
= 402 Forbidden
= Authorization won't help, shall not be repeated
= 404 Not Found
= No match found for Request-URI
= 408 Request Timeout
= 410 Gone
= Resource no longer at server

HTTP — Status codes

= Server Error 5xx
= 500 Internal Server Error
= 501 Implementation

= 503 Service Unavailable
= Overloading of server

= 505 HTTP Version Not supported

HTTP — Persistent Connections

= HTTP connection closed after one request
= Assumption that client has more requests from same server
= Standard in HTTP/1.1: persistent connection desired
= Controlled with Header field
Connection: close / keep-alive header
= Server time-out closes connection automatically
= Advantages
= Opening/closing fewer TCP connections
= CPU time saved in routers and all participating hosts
= Fewer packets caused by TCP opens
= HTTP requests/responses pipelined

= Client make multiple requests on same TCP connection without
waiting for a response

= Latency of subsequent requests reduced
= No time spent in TCPs connection opening handshake

HTTP State Management

HTTP Sessions to manage state
= HTTP is stateless
« Server Requires HTTP session to maintain variables for one user
= Server manages variables for each session
= Session-1D used to identify session in requests
Identification of session
= URL-Rewriting
« Appends sessionID at request URI
= http://www.example.com?sessionID=S1D1234
= HTML Hidden Field
« Special field in HTML forms
= <input type="hidden" name="sessionID" value="§1D1234"/>
= Cookies
» Additional Request-Header-Field
Cookie: $Version="1"; session|D="51D1234"
= Cookie generated by server
= Sent to user agent in response field
Set-Cookie2: $Version="1"; session|D="51D1234"

HTTP Authentication

= Methods to authenticate users
= Restrict access to resources
= Not secure unless used with external secure
system (eg. SSL)
= Based on challenges
= Server poses a challenge to client
= Client has to response with correct answer
= Restriction is based on realms
= String value

= Defines/Names protection space (=realm)
= = Set of documents

:-| HTTP Authentication

= C: requests protected resource
= S: 401 Unauthorized

= WWW-Authenticate header field includes at
least one challenge that must be fulfilled
by client
= C: Authorization header field in request

= Contains credentials containing
authentication information for a realm

= Server responds with resource

:-| Basic Authentication

= Client identifies itself with UserID & Password
= Challenge: "Basic" realm

= WWW-Authenticate: Basic realm="WaynesWorld"
= Credentials

= "UserID:Password" base64 encoded

= Authorization: Basic XYZ1235456==
= Weak

= Problem: Base64 bijective

= Inverse application of base64 algorithm leads to
Password

:-| Digest Authentication

= Challenge
= contains a "nonce" value
= Valid response contains a checksum

= Username + Password + nonce + HTTP method +
Request-URI

= Default uses MD5 checksums (128bit)
= Password never sent in the clear
= Quality of Protection (qop)

= Different protection levels

= Authentication, Integrity checking, Confidentiality
checking

:-| Digest Authentication / 2

= WWW-Authenticate: Digest
= realm="WaynesWorld",
= honce="dcd98b1234567890acd23467",
= Opaque="12345",

= Authorization: Digest
username="Wayne"
= realm="WaynesWorld",
= nonce="dcd98b1234567890acd23467",
= uri="/index.html",
= response="67890abcdef1234567890abh"

,_:| Dynamic Web — Why?

= Web Servers usually return only static
files

= What about Interactive Content?
= Created based on user interaction
= What about Dynamic Content?
= Created based on database access

,_:| Dynamic Web Technologies

= CGI scripts

= Java Servlets
= PHP

= ASP.NET

CGI (Common Gateway

,_:| Interface)

= RFC 3875
= Running external programs
= From HTTP servers
= Platform-independent mechanism
= CGI script & HTTP server together
= Servicing a client request
= Creating response
= CGI script addressed with URI
= Invoked by HTTP server

