
1

Network Services, VU 2.0

Dynamic Web Technologies

Dipl.-Ing. Johann Oberleiter
Institute for Informationsystems, Distributed
Systems Group

Overview
• Generic Mechanisms
• ISAPI/Apache Modules
• CGI (Common Gateway Interface)
• PHP
• ASP
• Java related

– Java Servlets, Java Server Pages, Java Server Faces
– Java Web Applications

• ASP.NET
• Cocoon, Struts

Dynamic Web – Why?

• Web Servers return only with static files
• Interactive Content

– Created based on user interaction
• Dynamic Content

– Created on the fly
– Database access

Generic principles
• Separation of layout, content and program logic

– Good design principle (not only in Web)
– Allows parallel tasks of

• Developer
• Web Designer

• Layout
– HTML

• Content
– Which Text when dynamically generated

• Program Logic
– What overall structure
– What navigational structures

2

ISAPI
• Internet Server API (Microsoft IIS)

– IIS only
– Extension mechanism for IIS
– C-based (like Windows API)

• Implements number of callbacks
– Functions that are called by server

• Request sent to ISAPI extension via API functions (callbacks)
• Respond via API functions (callbacks)
• Supports use of Multithreaded features
• Features

– Scalability
– Supports ISAPI extensions

• Similar to CGI-scripts
– Supports ISAPI filter

• Pre & postprocessing of a request, may be chained
• NSAPI

– Netscape Server API

Apache Modules
• Extension mechanism for Apache

– C based
– Based on Apache Portable Runtime (APR), and C standard

library
• Based on Hooks (callbacks)
• Categories

– Authentication, Authorization, Accounting
– Cache
– Filters

• Modify output from another module
– Mappers

• Map requests from URLs to resources on disc
– Loggers

Common Gateway Interface

• RFC 3875
• Running external programs

– From HTTP servers
– Platform-independent mechanism

• CGI script & HTTP server together
– Servicing a client request
– Creating response

• CGI script addressed with URI

CGI / 2
• Supported by most programming languages

– Requires access of standard input stream, standard output
stream, environment

• Supported by most programming languages
– requirements

• Access standard input stream
• Access standard output stream
• Access environment variables

– Web Server
• Invocation of executables (stand-alone executables)
• Invocation of interpreter (interpreter languages)

– Typical
• C, Perl

• New Process per request

3

CGI / 3

Client
Browser

WWW
Server

CGI-
Script

CGI / 4

void main(void)
{

printf("Content-type: text/html\r\n");
printf("\r\n");
printf("Hello world!
\r\n");
exit(0);

}

Fast-CGI

• CGI performance problem
– Many requests require multiple processes
– Initialization of connections/resources

(database)
• FastCGI

– Script remains in memory (via endless loop)
– Predefined protocol/API for communication

with HTTP server

Fast-CGI / 2
void main(void)
{

int count=0;
while(FCGI_Accept() >= 0) {

printf("Content-type: text/html\r\n");
printf("\r\n");
printf("Hello world!
\r\n");

}
exit(0);

}

4

PHP
• Abbreviation for PHP: Hypertext Preprocessor
• Dynamic Web Scripting language

– Syntax resembles C and Perl
– Currently most frequently used Web programming language
– Usually embedded in HTML
– Supported by most Internet service providers

• Wellknown through LAMP
– Linux – Apache – MySql – PHP

• Many libraries
– In particular libraries for database access

• Problem
– Mix of HTML and script code
– Language grown over the years

• Performance
– Quite Good

PHP - sample

<html>
…

<body>
<?php echo „<p>Hello World</p>“; ?>

</body>

</html>

Active Server Pages
• Server-side scripting ala Microsoft

– Relies on MS scripting languages
• Usually VB.NET or JScript (JavaScript)

• Programming model
– Program Logic via COM components
– Principally scalable (via COM+)
– Principally secure (server-side via COM+, ADSI)

• Problems
– Mixture of layout and content

• Principally possible to do it in a clean way (via COM comp.)
– Vendor-lockin (only IIS supported)

