Network Services

Administrative Protocols & Services

Johann Oberleitner SS 2006

Overview

- Administrative Services
 - Internet Standardization Process
 - Basic Internet Protocols
 - DHCP & Stateless Address Configuration
 - Telnet
 - Traceroute + Ping

Main question

- User invokes an operation in a networked enabled application
 - Examples
 - Sends an email
 - Retrieves an email
 - Requests HTML page
 - Invokes a Web service
 - RMI call
- Question
 - Which messages are emitted at network interface?

Request for Comments

- Each distinct version of an Internet standards-related specification
 - Published as part of the "Request for Comments" series
- RFCs are official publication channel
 - Since 1969
 - Publication responsibility of the RFC Editor
 - Under direction of IAB (Internet Architecture Board)
- Standards Process itself is RFC 2026
- Formatting conventions RFC 1543

Internet Standards Process

- First posted as an Internet-Draft
 - Published for informal review and comment
- Proposed Standard
 - Generally stable
 - Significant community review
- Draft Standard
 - At least two independent and interoperable implementations with different code bases
- Internet Standard
 - Significant implementation
 - Successful operational experience
 - STDs in addition to RFCs

4

Internet Standards

- http://www.rfc-editor.org/rfc.html
- See RFC 3700
- IP+ICMP+IGMP
 - STD 5 (RFC 791+792+919+922+950)
- UDP
 - STD 6 (RFC 768)
- TCP
 - STD 7 (RFC 793)

ISO OSI Model

Application protocol

Presentation protocol

Session protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

- Idealized protocol stack
 - Implementations look different (usually)
- Each upper level protocol builds on the next lower
- ISO = International Standards Organization
- OSI = Open SystemsInterconnection

Application Protocols

Host A

Application (client)

Application protocol

Presentation protocol

Session protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

Host B

Application (server)

Application protocol

Presentation protocol

Session protocol

Transport protocol

Network protocol

Data link protocol

Physical protocol

Physical Network

Sending Email

Message structure

- Message header
 - Message id
 - Message length (header length)
 - Checksum
 - Source and destination address
 - Options
 - **...**
- Payload

Headers & Layers

- Encapsulation of messages
 - Message from Layer n+1
 - Forms payload of message in Layer n
 - Header for message Layer n added
- Effect of encapsulation
 - Headers for all messages contained in the final message

802.3 (Ethernet) Frames

- 48 bit addresses
- Max. 1500 Bytes of payload!
- Frames
- All hosts listen on frames for their address
 - Frame is picked when address is found
- Unique address for each node (MAC address)

6 bytes	6 bytes	2 bytes	s 46 - 1500 bytes	4 bytes
Destination address	Source address	Туре	Data (Payload)	checksum

Internet Protocol (IP)

- IPv4
 - STD 5 (RFC 791)
- IPv6
 - RFC 2460
 - Draft Standard

- Virtual Network
- Routing
- Connectionless (datagram)
 - Not required to connect to recipient
- Transmission over several networks
- Unreliable
 - Order undetermined
 - Loss of packets

IPv4

- Addressing
 - IP address: 32bits (network id, host id)
- Max packet size 64kB
- Fragmentation and reassembly
 - Data Link Layer Frames usually smaller
- Time to live
 - Number of hops

IPv4 Header

4-bit version	4-bit header length	8-bit type of service (TOS)	16-bit total length (in bytes)		
16-bit packet id			3-bit flags	13-bit fragment offset	
8-bit time to live 8-bit higher level protocol (TCP,UDP,)		16-bit header checksum		20 bytes	
32 bit - source IP address					
32 bit - destination IP address					
0 - 40 bytes Options (if any)					0-40 bytes

IPv4 Addresses

- Numeric: 128.131.172.25
- network id and host id
- 3 unicast classes A-C, 1 multicast D

Class A	0	7 k	oit n	etid	24	24 bits - hostid		
Class B	1	0			14 bits - netid	16 bits - hostid		
Class C	1	1	0		21 bits - netid 8 bit hostid			
Class D	1	1	1	0	28 bits - Multicast group ID			
Class E	1	1	1	1	0 27 bits – reserved for future use			

