
1

Network Services

HTTP, Web

Johann Oberleitner
SS 2006

Agenda

URIs
HTTP

Authentication
Dynamic Web Technologies

CGI
Java Servlets

WebDAV
Web Caching

URI
Unique Resource Identifier

Remembered by people
Transcribed from one network resource to another
-> characters accessible on each keyboard

RFC 3896
URI =
scheme:hierachical-part
[?query] [#fragment]

Hierarchical-part absolute or relative
Hierarchical-part may contain authority part

URI Examples

ftp://ftp.is.co.za/rfc/rfc1808.txt
http://www.ietf.org/rfc/rfc2396.txt
ldap://[2001:db8::7]/c=GB?objectClass?one
mailto:John.Doe@example.com
news:comp.infosystems.www.servers.unix
tel:+43-1-58801-58400
telnet://192.0.1.8:25/
urn:oasis:names:specification:docbook:dtd:x
ml:4.1.2

2

URI / 1

http://www.ietf.org/rfc/rfc2396.txt

Scheme part Authority part Hierarchical part

URI / 2

http://www.example.at/search?xyz=abc

http://www.ex1.at/abc.html#my-anchor

Query-Part

Anchor

URLs & URNs
Specialized Subtypes of URIs
URLs (=Uniform Resource Locator) identify a
resource via

Access mechanism (scheme) and
Location within computer networks

URNs (=Uniform Resource Name) identify a resource
via

urn:<NID>:<NID-specific-ID>
NID = Namespace identifier
Example: urn:ISBN:0130888931

Location independent
URNs are retained even if location is changed

HTTP / 1
Protocol for Information Systems

Distributed, collaborative, hypermedia
In use by WWW initiative since 1990

General idea: request-response
HTTP/0.9

Simple protocol for raw data transfer across Internet
HTTP/1.0 (RFC 1945)

Extended by allowing messages to use MIME-format
HTTP/1.1 (RFC 2616)

More strict
Standard Port: TCP 80
Uses NVT protocol

3

HTTP / 2

HTTP Request sends
Request method (GET,POST, …)
URI (what is requested)
Protocol version
MIME-like message

Request modifiers
Client information
Body content

Generic syntax: "Method Request-URI HTTP-Version"

HTTP / 3

HTTP Response
Status line

including message protocol version
Success or error code

MIME-like message
Server information
Entity metainformation (content-type, length,
date of modification, ...)
Entity-body content

HTTP / 4 – Request methods

GET
Retrieve information identified by Request-URI
May refer to a process instead to a data entity

See Dynamic Web
Conditional GET
if request message contains additional header
fields

Eg. If-Modified Since, If-Match, If-None-Match, If-Range
Goal to reduce bandwidth

HEAD
Like GET but does not return message-body
HTTP header identical

HTTP / 5 – Request methods

POST
Requests entity enclosed in request as additional
item for entity identified in Request-URI
URI determines handler for the post
Examples

Annotation of existing resources
Posting a message to bulleting boards, newsgroups, ...
Providing a block of data, such as the result of
submitting a form, to a data-handling process
Extending a database through append operation

Actual Function determined by server
Response contains result of the action

4

HTTP / 6 – Request methods
OPTIONS

Communication options availabe on the request/response
chain identified by URI-Request

PUT
Enclosed entity shall be stored under supplied Request-URI

DELETE
Delete resource identified by Request-URI

TRACE
Debugging method

CONNECT
For proxies to dynamically switch being a tunnel (SSL)

HTTP – Status Codes

Informational 1xx
Prior regular response
If unexpected May be ignored
Proxies must forward 1xx responses
100 Continue

Client SHOULD continue with its request

Successful 2xx
Request successful
200 OK
201 Created, 202 Accepted,...