• though special solutions for Apache exist
– Interpreted

Host 1

ASP / 2

HTTP Server
COM Component 1

Host 2

COM+ / 2
COM+ / 1

5

Java Servlets

• Web component
– implemented in Java

• Generates dynamic content
• Managed by a servlet engine (container)

– Web server extensions
• Request/response paradigm

– Interaction with Web clients

Request/response Interaction

Web client
(browser) Web server

Servlet container

ServletA ServletB ServletC

request response

Servlets characteristics

• Much faster than CGI scripts (in general)
– Because different process model

• Standard API supported by many Web
servers

• Supports Java and API's

Servlet interface / 1

<<interface>>
Javax.servlet.Servlet

destroy
ServletConfig getServletConfig()

String getServletInfo()
init(ServletConfig config)

service(ServletRequest request, ServletResponse response)

6

Servlet implementation

• Server implements servlet interface
• Typically by inheriting from (predefined)

implementation classes
– GenericServlet
– HttpServlet

Servlet lifecycle

initialized
init

service

destroyed

destroy

finalized &
garbage collected

instantiate Servlet

Request Handling
• Through Service method
• ServletRequest object used
• Concurrent requests to same servlet

– Concurrent execution of service method on different
threads

• HTTP specific Request Handling
– HttpServlet adds HTTP specific methods

• primarily doGet & doPost,
• doPut, doDelete, doHead, doOptions, doTrace
• getParameterXXX methods provide

– from URI query string and POST-ed data
• getHeaderXXX methods

Response Generation

• By using methods of ServletResponse
object

• Manual generation of any response
• HttpServletResponse interface

– sendRedirect
– sendError

7

Servlet example
public void doGet(HttpServletRequest req,

HttpServletResponse res) throws ...
{

res.setContentType("text/html");
PrintWriter out= res.getWriter();

out.println("<HTML>");
out.println("<HEAD>");

...
out.close();

}

Filtering
• Filter

– Java component
– Allow on the fly transformation
– Implements javax.servlet.Filter

• Filter transforms content of
– HTTP requests
– Responses
– Header information

• Modify or adapt
– Requests for a resource (dynamic&static content)
– Responses from a resource

Filter examples
• Authentication filters
• Logging and auditing filters
• Image conversion filters
• Data compression filters
• Encryption filters
• Tokenizing filters
• Filters triggering resource access events
• XSL/T filters
• MIME-type chain filters
• Caching filters

Filter implementation
• doFilter(ServletRequest req, ServletResponse res,

FilterChain next)
1. Examine request
2. May wrap Request object with a custom implementation to

filter/modify content or headers for input filtering
3. May wrap Response object with a custom implementation to

filter/modify content or headers for output filtering
4. May invoke next filter in chain or block further processing
5. After invocation 4. examine response headers and modify

output
– Last element of chain is target servlet

8

Session Tracking
• Cookies

– Supported by servlet container
– Cookie name JSESSIONID

• SSL sessions
– Only when SSL/TLS is in use
– Built-in mechanism to distinguish multiple requests

• URL Rewriting
– Adds session ID to request URL
– Eg. http://www.xyz.com/index.html;jsessionid=1234

• Supports storage of key-value pairs
– Keys are object names (strings)
– Values arbitrary Java objects

• Session timeouts

Other Servlet Issues

• Request forwarding
– Via Request Dispatchers
– Support for event listeners

• For state changes in ServletContext, HttpSession,
ServletRequest

– Lifecycle, changes to attributes, session migration, object
binding

• Problem
– Not often supported by public Web hosters

Java Server Pages (JSP)
• JSP page

– Textual document how to create a response object
from a request object for a given protocol

– Defines a JSP page implementation class
• Implements semantics of the JSP page
• Implements javax.servlet.Servlet interface