Subnet Addressing

- Only small number of networks possible
 - ~2.000.000
- Interpret IP address considered as 3 parts
 - Host-ID split in Subnet-ID and Host-ID

Class B 1	0	14 bits - netid	8 bits - subnetid	8 bits - hostid

- Subnet Mask
 - Hosts need to know how many bits for subnet
 - 32-bit value with bits set in Network id & Subnet id field
 - Example
 - Explicit: 128.131.172.25 255.255.255.0

IPv6

- Large addressing scheme
 - 128 bit addresses
- Next header field
 - Realizes linked list of headers
 - Last field refers to protocol type (TCP, UDP, ...)
- Extension headers
 - Hop-by-Hop Options
 - Routing
 - lists Intermediate nodes to be visited
 - Fragment
 - For sending a packet larger than the path MTU
 - Destination Options
 - Authentication
 - Encapsulating Security Payload
- Support for Jumbograms (RFC 2675)
 - Payload larger than 64kB

IPv6 Header

4-bit version	8-bit traffic class	2	20-bit flow label		
	16-bit payload length 8-bit next header + extension headers (in bytes) (next protocol) 8-bit hop limit (TTL)				
	128 bit - source IP address				
128 bit - destination IP address					
Extension Headers					

1

IPv6 Addresses

- 128bit
- Written as 8 hex-numbers
 - Ex: 2001:0db8:0000:1347:0000:0000:0000:0001
 - Leading zeros may be omitted
 - 2001:db8:0:1347:0:0:0:1
 - One sequence of 0s replaced by ::
 - 2001:db8:0:1347::1
 - ::1 is loopback
- Last 64 bits are Interface ID
- First 64 bits Global Routing Prefix and Subnet ID
 - Global Routing Prefix provided by Internet Service Provider

Transmission Control Protocol TCP

- Multiple TCP endpoints Ports
 - **1**-65535
 - Like Post Office Boxes
- Connection-oriented
 - Virtual Circuit
 - Special Flags
- Flow control
 - Transmission speed reduction if one side is too slow

TCP Header

16 bit - Source port		16 k	oit - Destination port	
32 bit - Sequence number				
32 bit – Acknowledgement number				
4 bit – Header length	6 bit - reserved		6 bit - Flags	20 bytes
16 bit – Window (size of receive buffer)				
16 bit – Checksum				
16 bit – Urgent pointer				
Options (optional)				

TCP Communication

- Client connects to server
 - Sends TCP (command) segment with
 - SYN flag on, ACK flag off
 - SequenceNr = x
- Server responds
 - Sends TCP (command) segment with
 - SYN flag on, ACK flag on
 - SequenceNr = y, AckNr = x+1
- Client sends data to server
 - Sends TCP segment with
 - SYN flag off, ACK flag on
 - SequenceNr = x+1, AckNr = y+1

...

User Datagram Protocol

- Transmitted within IP protocols
- Multiple UDP endpoints Ports
 - **1**-65535
- Connection-less

UDP Header

16 bit - Source port	16 bit - Destination port
16 bit - Length	16 bit - checksum

Internet Control Message Protocol - ICMP

- Transmitted within IP protocols
- IP's Response & Error mechanism
- ICMP error message
 - Types
 - Network unreachable
 - Host unreachable
 - Port unreachable
 - **...**
- ICMP query messages
 - Eg. Echo request, Echo reply
 - **...**

8 bit - Type	8 bit - Code	16 bit - Checksum			
32 bit – Message Data					
20-60 bytes – Original Header					
8 byte – Original Data					

1

- Via HTTP (HyperText Transfer Protocol)
 - more details in some weeks
- In Pseudocode (Java-like):

```
Socket s =
  new Socket("www.tuwien.ac.at", 80);
s.send("GET / HTTP/1.0");
```