HTTP - Status Codes
Redirection 3xx

Further actions need to be taken by user to fulfill request
301 Moved Permanently

New URI given in Location field of response
If possible client shall change link

302 Found
New URI given in Location field of

303 See Other
Similar to 302 but different URI should be retrieved with GET
Primarily to allow output of POST-activated script to redirect
user agent

304 Not Modified
For conditional GET requests

HTTP – Status Codes

Client Error 4xx
400 Bad request
401 Unautorized
402 Forbidden

Authorization won't help, shall not be repeated

404 Not Found
No match found for Request-URI

408 Request Timeout
410 Gone

Resource no longer at server

5

HTTP – Status codes

Server Error 5xx
500 Internal Server Error
501 Implementation
503 Service Unavailable

Overloading of server

505 HTTP Version Not supported

HTTP – Persistent Connections
HTTP connection closed after one request

Assumption that client has more requests from same server
Standard in HTTP/1.1: persistent connection desired

Controlled with Header field
Connection: close / keep-alive header

Server time-out closes connection automatically
Advantages

Opening/closing fewer TCP connections
CPU time saved in routers and all participating hosts
Fewer packets caused by TCP opens

HTTP requests/responses pipelined
Client make multiple requests on same TCP connection without
waiting for a response

Latency of subsequent requests reduced
No time spent in TCPs connection opening handshake

HTTP State Management
HTTP Sessions to manage state

HTTP is stateless
Server Requires HTTP session to maintain variables for one user

Server manages variables for each session
Session-ID used to identify session in requests

Identification of session
URL-Rewriting

Appends sessionID at request URI
http://www.example.com?sessionID=SID1234

HTML Hidden Field
Special field in HTML forms
<input type="hidden" name="sessionID" value="SID1234"/>

Cookies
Additional Request-Header-Field

Cookie: $Version="1"; sessionID="SID1234"
Cookie generated by server
Sent to user agent in response field

Set-Cookie2: $Version="1"; sessionID="SID1234"

HTTP Authentication

Methods to authenticate users
Restrict access to resources

Not secure unless used with external secure
system (eg. SSL)
Based on challenges

Server poses a challenge to client
Client has to response with correct answer

Restriction is based on realms
String value
Defines/Names protection space (=realm)

= Set of documents

6

HTTP Authentication

C: requests protected resource
S: 401 Unauthorized

WWW-Authenticate header field includes at
least one challenge that must be fulfilled
by client

C: Authorization header field in request
Contains credentials containing
authentication information for a realm

Server responds with resource

Basic Authentication

Client identifies itself with UserID & Password
Challenge: "Basic" realm

WWW-Authenticate: Basic realm="WaynesWorld"

Credentials
"UserID:Password" base64 encoded
Authorization: Basic XYZ1235456==

Weak
Problem: Base64 bijective

Inverse application of base64 algorithm leads to
Password

Digest Authentication

Challenge
contains a "nonce" value

Valid response contains a checksum
Username + Password + nonce + HTTP method +
Request-URI
Default uses MD5 checksums (128bit)

Password never sent in the clear
Quality of Protection (qop)

Different protection levels
Authentication, Integrity checking, Confidentiality
checking

Digest Authentication / 2

WWW-Authenticate: Digest
realm="WaynesWorld",
nonce="dcd98b1234567890acd23467",
opaque="12345",

Authorization: Digest
username="Wayne"

realm="WaynesWorld",
nonce="dcd98b1234567890acd23467",
uri="/index.html",
response="67890abcdef1234567890ab"

7

Dynamic Web – Why?

Web Servers usually return only static
files
What about Interactive Content?

Created based on user interaction

What about Dynamic Content?
Created based on database access

Dynamic Web Technologies

CGI scripts
Java Servlets
PHP
ASP.NET

CGI (Common Gateway
Interface)

RFC 3875
Running external programs

From HTTP servers
Platform-independent mechanism

CGI script & HTTP server together
Servicing a client request
Creating response

CGI script addressed with URI
Invoked by HTTP server

CGI / 2
Supported by most programming languages

Requires standard input stream, standard output stream,
environment variables

Supported by most programming languages
requirements

Access to standard input stream
Access to standard output stream
Access to environment variables

Web Server
Invocation of executables (stand-alone executables) OR
Invocation of interpreter (interpreter languages)