– HTTP default protocol for requests/responses
– Default ending .jsp

• Traditional usage
– Generation of HTML

• Generating XML possible
– More modern JSP XML-like syntax

JSP
• JSP container

– Life-cycle management
– Runtime support

• Translation phase
– Validates syntactic correctness of JSP page
– Locates/Creates implementation class

• Execution phase
– Container delivers events to JSP page

• Compilation
– Into implementation class + deployment info during deployment

possible
• Removal of start-up lag for transition phase
• Reduction of memory footprint needen to run JSP container – no

compiler required

9

JSP - Syntax

• Elements
– Element type known to JSP container

• Template Data
– JSP translator not aware about

• Allows (a little bit) separation
– Look/Layout
– Behaviour

JSP Elements
• Directives

– Global information, independent of specific request
– Info for translation phase
– Syntax: <%@ directive ... %>

• Actions
– Infos for request processing
– Standardized (by JSP specification)
– Custom (portable tag extension mechanism)
– Syntax: <mytag attr="value">xyz</mytag>

• Scripting Elements
– Glue around template text and actions
– Manipulation of objects and to perform computation
– Invocation of methods on Java objects
– Catching of Java language exceptions
– Expression language (EL) to access data from different sources

JSP Expression Language

• Simple expressions without Java code
• Enclosed within ${...}

– ${a+b}
– <mytag attr1="${mybean.data}"/>

• Access of Java beans
• Operators as in Java

– Includes arithmetic, relational operators,
logical operators

– Conditional Operator ${expr ? a:b}

JSP Documents

• JSP page that is also a XML document
– Well-formed, validation
– Entity resolution may be applied
– <% style syntax not supported

• Use <jsp:directive.xyz/> instead
– Default convention .jspx
– Specification calls it so-called XML view

10

JSP Taglibs

• Extension of tags a JSP container interprets
– Tab library
– Taglib directive required

• <%@ taglib=http://www.xyz/mysupertags prefix="mysuper"/>

– XML view
• xmlns:prefix on root of JSP document

(urn:jsptld:uriValue)

– <mysuper:MyOwnTag>
...

– </mysuper:MyOwnTag>

JavaServer Faces
• Extension of Servlets/JSPs
• Definition of Web components

– Custom tag from tag library
– Event processing (similar to JavaBeans)

• ActionListener
• ValueChangedListener

– Components render themselves as HTML
– Navigation rules in XML files

• Store targets of navigation links
• Automatically resolved

– Validators

JavaServer Faces - Sample

<h:command_button id="submitButton"
label="OK" commandName="submit">
<f:action_listener

type="myCl.MyActionListener">
</h:command_button>

Web Applications

• Consists of
– Servlets
– JSPs
– Utility Classes
– Static documents (HTML, images, ...)
– Client side Java applets, beans, classes
– Descriptive meta information above

everything above

11

Web Applications
• Structured Hierarchy of Directories

– Root of hierarchy is document root for application files
• Special directory WEB-INF

– All things related to the application not in the document root
– No file of WEB-INF served directly to client
– Eg. Configuration
– Deployment descriptor /WEB-INF/web.xml
– Servlet and Utility classes in /WEB-INF/classes/
– Java ARchive Files (JAR) in /WEB-INF/lib/

• Packaged in Web ARchive Format (WAR-File)
– JAR Format

• Supports references to other J2EE technologies
– eg EJB,JNDI,WebServices

Web Applications
/index.html
/howto.jsp
/feedback.jsp
/images/banner.gif
/images/jumping.gif
/WEB-INF/web.xml
/WEB-INF/lib/jspbean.jar
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class
/WEB-INF/classes/com/mycorp/servlets/MyUtils.class

Example:
Context-Path: /catalog in Web-Container
Request: /catalog.index.html

Web Applications
• Deployment Descriptor (XML File)

– ServletContext Init Parameters
– Session Configuration
– Servlet/JSP Definitions
– Servlet/JSP Mappings

• /foo/bar/* servlet1
• /catalog servlet2

– Application Lifecycle Listener classes
– Filter Definitions and Filter Mappings
– MIME Type Mappings
– Welcome File list