-

- TCP socket
 - Server listens on particular port
 - 80 in our example, standard port for HTTP
 - Client connects to the server host with its own client port
 - Free port is choosen
- Socket Pair
 - Server IP address + Port
 - Client IP address + Port

- Problem
 - IP needs IP destination address
- What is the IP address of
 - "www.tuwien.ac.at"
- Solution
 - Already cached by client
 - Domain Name System
 - Sends other messages!
 - 3. HOSTS / HOSTS.TXT

- How is IP packet delivered?
 - IP makes only sense to IP layers
 - Data link layer protocols own addressing
- In same subnet
 - Requires MAC address in destination field
- Other subnet via Routers

Request Example / 5

How is MAC address of another host found?

- Address Resolution Protocol (ARP)
- ARP cache
 - Hosts may fill cache when they see frames

Address Resolution Protocol

ARP

- Provides a mapping between two different forms of addresses
- Ethernet
 - RFC 826
 - 32-bit IP and 48-bit ethernet
 - Ethernet specific protocol
- Exists in every TCP/IP implementation
 - Automatically without intervention of Administrator

Reverse Address Resolution Protocol

- RARP
 - Maps Hardware Addresses to IP
 - RFC 903
- Original task
 - Optain IP address on booting
 - Only IP address
 - Today replaced by DHCP

Dynamic Host Configuration Protcol (DHCP)

- RFC 2131
- Passing configuration information to hosts
 - On TCP networks
- Based on BOOTP (Bootstrap) (RFC 951)
 - DHCP allows transmission of larger options
- UDP as transport protocol
 - DHCP server port 67,DHCP client port 68

DHCP Goals

- Delivery of host-specific configuration parameters
 - from a DHCP server to a host
 - key-value pairs stored at server
- Allocation of network addresses to host
 - Eg. Client requests use of an IP address

DHCP Address assignment

- Automatic assignment
 - Permanent IP address to a client
- Dynamic allocation
 - Assignment of IP address for a limited time
 - Reassigning free IP addresses

DHCP Client-Server Protocol

- Assumption
 - client does not know its IP address!
- Client broadcasts message "DHCPDISOVER" on local physical subnet
 - Client's hardware address (eg. MAC address)
- 2. (Multiple) Server respond DHCPOFFER messages
 - Includes client's IP address.
 - Client's Lease (expiration time)
- 3. Client chooses one Server that sent DHCPOFFER
 - Verification of server parameter
 - Sends DHCPREQUEST message
- 4. Server sends DHCPACK
 - Contains configuration parameters

DHCP

- Information valid as long as lease
 - No guarantee IP address is valid any longer
- Client may send RENEW messages
 - Timer watches lease expiration
 - Gets a new lease from DHCP server
- DHCP for IPv6 (RFC 3315)
 - Different messages than DHCP for IPv6
 - More configuration options than DHCP for IPv4
 - Eg. NIS+, NTP
 - Authorization

Stateless Address Configuration

- Stateless means
 - No DHCP server required
 - No specific configuration required
- IPv6 only
- RFC 2462
- IPv6 Interface ID (64 bit)
 - Created based on 48-bit MAC address
 - Verified with routers that it is unique
- 64 bit Prefixes determined from routers
 - Global Routing Prefix & Subnet ID

Routing / 1

- Any host has a routing table
 - Which physical interface to use for outgoing IP datagrams

Destination IP	Next Hop Router	Flags	Interface
127.0.0.1	127.0.0.1	UH (H=Host)	Lo0
128.131.172.25	128.131.172. 72		

Routing / 2

- Target host is determined via
 - Routing table has entry that matches complete destination IP
 - Send packet to this router / interface
 - 2. Routing table has entry that matches destination network ID
 - Send packet to this router / interface
 - Search routing table for default entry
 - Send packet to this router / interface

Remote Login Agenda

- RLogin
- Telnet
- SSH
- X-Window

Remote Login

- RLogin
 - one of the first remote login tools
 - Clear-text passwords
 - Allows bypassing of passwords
 - Security Problem

