Network Services, VU 2.0

Middleware Protocols (WebServices, IIOP, RMI, .NET Remoting)

Dipl.-Ing. Johann Oberleiter Institute for Informationsystems, Distributed Systems Group

Agenda

- Web services / SOAP
- RMI
- IIOP

Web services

- UDDI consortium
 - "self-contained, modular business application that have open, Internet-oriented, standards-based interfaces"
- - "a software application identified by a URI, whose interfaces and bindings are capable of being defined, described, and discovered as XML artifacts. A Web service supports direct interactions with other software agents using XML-based messages exchanged via Internet-based protocols

Simple Object Access Protocol

- Minimal possible infrastructure necessary to perform RPC through Internet
 Use of XML for message header & body

 - Internet protocols (HTTP/SMTP) used for transportation
- · SOAP consists of
 - Envelope construct: overall structure of message
 - Encoding rules: serialization of application data types
 SOAP RPC: representation of remote procedure calls
 - Binding framework to protocols (HTTP,SMTP,...)
 - Fault handling
- · Advanced message processing
 - Forwarding intermediaries route messages based on the semantics of message
 - Active intermediaries process/modify messages before forwarding

SOAP / 2 - Messages

- SOAP messages
 - Envelope: top element of XML element
 - Header
 - Elements are application-specific
 - May contain context information (eg. transaction contexts)
 - May be changed by intermediaries
 - Body
 - Elements are application-specific
 - · Applications put their data there
 - · Processed by recipient only

SOAP / 3 - Example

<?xml version="1.0">

<env:Envelope
xmlns:env="http://www.w3.org/2002/12/soap-envelope">

-cm:reservation xmlns:m=http://travelcompany.example.org/reservation env:role=http://.../role/next env:mustUnderstand="true" <m:dateAndTime>2005-05-29 20:00:00</m:dateAndTime>

</env:Header>

<env:Body xmlns:p=...>
<p:departure>Vienna</p:departure>
<p:arriving>Frankfurt</p:departure>
<p:departureDate>2005-06-20 14:00:00</p:departureDate>
</env:Body</pre>

</end:Envelope>

SOAP / 4

- RPC style operation
 - SOAP message encapsulates the request
 - Another SOAP message encapsulates the response
 - Body contains actual call
 - Including name of procedure and input parameters
- Document style operation
 - Interacting applications agree upon structure of documents
 - Body contains not necessarily the name of a procedure

SOAP / 5

- Processing nodes may play 1+ Roles
 - Block in SOAP header may include intended role name
 - Predefined role names
 - "none" should not be processed, may be read
 - "next" every node may process this node
 - "ultimateReceiver should only be processed by recipient
 - "mustUnderstand" flag
 - Block must be processed

Web service Description Language • WSDL specification - XML file Abstract part Types Port Types Concrete part Bindings Services and ports

WSDL - Elements / 1

- I ypes

 Default WSDL uses XML Schema
 Define all data structures that will be exchanged with messages

 Messages
 In WSDL a messages is a typed document divided into parts
 Part characterized by name and by type
 Resembles parameters in method invocations

 Operations

Operations

- Derations

 Defines operations and which messages they use for input/output

 Transmission primitive

 Transmission primitive

 Request response endpoint receives a message, sends a correlated message

 Request response endpoint sends a message, receives a correlated message

 Notification endpoint sends a message, receives a correlated message

 Notification endpoint sends a message, receives a correlated message

 Which transmission primitive an operation follows is determined by order and availability of port Tunes.
- Port Types

 - Grouping of operations
 In WSDL 1.2 port types may extend port types

WSDL - Elements / 2

- · Interface bindings

 - Message encoding for port type
 Protocol binding for port type
 Encoding rules for serializing parts of messages into XML
 - "Literal" encoding uses WSDL types defined in XML Schema, literally uses those definitions

 Primarily used for Document-style interaction

 SOAP" encoding transfers WSDL types into XML using SOAP encoding rules

 - Primarily used for RPC-style interaction
- - Defines Endpoints
 - Combines Interface binding information with URIs
- - Logical grouping of ports

Universal Description, Discovery, and Integration

- · UDDI standard for describing, publishing, and finding Web services
 - Evolving
 - Can be accessed itself via Web services
- White pages
 - Listings of organisations
- Yellow pages
 - Classification of organization based on categories
- Green pages
 - Technical description of services offered by registered organizations
 - How a given Web service can be invoked

UDDI / 2

- · Main entities
 - "businessEntity"
 - describes organization that provides a Web service
 - "businessService"
 - describes a group of related Web services offered by a businessEntity
 - "bindingTemplate"
 - Technical information necessary to use a particular Web service
 Address of the Web service
 - "tModel"

