
Network Services, VU 2.0

Middleware Protocols

(WebServices, IIOP, RMI, .NET Remoting)

Dipl.-Ing. Johann Oberleiter
Institute for Informationsystems, Distributed
Systems Group

Agenda

• Web services / SOAP
• RMI
• IIOP

Web services

• UDDI consortium
– "self-contained, modular business application that

have open, Internet-oriented, standards-based
interfaces"

• W3C
– "a software application identified by a URI, whose

interfaces and bindings are capable of being defined,
described, and discovered as XML artifacts. A Web
service supports direct interactions with other
software agents using XML-based messages
exchanged via Internet-based protocols

Simple Object Access Protocol
• Minimal possible infrastructure necessary to perform

RPC through Internet
– Use of XML for message header & body
– Internet protocols (HTTP/SMTP) used for transportation

• SOAP consists of
– Envelope construct: overall structure of message
– Encoding rules: serialization of application data types
– SOAP RPC: representation of remote procedure calls
– Binding framework – to protocols (HTTP,SMTP,...)
– Fault handling

• Advanced message processing
– Forwarding intermediaries – route messages based on the

semantics of message
– Active intermediaries – process/modify messages before

forwarding

SOAP / 2 - Messages

• SOAP messages
– Envelope: top element of XML element
– Header

• Elements are application-specific
• May contain context information (eg. transaction contexts)
• May be changed by intermediaries

– Body
• Elements are application-specific
• Applications put their data there
• Processed by recipient only

SOAP / 3 - Example
<?xml version="1.0">
<env:Envelope

xmlns:env="http://www.w3.org/2002/12/soap-envelope">

</end:Envelope>

<env:Header>
<m:reservation xmlns:m=http://travelcompany.example.org/reservation
env:role=http://.../role/next
env:mustUnderstand="true"
<m:dateAndTime>2005-05-29 20:00:00</m:dateAndTime>

</env:Header>

<env:Body xmlns:p=...>
<p:departure>Vienna</p:departure>
<p:arriving>Frankfurt</p:departure>
<p:departureDate>2005-06-20 14:00:00</p:departureDate>

</env:Body

SOAP / 4

• RPC – style operation
– SOAP message encapsulates the request
– Another SOAP message encapsulates the response
– Body contains actual call

• Including name of procedure and input parameters

• Document – style operation
– Interacting applications agree upon structure of

documents
– Body contains not necessarily the name of a

procedure

SOAP / 5

• Processing nodes may play 1+ Roles
– Block in SOAP header may include intended

role name
– Predefined role names

• "none" – should not be processed, may be read
• "next" – every node may process this node
• "ultimateReceiver – should only be processed by

recipient
– "mustUnderstand" flag

• Block must be processed

Web service Description Language
WSDL

• WSDL specification
– XML file

Types
Messages
Operations
Port Types

Bindings
Services and ports

Abstract part

Concrete part

WSDL – Elements / 1
• Types

– Default WSDL uses XML Schema
• Different type system may be specified

– Define all data structures that will be exchanged with messages
• Messages

– In WSDL a messages is a typed document divided into parts
• Part characterized by name and by type
• Resembles parameters in method invocations

• Operations
– Defines operations and which messages they use for input/output
– Transmission primitive

• One-way – endpoint receives a message
• Request-response – endpoint receives a message, sends a correlated message
• Solicit-response – endpoint sends a message, receives a correlated message
• Notification - endpoint sends a message

– Which transmission primitive an operation follows is determined by order and availability of
input/output message

• Port Types
– Grouping of operations
– In WSDL 1.2 port types may extend port types

WSDL – Elements / 2
• Interface bindings

– Message encoding for port type
– Protocol binding for port type
– Encoding rules for serializing parts of messages into XML

• "Literal" encoding uses WSDL types defined in XML Schema,
literally uses those definitions

– Primarily used for Document-style interaction
• "SOAP" encoding transfers WSDL types into XML using SOAP

encoding rules
– Primarily used for RPC-style interaction

• Ports
– Defines Endpoints
– Combines Interface binding information with URIs

• Service
– Logical grouping of ports

Universal Description, Discovery,
and Integration

• UDDI standard for describing, publishing, and finding
Web services
– Evolving
– Can be accessed itself via Web services

• White pages
– Listings of organisations

• Yellow pages
– Classification of organization based on categories

• Green pages
– Technical description of services offered by registered

organizations
– How a given Web service can be invoked

UDDI / 2
• Main entities

– "businessEntity"
• describes organization that provides a Web service

– "businessService"
• describes a group of related Web services offered by a

businessEntity
– "bindingTemplate"

• Technical information necessary to use a particular Web service
• Address of the Web service