- Communication between
 - Any host
 - Any terminal
- RFC 854
- Network Virtual Terminal (NVT)
 - Lowest common denominator terminal
 - All Telnet terminals shall conform to NVT
- NVT Printer
- NVT Keyboard

Telnet process model

- NVT Ascii
 - 7-bit US variant used in most Internet protocols
 - SMTP, HTTP, FTP, ...
 - Defines allowed symbols for these protocols
- 7-bit character sent as 8-bit (high-order bit = 0)
- Allows specific symbols
 - Those with high-order bit = 1

- End-of-line symbol
 - 2-character sequence
 - CR (carriage Return)
 - LF (Linefeed)
 - \r\n
 - Carriage Return symbol itself
 - Sent as \r\0 (CR NUL)

- Commands
 - 0xFF (255) (= Interprete as Command)
 - Command-byte follows

Telnet Command

- Exists on most systems
 - telnet <host> [<port>] (default port:23)
 - "Internet terminal"
 - Telnet server: telnetd
 - Windows Telnet server: start via Control Panel
- Data sent in the clear
- Passwords in the clear
 - Not widely used extensions/options for encryption
- Importance of Telnet
 - Debugging Tool
 - NVT Ascii used by most Application layer protocols

Telnet Example / 1 Remote Login

telnet compaq1.infosys.tuwien.ac.at

Suse Linux release 8.1

Kernel 2.4.2

login: joe

Password:

Last login: Tue Mar 22 ... from dellpc05.

. . .

-bash-3.00\$

Telnet Example / 2 Debug HTTP

```
telnet www.tuwien.ac.at 80
Trying 128.131.172.239...
Connected to pent21.infosys.tuwien.ac.at.
Escape character is '^]'.
GET / HTTP/1.0
HTTP/1.1 200 OK
Date: Fri, 18 Mar 2005 15:51:59 GMT
Server: Apache/1.3.26 Ben-SSL/1.48 (Unix) PHP/4.1.0
Last-Modified: Tue, 15 Mar 2005 08:21:32 GMT
ETag: "109eb-1ae2-42369b0c"
Accept-Ranges: bytes
Content-Length: 6882
Connection: close
Content-Type: text/html
<!doctype html public "-//w3c//dtd html 3.2//en">
  <html lang="de">
<head>
<title>TU Wien</title>
<LINK rel="stylesheet" type
="text/css" href="styles/homepage.css">
```

Connection to host lost.

X-Window / 1

- Graphical windows on remote hosts
- X-Client
 - End-user application run on (remote) hosts
 - Terminal
 - Editor
 - **...**
 - Sends messages to client
- X-Server
 - Renders the messages at the end-users host
 - Gets input from keyboard/mouse and sends it to X-client
- Be aware: Server vs. Client
 - X Server provides rendering services to the clients

•

X – Window Protocol

- Origin at MIT
- Currently at X.ORG
 - X11
- Usually on TCP (ports 6000-6063)
- Initial negotiation phase
- RPC like messages
 - CreateWindow, DestroyWindow
 - SetInputFocus
 - ClearArea
 - FillPoly
 - Bell
- X-client initiates the connection

Other graphical remoting tools

- VNC
 - Remote Frame Buffer protocol
 - One primitive operation
 - "put a rectangle of pixel data at a given x,y position"
 - stateless
 - Remote access to graphical user interfaces
 - X11, Windows, Mac
- RDP Microsoft Remote Desktop Protocol
 - Remote administration of Windows Systems
 - Protocol not published
 - Performs bettern than X

Secure Shell (SSH)

- Protocol for secure
 - Remote Login
 - Other secure network services
- Strong encryption
- Server Authentication
- Integrity protection
- May provide compression (zlib, RFC1950/1951)
- Type of service negotiated
 - Public key algorithm
 - Symmetric algorithm
 - Message authentication algorithm
- RFC 4250-4256
 - Recently "Internet Proposed Standard"

Secure Shell (SSH)

- Standard methods
 - Interactive shell sessions
 - Remote execution of commands
 - Forwarding (tunneling) arbitrary TCP/IP ports
 - X11 connections
- More details
 - Later in this lecture about security protocols