CGl /2

= Supported by most programming languages
= Requires standard input stream, standard output stream,
environment variables
= Supported by most programming languages
= requirements
= Access to standard input stream
= Access to standard output stream
= Access to environment variables
= Web Server
= Invocation of executables (stand-alone executables) OR
= Invocation of interpreter (interpreter languages)
= Typical
= C, Perl
= But any language possible (Java,...)
= Invocation of CGI script creates a new Process per request

iCGIIS iCGI/4—ExampeI inC

void main(void)

{
printf("Content-type: text/htmi\r\n");
printf(*\r\n");
printf("Hello world!<br=>\r\n");
exit(0);

}

i Fast-CGlI i Fast-CGl / 2

= CGI performance problem: void main(void)
= Many requests require multiple processes {)
= Initialization of connections/resources (database) int count=0;

while(FCGI_Accept() >= 0) {
printf("Content-type: text/htmi\r\n");
printf(*\r\n");
printf("Hello world!
\r\n");

= FastCGI
= Script remains in memory (via endless loop)
= Requires Predefined protocol/API for
communication with HTTP server
= Standard CGI uses just StdIn/StdOut } i
exit(0);
}

Request/response Interaction

* Java Servlets

= Web component

= implemented in Java
= Implements interface javax.servlet.Servlet

= Generates dynamic content

= Managed by a servlet engine (container)
= Web server extensions

= Request/response paradigm
= Interaction with Web clients

* Servlet characteristics

= Much faster than CGI scripts (in
general)
= different process model is used

= Standard API supported by many Web
servers

= Supports Java and ist API's
= Server sets on Java bytecode
= not interpreted

* Servlet interface / 1

!-| Servlet implementation

= Server implements servlet interface

= Typically by inheriting from (predefined)
implementation classes
= GenericServlet
= HttpServlet

Servlet lifecycle

instantiate Servlet

service

destroy

finalized &
garbage collected

Request Handling

= Through Service method
= ServletRequest object used
= Concurrent requests to same servlet
= Concurrent execution of service method on
different threads
= HTTP specific Request Handling
= HttpServlet adds HTTP specific methods
= primarily doGet & doPost,
= doPut, doDelete, doHead, doOptions, doTrace
= getParameterXXX methods provide

from URI query string and POST-ed data
= getHeaderXXX methods

!-| Response Generation

= By using methods of ServletResponse
object

= Manual generation of any response

= HttpServletResponse interface
= sendRedirect
= sendError

10

Servlet example

public void doGet(HttpServletRequest req,
HttpServletResponse res) throws ...
{

res.setContentType("text/html");
PrintWriter out= res.getWriter();

out.printin("<HTML>");
out.printin("<HEAD>");

out.close();

}

Other Dynamic Web
Technologies / 1

= Web Server Extensions
= Based on callbacks
= Example: Apache Modules
= Example: ISAPI (Internet Server APl = MS Internet Information Server)
= JSP (Java Server Pages)
= Embeds Java code within HTML code
= Usually compiled to servlet code
= Taglibs = new HTML tags that contain functionality
= JSF (Java Server Faces)
= Component model for JSP and Servlets
= Allows construction of web pages based on prebuilt JSF components
= PHP (=Pre-HyperText Preprocessor)
Scripting Language used on Server
Embedded in HTML code
Performance very good (Zend engine)
Most frequently used technology for dynamic Web applications today

Other Dynamic Web
Technologies / 2

= ASP (Active Server Pages)
= Interpreted Scripting Language used on Server
= Either VBScript or JavaScript
= Embedded in HTML code
= Builds on MS COM components
= ASP.NET
= .NET based (not interpreted)

= Similar to Servlets and JSP
= Has nothing to do with ASP

WebDAV

= Digital Authoring & Versioning (RFC 2518)
= Extends HTTP
= Authoring of documents via HTTP
= Directly at web server
Instead of using FTP
= Provides kind of file system
Accessible in the Internet
= HTTP URL namespace model
= Accessible via HTTP (hence, Internet)
= Platform independent
= Method parameter information
= Either in HTTP header (like in HTTP/1.1)
= Or Encoded in XML request entity body

