Network Services, VU 2.0

Security (SSL, PGP)

Dipl.-Ing. Johann Oberleiter Institute for Informationsystems, Distributed Systems Group

Agenda

- Basics
- Certificates
- SSL/TLS
- PGP

Security Services

- · Confidentiality
 - Keeps a secret
 - Threat: Eveasdropping
 - Solution: Use of a secret code
- Authentication
 - Proofes identity
 - Threat: Forgery and masquerade
 - Solution: Attach special information (secret phrase)
- Message integrity
 - Verify informationThreat: Alteration of data
 - Solution: Attach special information (signature, hashcode)

Symmetric/Secret Key Cryptography

- Sender A encrypts a message m with a Key k
 - Gets e(m)
- Receiver B decrypts message e(m) with same Key k
- Key k has to be known by A+B
- Application of Key on message mathematical function
 - Encryption and decryption inverse functions

Asymmetric/Public Key Cryptography

- Key consists of private part + public part
- Sender A encrypts a message m with a public key part pu

 Gets e(m)
- Receiver B decrypts message e(m) with private key part pr
- Public key may known by anybody (also A)
- Private key only known by B
- Encryption application of public key
- Decryption application of private key

Asymmetric Signatures

- Signation done by encrypting message with private key
 - Results in Signature
 - Whole message consists of message + signature
- Verification done by decrypting message with public key
- Usually hash over message contents+header is used as signature
- Digitnal Signature Algorithm (DSA)

Combining secret and public key cryptography

- Asymmetric algorithms
 - Rather slow
 - Used for key exchange of symmetric cryptographic algorithms
 - Key requires structure (private+public)
 Based on large prime numbers
 - RSA, El Gamal
 - Diffie-Hellman Key exchange algorithm
 - Symmetric
 - Rather fast
 - Key Usually unstructured (eg. 128bit random number)
 - DES,3DES,AES (Rindjael)

Public Key Certificates

- Critical that public key is not forged
- Public Key Certificates
 - Identify subjects by subjects names Usually identifies a host
 - Key information about a subject (public key)
 - Issued by a trusted organization (certification authority CA)

,		
Field entry	Description	Example
Version	Version of X.509 Standard	3
Serial Number	Assigned by CA	12345678
Algorithm Identifier	MD5 hash and RSA signing	RSA
Issuer	Cert. Authority	VeriSign
Period of Validity	Time When valid	
Subject	Describes invididum who ones the certificate	Country Austria Common Name NWS- TUWien
Subject's public key		RSA 0x308188
Extensions	Vendor specific	
Signature	Issuer creates signature with its private key over certificate	0x4C2170

Certification Authorities

• Private authorities

- Generate certifications strictly for their own users
 - Eg. Company for their employees' computer
- Systems outside the company need/should not accept certificates
- Public authorities
 - Issues certificates to the general public
 - May prove identity by certificates themselves · Issuer and subject one and the same

Certificates

- · Validity of certificate authorities
 - Depends on browser manufactorers Recognize certificates from important certificate authorities
 - Certificate Revocation Lists · Certificates that are no longer valid
 - No standardized way to check these lists
- · Hierarchies of certificate authorities
 - Subsidiary authorities assigned by certificate authorities
 - Not necessary to identify all identities itself
 - Not required that all parties trust all certificate authorities Recursive resolution
 Somewhere authority that is trusted must be met

SSL/TLS

- Secure Sockets Layer (SSL)
 - Introduced by Netscape (SSL 1.0 1994)
 - Netscape Navigator ships with SSL 2.0 late 1994
- Transport Layer Security (TLS)
 - TLS is successor of SSL
 - Standardized by IETF
 - Published in 1999
 - Principally new version of SSL
- · Used in many applications
- Primarily in Web applications (HTTP) - Also used in EMail

Motivation

- Electronic commerce
 - Sensitive information kept confidential
- · Internet consists of many different hosts
 - Run by different people
 - Different countries
 - Different Legal standards
 - User no control how a message is transmitted • Like writing credit card number on a postcard

SSL

- · Separate protocol for security
 - Between Application specific protocol and TCP protocol
 - Advantage: arbitrary applications may use SSL/TLS
- Different SSL protocols
 - Encryption
 - Authentication of server
 - Authentication of client
- Continuation of previous negotiated session • Different cipher suites

 - RSA, DH
 - DES,3DES,RC4
 - SHA,MD5

SSL Commands / 1

ClientHello

- Starts SSL communication between 2 parties
- Parameter
- Version Sends hightest version number SSL client supports (currently 3.0 for SSL, 3.1 for TLS)
 RandomNumber Sends a random number (includes)
- date+time)
- SessionID empty in this operation mode
- CypherSuites cryptographic services client supports · Algorithms, key sizes
- CompressionMethods _
 - Must be applied before encryption
 Not included in SSL