Typical
C, Perl
But any language possible (Java,…)

Invocation of CGI script creates a new Process per request

8

CGI / 3

Client
Browser

WWW
Server

CGI-
Script

CGI / 4 – Exampel in C

void main(void)
{

printf("Content-type: text/html\r\n");
printf("\r\n");
printf("Hello world!
\r\n");
exit(0);

}

Fast-CGI

CGI performance problem:
Many requests require multiple processes
Initialization of connections/resources (database)

FastCGI
Script remains in memory (via endless loop)
Requires Predefined protocol/API for
communication with HTTP server

Standard CGI uses just StdIn/StdOut

Fast-CGI / 2
void main(void)
{

int count=0;
while(FCGI_Accept() >= 0) {

printf("Content-type: text/html\r\n");
printf("\r\n");
printf("Hello world!
\r\n");

}
exit(0);

}

9

Java Servlets

Web component
implemented in Java

Implements interface javax.servlet.Servlet

Generates dynamic content
Managed by a servlet engine (container)

Web server extensions

Request/response paradigm
Interaction with Web clients

Request/response Interaction
Web client
(browser) Web server

Servlet container

ServletA ServletB ServletC

request response

Servlet characteristics

Much faster than CGI scripts (in
general)

different process model is used
Standard API supported by many Web
servers
Supports Java and ist API's

Server sets on Java bytecode
not interpreted

Servlet interface / 1

<<interface>>
Javax.servlet.Servlet

destroy
ServletConfig getServletConfig()

String getServletInfo()
init(ServletConfig config)

service(ServletRequest request, ServletResponse response)

10

Servlet implementation

Server implements servlet interface
Typically by inheriting from (predefined)
implementation classes

GenericServlet
HttpServlet

Servlet lifecycle

initialized

init
service

destroyed

destroy

finalized &
garbage collected

instantiate Servlet

Request Handling
Through Service method
ServletRequest object used
Concurrent requests to same servlet

Concurrent execution of service method on
different threads

HTTP specific Request Handling
HttpServlet adds HTTP specific methods

primarily doGet & doPost,
doPut, doDelete, doHead, doOptions, doTrace
getParameterXXX methods provide

from URI query string and POST-ed data
getHeaderXXX methods

Response Generation

By using methods of ServletResponse
object
Manual generation of any response
HttpServletResponse interface

sendRedirect
sendError

11

Servlet example
public void doGet(HttpServletRequest req,

HttpServletResponse res) throws ...
{

res.setContentType("text/html");
PrintWriter out= res.getWriter();

out.println("<HTML>");
out.println("<HEAD>");

...
out.close();

}

Other Dynamic Web
Technologies / 1

Web Server Extensions
Based on callbacks
Example: Apache Modules
Example: ISAPI (Internet Server API = MS Internet Information Server)

JSP (Java Server Pages)
Embeds Java code within HTML code
Usually compiled to servlet code
Taglibs = new HTML tags that contain functionality

JSF (Java Server Faces)
Component model for JSP and Servlets
Allows construction of web pages based on prebuilt JSF components

PHP (=Pre-HyperText Preprocessor)
Scripting Language used on Server
Embedded in HTML code
Performance very good (Zend engine)
Most frequently used technology for dynamic Web applications today

Other Dynamic Web
Technologies / 2

ASP (Active Server Pages)
Interpreted Scripting Language used on Server

Either VBScript or JavaScript

Embedded in HTML code
Builds on MS COM components

ASP.NET
.NET based (not interpreted)
Similar to Servlets and JSP

Has nothing to do with ASP

WebDAV
Digital Authoring & Versioning (RFC 2518)
Extends HTTP

Authoring of documents via HTTP
Directly at web server

Instead of using FTP
Provides kind of file system

Accessible in the Internet
HTTP URL namespace model
Accessible via HTTP (hence, Internet)
Platform independent

Method parameter information
Either in HTTP header (like in HTTP/1.1)
Or Encoded in XML request entity body