11

:-| WebDAYV / Terms

= Properties

= Data about data (eg. Author, subject, ...)
= metadata

= Collections
= New type of Web resource

= State consists of at least a list of internal members
(resources itself)

= Kind of directory
= Locking

= Ability to keep more than one person from
working on a document

:-| WebDAV

= New HTTP methods for properties
= Ability to create, remove, and query
information about resources
= PROPFIND,PROPPATCH,DELETE

= New HTTP methods for collections

= Ability to create sets of documents and to
retrieve hierarchical membership listings
(similar to file system directories)
= MKCOL,GET/HEAD for collections,DELTE

:-| WebDAYV - Versioning

= What about the V in WebDAV?

= Not included in original WebDAV
= RFC (2518)

:-| WebDAYV - Versioning

= Versioning Extensions (RFC 3253)

= Defines extension to existing HTTP and
WebDAV methods

= New Resource types (properties &
methods)

= Basic Versioning Features
= Advanced Versioning

12

:-| WebDAV — Basic Versioning

= Goals

= Put a resource under version control

= Determine whether a resource is under
version control

= Determine whether a resource update will
automatically be captured as a new version

= Create and access distinct versions of a
resource

:-| WebDAV — Basic Versioning

= Methods
= VERSION-CONTROL
= Create a version-controlled resource at Request-URI
= REPORT
= Returns information about a resource (infos about
multiple versions)
= CHECKOUT
= Applied to a checked-in version-controlled resource to
allow modifications
= CHECKIN

= Applied to a checked-out version-controlled resource to
produce a new version

:-| WebDAV — Advanced Versioning

= Goals
= Parallel development

= Configuration management of sets of web
resources

= Similar what CVS,Subversion,Perforce,etc
can already do
= Methods
= MERGE simultaneous changes

:-| WebDAYV - Extensions

= WebDAYV Ordered Collections Protocol
= RFC 3648

= Server-side support for ordering of collection
members

= Client may change order
= WebDAV Access Control Protocol
= RFC 3744

= Permits clients to read and modify access control
lists with permissions for resources on the server

13

WebDAV — Request Sample

PROPFIND /mydocs/thebible HTTP/1.1
Host: www.server.com

Depth: 1

Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8"?>
<D:propfind xmIns:D="DAV:">
<D:prop xmins:R="http://www.server.com/mydocs/>
<R:author/>
<R:creation-date/>
</D:prop>
</D:propfind

Retrieves Named Properties

WebDAV — Response Sample

HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8"?>
<D:multistatus xmins:D="DAV:">
<D:response> <D:href>http://www.server.com/mydocs/thebible.doc</D:href>
<D:propstat>
<D:prop xmins:R=http://www.server.com/mydocs/>
<R:author>
<R:Name>unknown</R:Name>

</R:author>

<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>
</D:href>
</D:response>
</D:multistatus>

WWW Caching

= Browser cache
= Included in Web browser
= Checks if representation stored on local disc is up-to-date
= Proxy cache
= Larger scale (100-1000s users)
= Good at reducing latency and network traffic
= For Popular representations used in departments/companies,

= Examples
= Squid (www.squid-cache.org),
= MS Internet Security and Acceleration Server
= Gateway cache
= To make sites themselves more scalable
= Eg. Akamai

WWW Caching

= HTML Meta Tag
= META No-cache
= Problem: not all browsers support it
= HTTP Header
= Expires: Thu, 2 Jun 2005 13:10:00 GMT
= Good for files that change rarely
= Clock synchronisation of WebServer and cache
= Cache-Control response Header
= no-store, max-age (similar to expires but relative)
= no-cache (cache submits request to server)
= Internet Cache Protocol (RFC 2186, RFC 2187)
= Synchronisation of Caches
= More lightweight than HTTP
= On miss a cache submits an ICP request to cache siblings
= Returns HITs and/or MISSes
= Original cache uses these returns to resolve its own miss (via HTTP)

14

:-| Summary

s HTTP
= Based on Request-Response model
= Dynamic Web Technologies
= WebDAV
= Caching

15