– "tModel"
• "technical Model"
• Generic container for any kind of specification
• Eg. WSDL interface, interaction protocol, semantics of the operation

RMI Protocol
• Remote Method Invocation

– Java RPC
– See Distributed Systems Lab

• RMI Protocol
– Stream based

• In & Out streams of corresponding socket pair
– As consequence only header information required on input

stream is acknowledgement (0x4e)
– Other header information implied by context of stream pairing

– Uses Object Serialization protocol for Marshaling
• Representation of Java objects

– In "Call" and "ReturnValue" messages

Output Stream
• Transport Header

– 0x4a 0x52 0x4d 0x49 (JRMI)
– Version (0x00 0x01)
– Protocol

• StreamProtocol (0x4b)
• SingleOpProtocol (0x4c)

– Used for interactions embedded in HTTP requests
• MultiplexProtocol (0x4d)

• Messages (one or more)
– Call

• Method invocation
• Contains "0x50 CallData"

– Ping
• Testing liveness of remote VM
• Contains "x52´"

– DgcAck
• Acknowledgement directed to server's distributed Garbage Collector
• Contains "0x54 UniqueIdentifier"

Input Stream

• Protocol Acknowledge
– 0x4e
– 0x4f in case protocol not supported

• Returns (one or more)
– ReturnData

• "0x51 ReturnValue2
– PingAck

• "0x53"

RMI & HTTP Post
• Invocation of RMI through firewall

– Use of HTTP POST
• "http://<host>:<port>/

– Direct communication with RMI server on host and port
• "http://<host>:80/cgi-bin/java-rmi?forward=<port>

– Invokes CGI script on the server which forwards invocation to
server on specified port

– Automatically used by RMI
• Client first attempts direct connection without HTTP
• In exception case tries HTTP connection

– If java.net.noRouteToHostConnection or
java.net.UnknownHostException thrown

• Server socket automatically detects if it was a HTTP POST
request

RMI Multiplexing

• Only one endpoint is able to open bidirectional
connection
– Eg. Security managers (eg. applets) may disallow

server sockets
• Instead may open normal socket connection

• Allows multiple virtual connections exist in
parallel

• Operations
– OPEN, CLOSE, CLOSEACK, REQUEST, TRANSMIT

Internet Inter-ORB Protcol (IIOP)

• Transport protocol of CORBA
– Also useable in RMI
– Alse useable in EJB

• Special form of GIOP (General Inter-ORB Protocol)
– IIOP uses TCP

• Communication between Object Request Broker
– ORB responsible for

• Find object implementation
• Receive & invoke request on objects

• Few, simple messages
• Very efficient

IIOP / 2

• Transmission data represented in CDR
– Common Data Representation
– How CORBA IDL Data Types are represented

in transmission packets
– Sender defines byte ordering (Little/Big

endian)
– Primitive Types aligned on natural boundaries

IIOP Messages
• Request (0, originates at Client)

– Operation request
• Reply (1, Server)

– Reply of operation
• CancelRequest (2, Client)

– Signals client is no longer interested in result
• LocateRequest (3, Client), LocateReply (4, Server)

– Determines if server is capable of receiving requests for an object
• CloseConnection (5, Both)

– One side closes the connection
• MessageError (6, Client+Server)

– Response to message with invalid Header
• Fragement (7, Client+Server)

– Message is continuation of previous message
– Used for large requests

IIOP Request
• GIOP message header

– char[4] Magic ("GIOP")
– Version GIOP_Version (eg. 1.2)
– byte Flags (byte ordering, fragments follow)
– byte Message Type (0 Request, 1 Reply, …)
– unsigned long Message Size

• RequestHeader
– unsigned long Request-id
– byte response_flags
– byte reserved[3]
– TargetAddress target
– string operation (eg. "sum")
– ServiceContextList service_context

• Request body
– parameters marshaled in CDR from leftmost parameter to rightmost

• Eg. void sum(double x, double y);

IIOP Reply

• GIOP Header
• Reply Header

– unsigned long request_id
– ReplyStatusType reply_status

• Success, Exception
– ServiceContextList service_context

• Reply Body

.NET Remoting
• "RMI" for .NET
• Possible to configure used channel (=protocol)

– TCP and HTTP included
• Possible to configure data representation

– SOAP and binary representation included
• Easy to extend with other protocols

– Example: J.Oberleitner & T. Geschwind: "Transparent
Integration of CORBA and the .NET Framework", in "On the
Move to Meaningful Internet Systems, 2003 CoopIS, DOA, and
ODBASE

• Describes how an IIOP Channel can be used with .NET Remoting
• http://www.infosys.tuwien.ac.at/reports/repository/TUV-1841-2003-

20.ps