 - Generic container for any kind of specification
 - Eg. WSDL interface, interaction protocol, semantics of the operation

RMI Protocol

- · Remote Method Invocation
 - Java RPC
 - See Distributed Systems Lab
- RMI Protocol
 - Stream based
 - In & Out streams of corresponding socket pair
 - As consequence only header information required on input stream is acknowledgement (0x4e)
 - Other header information implied by context of stream pairing
 - Uses Object Serialization protocol for Marshaling
 - · Representation of Java objects
 - In "Call" and "ReturnValue" messages

Output Stream

- Transport Header

 0x4a 0x52 0x4d 0x49 (JRMI)

 Version (0x00 0x01)

 Protocol

 StreamProtocol (0x4b)

 SingleOpProtocol (0x4c)

 Used for interactions embe

 MultiplexProtocol (0x4d)

 - nbedded in HTTP requests
 - Messages (one or more)

 - Call
 Method invocation
 Contains "0x50 CallData"

 - Ping
 Testing liveness of remote VM
 Contains "x52"
 DgcAck

 - - Acknowledgement directed to server's distributed Garbage Collector
 Contains "0x54 UniqueIdentifier"

Input Stream

- Protocol Acknowledge
 - 0x4e
 - 0x4f in case protocol not supported
- Returns (one or more)
 - ReturnData
 - "0x51 ReturnValue2
 - PingAck
 - "0x53"

RMI & HTTP Post

- · Invocation of RMI through firewall
 - Use of HTTP POST
 - "http://<host>:<port>/
 - Direct communication with RMI server on host and port
 - Automatically used by RMI
 - Client first attempts direct connection without HTTP
 - In exception case tries HTTP connection
 If java.net.noRouteToHostConnection or java.net.UnknownHostException thrown
 - Server socket automatically detects if it was a HTTP POST request

RMI Multiplexing

- · Only one endpoint is able to open bidirectional connection
 - Eg. Security managers (eg. applets) may disallow server sockets
 - Instead may open normal socket connection
- · Allows multiple virtual connections exist in parallel
- · Operations
 - OPEN, CLOSE, CLOSEACK, REQUEST, TRANSMIT

Internet Inter-ORB Protcol (IIOP)

- · Transport protocol of CORBA
 - Also useable in RMI
 - Alse useable in EJB
- Special form of GIOP (General Inter-ORB Protocol)
 - IIOP uses TCP
- Communication between Object Request Broker
 - ORB responsible for
 - Find object implementation
 - · Receive & invoke request on objects
- · Few, simple messages
- · Very efficient

IIOP / 2

- Transmission data represented in CDR
 - Common Data Representation
 - How CORBA IDL Data Types are represented in transmission packets
 - Sender defines byte ordering (Little/Big endian)
 - Primitive Types aligned on natural boundaries

IIOP Messages

- Request (0, originates at Client)

 Operation request
- Reply (1, Server)

 Reply of operation
- CancelRequest (2, Client)
- Signals client is no longer interested in result
 LocateRequest (3, Client), LocateReply (4, Server)
- Determines if server is capable of receiving requests for an object CloseConnection (5, Both)

- CloseConnection (5, Both)

 One side closes the connection
 MessageError (6, Client+Server)

 Response to message with invalid Header
 Fragement (7, Client+Server)

 Message is continuation of previous message

 Used for large requests

IIOP Request

- GIOP message header

 char[4] Magic ("GIOP")

 Version GIOP_Version (eg. 1.2)

 byte Flags (byte ordering, fragments follow)

 byte Message Type (0 Request, 1 Reply, ...)

 unsigned long Message Size
- RequestHeader
 - unsigned long Request-id

 - byte response_flags
 byte reserved[3]
 TargetAddress target
 - string operation (eg. "sum")
 ServiceContextList service_context
- · Request body
 - parameters marshaled in CDR from leftmost parameter to rightmost
 Eg. void sum(double x, double y);

IIOP Reply

- GIOP Header
- Reply Header
 - unsigned long request_id
 - ReplyStatusType reply_status
 - Success, Exception
 - ServiceContextList service_context
- Reply Body

.NET Remoting

- "RMI" for .NET
- Possible to configure used channel (=protocol)
 - TCP and HTTP included
- Possible to configure data representation
- SOAP and binary representation included
- Easy to extend with other protocols
 - Example: J.Oberleitner & T. Geschwind: "Transparent Integration of CORBA and the .NET Framework", in "On the Move to Meaningful Internet Systems, 2003 CoopIS, DOA, and ODBASE
 - Describes how an IIOP Channel can be used with .NET Remoting
 - http://www.infosys.tuwien.ac.at/reports/repository/TUV-1841-2003-20.ps