SSL Commands / 2

ServerHello

- Version of SSL protocol used
- RandomNumber chosen by server
- SessionID calculated by the server
- CypherSuite Cryptographic parameters selected by the server from the client's previous CypherSuites parameter
- CompressionMethod

SSL Commands / 3

- ServerKeyExchange
 - Transmits public key information itself
 - Example: algorithm=RSA,
 - modulus and public exponent of server's RSA public key
 - No encryption applied here

ServerHelloDone

- Server has finished its negotiation

SSL Commands / 4

- ClientKeyExchange
- ChangeCipherSpec
- Special command that "Activates" Security Services Finished
- Already encrypted, has to be decrypted by other party
- Sends key information
- Sends all previous SSL handshake messages
 Sends a special value indicating client or server

SSL Write/Read state

· Client and Server maintain

- Information about security services used
 - Specific Symmetric encryption algorithm
 - Specific Message integrity algorithm (Message authenthication Code)
 - Specific key material for those algorithms
 - Different for each direction!
- Active and Pending fields for write+read state
 - Write fields for data the client/server sends
 Read fields for date the client/server receives
 - Can only be activated when above (pending) information complete

 - Activated by ChangeCipherSpec
 Other Client and Server messages fills only Pending fields

Pending/Active states - Client 1

SSL - Authenticating Server's identity · Server sends certificate message - Certificate with Public key Client verifies validity of certificate - Certificate Signatures, Validity Times, Revocation Status Checks domain name of web site with domain name stored in certificate (Subject) Eg. Server located at "www.mydomain.org" and certificate valid only for www.otherdomain.org - Client's ClientKeyExchange uses public key in certificate Sometimes another public key may be used Example US Export restrictions (cryptographic key lengths)

SSL – Authenticating Server		
Client	ClientHello ServerHello Certificate	
	← SarriarHallaDana	
	ClientKeyExchange	
	ChangeCipherSpec	
	Finished	
	ChangeCipherSpec	
	Finished	

SS	SL – Authenticating Client's Identity
	ClientHello
Client	ServerHello
	Certificate
	CertificateRequest
	ServerHelloDone
	Certificate
	ClientKeyExchange
	CertificateVerify
	ChangeCipherSpec
	Finished
	ChangeCipherSpec
	Finished

SSL - Authenticating Client's Identity

- · Server wants to authenticate the Client's identity
 - Server indicates wish to authenticate Client's identity by sending a CertificateRequest message
 - Client sends its own Certificate within Certificate message
 - Client's public key within the certificate is used for signatures only no encryption
 - Client proves that it posseses the certificate by submitting a CertificateVerify message

 - Encrypted with private key
 Over key information + all previous SSL handshake messages exchanged by both systems

SSL - Continuation

- SSL allows resuming a previous session - ClientHello message contains sessionID
 - Parties can reuse previously negotiated SSL parameters

SSL - Limitations

· Protocol limitations

- Requires connection-oriented transport protocol such as TCP
- Does not support non-repudiation

· Tool limitations

- Relies on other components such as cryptographic algorithms
- Environmental limitation
 - Security provided only on the transmission network - The path to the network and from the network is not secured

TLS – Differences to SSL

- Protocol version 3.1
- · More procedures for potential and actual security alerts
 - 23 instead of 12
 - Eg. Certificate-Revoked
- · Message authentication standardized – Uses H-MAC (hashed Message Authentication Code)
 - Combines (Sequence number, TLS protocol message type, TLS version, Message length, Message contents)
 - Instead of SSL combination of key information and application data
- · More cipher suites

Pretty Good Privacy - PGP

- · Goals
 - Encryption of files
 - Create secret & public keys
 - Manage keys
 - Send & receive encrypted emails
 - Digital signatures

PGP/2

- Uses 3 keys
 - Private, public, and session key Session key uses IDEA algorithm (128-bit key symmetric)
- Tools for encryption
 - Free and open source gpg
 All relevant operating systems

 - Supports key rings
 File used by PGP to hold public and private keys - Interacts with email clients
 - Encrypted emails may be sent to multiple persons
 - Session key encrypted multiple times

PGP - Principal functionality

- 1. PGP creates random session key
- 2. IDEA algorithm to encrypt message with session key
- 3. RSA algorithm to encrypt session key with recipient's public key
- 4. Encrypted message and encrypted session key bundled together