12

WebDAV / Terms
Properties

Data about data (eg. Author, subject, ...)
= metadata

Collections
New type of Web resource
State consists of at least a list of internal members
(resources itself)

Kind of directory

Locking
Ability to keep more than one person from
working on a document

WebDAV

New HTTP methods for properties
Ability to create, remove, and query
information about resources

PROPFIND,PROPPATCH,DELETE

New HTTP methods for collections
Ability to create sets of documents and to
retrieve hierarchical membership listings
(similar to file system directories)

MKCOL,GET/HEAD for collections,DELTE

WebDAV - Versioning

What about the V in WebDAV?

Not included in original WebDAV
RFC (2518)

WebDAV - Versioning

Versioning Extensions (RFC 3253)
Defines extension to existing HTTP and
WebDAV methods
New Resource types (properties &
methods)

Basic Versioning Features
Advanced Versioning

13

WebDAV – Basic Versioning

Goals
Put a resource under version control
Determine whether a resource is under
version control
Determine whether a resource update will
automatically be captured as a new version
Create and access distinct versions of a
resource

WebDAV – Basic Versioning

Methods
VERSION-CONTROL

Create a version-controlled resource at Request-URI
REPORT

Returns information about a resource (infos about
multiple versions)

CHECKOUT
Applied to a checked-in version-controlled resource to
allow modifications

CHECKIN
Applied to a checked-out version-controlled resource to
produce a new version

WebDAV – Advanced Versioning

Goals
Parallel development
Configuration management of sets of web
resources
Similar what CVS,Subversion,Perforce,etc
can already do

Methods
MERGE simultaneous changes

WebDAV - Extensions

WebDAV Ordered Collections Protocol
RFC 3648
Server-side support for ordering of collection
members
Client may change order

WebDAV Access Control Protocol
RFC 3744
Permits clients to read and modify access control
lists with permissions for resources on the server

14

WebDAV – Request Sample
PROPFIND /mydocs/thebible HTTP/1.1
Host: www.server.com
Depth: 1
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8"?>
<D:propfind xmlns:D="DAV:">

<D:prop xmlns:R="http://www.server.com/mydocs/>
<R:author/>
<R:creation-date/>

</D:prop>
</D:propfind

Retrieves Named Properties

WebDAV – Response Sample
HTTP/1.1 207 Multi-Status
Content-Type: text/xml; charset="utf-8"
Content-Length: xxxx

<?xml version="1.0" encoding="utf-8"?>
<D:multistatus xmlns:D="DAV:">

<D:response> <D:href>http://www.server.com/mydocs/thebible.doc</D:href>
<D:propstat>

<D:prop xmlns:R=http://www.server.com/mydocs/>
<R:author>

<R:Name>unknown</R:Name>
</R:author>
...

<D:status>HTTP/1.1 200 OK</D:status>
</D:propstat>

</D:href>
</D:response>

</D:multistatus>

WWW Caching
Browser cache

Included in Web browser
Checks if representation stored on local disc is up-to-date

Proxy cache
Larger scale (100-1000s users)
Good at reducing latency and network traffic
For Popular representations used in departments/companies,
...
Examples

Squid (www.squid-cache.org),
MS Internet Security and Acceleration Server

Gateway cache
To make sites themselves more scalable
Eg. Akamai

WWW Caching
HTML Meta Tag

META No-cache
Problem: not all browsers support it

HTTP Header
Expires: Thu, 2 Jun 2005 13:10:00 GMT

Good for files that change rarely
Clock synchronisation of WebServer and cache

Cache-Control response Header
no-store, max-age (similar to expires but relative)
no-cache (cache submits request to server)

Internet Cache Protocol (RFC 2186, RFC 2187)
Synchronisation of Caches
More lightweight than HTTP

On miss a cache submits an ICP request to cache siblings
Returns HITs and/or MISSes
Original cache uses these returns to resolve its own miss (via HTTP)

15

Summary

HTTP
Based on Request-Response model

Dynamic Web Technologies
WebDAV
Caching