Ping, Traceroute

Ping / 1

- Based on ICMP
 - Sends an ICMP echo query request to a particular host
 - Receives ICMP echo reply
 - Identifier transmitted
 - Often sender process number (=ping process)
 - Sequence number
 - Identification of the packet
 - Incremented at each send
- Exists on most operating systems
- Ping often blocked by firewalls

Ping / 2

```
joe@mail: ~$ ping localhost
PING mail (127.0.0.1): 56 data bytes
64 bytes from 127.0.0.1: icmp_seq=0 ttl=64 time=0.0 ms
64 bytes from 127.0.0.1: icmp_seq=1 ttl=64 time=0.0 ms
64 bytes from 127.0.0.1: icmp_seq=2 ttl=64 time=0.0 ms
64 bytes from 127.0.0.1: icmp_seq=3 ttl=64 time=0.0 ms
```

--- mail ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss round-trip min/avg/max = 0.0/0.0/0.0 ms

Traceroute / 1

- Determines the route to a specified target host (via hosts and routers)
- IP header has 8-bit TTL (Time-to-live) field
 - Sender initializes this field to some value
 - Usually 64
 - To avoid endless loops
- Router detects IP datagram with TTL 0 or 1
 - Router throws away the datagram
 - Sends an ICMP message "time exceeded" to originating host
 - TTL > 1 datagram forwarded and TTL decremented by 1
- Today firewalls often block ICMP messages

Traceroute / 2

Traceroute functionality (Pseudocode)

```
boolean hostFound = false;
int port = 30000; // no host shall have a service running this port
int ttl = 0;

while(!hostFound) {
   try {
      ttl = ttl + 1;
      sendUPD(targetHost, port, ttl)
   } catch (ICMP_TTLExceeded ttlExcptl) {
       System.out.println("Host:"+ttlExcpt.host);
   } catch (ICM_PortUnreachable pue) {
      System.out.println("Final port reached!");
      hostFound = true;
   }
}
```

Traceroute / 3

4

Traceroute example

/users/home6/e9425196 36% traceroute www.apache.org

traceroute: Warning: Multiple interfaces found; using 193.170.75.14 @ lan2 traceroute to www.apache.org (192.87.106.226), 30 hops max, 40 byte packets

- 1 193.170.75.254 (193.170.75.254) 1.357 ms 1.247 ms 1.251 ms
- 2 192.35.243.25 (192.35.243.25) 0.774 ms 0.782 ms 0.852 ms
- 3 defcon-in.kom.tuwien.ac.at (192.35.241.35) 0.751 ms 0.454 ms 0.451 ms
- 4 192.35.241.116 (192.35.241.116) 0.637 ms 0.732 ms 0.750 ms
- 5 193.171.13.9 (193.171.13.9) 1.440 ms 1.440 ms 1.233 ms
- 6 193.171.23.33 (193.171.23.33) 1.411 ms 1.748 ms 1.618 ms
- 7 aconet.at1.at.geant.net (62.40.103.1) 1.955 ms 1.712 ms 2.148 ms
- 8 at.de2.de.geant.net (62.40.96.58) 13.938 ms 14.032 ms 14.421 ms
- 9 de2-2.de1.de.geant.net (62.40.96.54) 13.668 ms 24.610 ms 14.290 ms
- 10 de.nl1.nl.geant.net (62.40.96.102) 20.278 ms 24.153 ms 20.409 ms
- 11 surfnet-gw.nl1.nl.geant.net (62.40.103.98) 20.475 ms 20.693 ms 20.463 ms
- 12 PO11-0.CR1.Amsterdam1.surf.net (145.145.166.33) 20.519 ms 20.312 ms 30.719 ms
- 13 PO0-0.AR5.Amsterdam1.surf.net (145.145.162.2) 20.465 ms 22.724 ms 20.615 ms
- 14 Te1-1.SW14.Amsterdam1.surf.net (145.145.140.158) 20.362 ms 20.828 ms 20.284 ms

15 * * * *