• Default files for unmachted URIs (eg. default.jsp)
– Error Pages

• List of error page descriptions
– Locale and Encoding Mappings
– Security

Security
• Declarative Security

– Expressing an application's security structure external to the
application

• Roles, Access Control, Authentication Requirements
– Described in deployment descriptor

• Programmatic Security
– HttpServletRequest

• getRemoteUser (user name client used for auth.)
• isUserInRole
• getUserPrincipal (principal name of current user)

• Servlet container
– Enforces declarative or programmatic security

• For the principal associated with an incoming request based on
security attributes of the principal

12

Security Role

• Logical Grouping of users
– Defined by Application Developer
– Assembler

• On application deployment
– Roles mapped by developer to principals or

groups in the runtime environment

Security Constraint
(deployment descriptor)

<security-contraint>
<web-resource-collection>

<web-resource-name>admin-only</web-resource-name>
<url-pattern>/mypage/admin/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>
<role-name>ADMINISTRATOR</role-name>
<role-name>BACKUP-ADMIN</role-name>

</auth-constraint>

<user-data-constraint>
<!– NONE, INTEGRAL, CONFIDENTIAL - ->
<transport-guarantee>CONFIDENTIAL</transport-gurantee>

</user-data-constraint>
</security-constraint>

Jakarta Tomcat
• Most important Servlet engine

– Became reference implementation
• Usually port 8080
• Hosts JSPs, Servlets

– Connections to other technologies
• Stand-alone WebServer

– Supports SSI
– Supports CGI
– Not as sophisticated as Apache

• Performance, no support for non-Java languages, available
tools, ...

Apache Integration with Tomcat / 1

• Sharing load using different port numbers
– Eg. Apache runs on port 80, tomcat on 8080

• Same or different server
– Problems

• User see URLs that contain different ports/servers
– interesting for bookmarking

• 2 WebServers to tune, maintain, secure
• Apache security does not know about Tomcat

security (file access, user authentication)

13

Apache Integration with Tomcat / 2

• Proxying Apache to Tomcat
– Apache hands over all requests to specific

URIs to Tomcat
• Using Apache module mod_proxy

– Problems
• No load balancing for more than one proxy
• 2 WebServers to tune, maintain, secure
• HTTP proxying slower than custom connectors
• Dual authentication

Apache Integration with Tomcat / 3

• Custom connector protocol
– Apache module mod_jk2

• a module for IIS is also available
– AJP protocol (Apache JServ protocol)
– Supports load balancing
– Supports In-Process JVM

• Tomcat runs inside Apache

ASP.NET
• Microsoft‘s answer to Servlets/JSP
• Requires .NET
• Supported by IIS 6.0

– Special support for Apache / Mono
• Completely different to ASP

– More like Java Servlets/JSP/Java ServerFaces
• Supports different programming languages

– Any .NET capable programming language
• Microsoft supports C#, C++, VB.NET, J#

• Today frequently supported
– With Windows 2003 Server Web Edition

ASP.NET / 2
• ASP.NET (aspx) page translated to .NET class

– Inherits from System.Web.UI.Page
– Only if source has changed

• Server-side Web Controls
– .NET classes
– Server-side representation of HTML elements

• or more complex elements
– Implement their own renderering facility
– May be rendered in any browser
– May raise events (.NET event/delegate model)

• Programming model
– Accessing .NET assemblies & components

14

ASP.NET / 3
• ASP.NET page classes
• In-line code

– Program code within <script> tag
• <script runat=„server“ language=„c#“>…</script>

– Problem: mixture of HTML and program logic
• Code behind

– Refers to code separated in a different class file
• <%@ Language=„c#“ Inherits=„MyOther.MyClass“>

– Inherits from the provided class
– Addition of new methods,properties allowed
– .NET Methods/Properties may be accessed with special script

elements
• Allows separation of layout and contents

ASP.NET / 4

• Validators
– Validation of user input
– Different types

• RequiredFieldValidator,
• RangeValidator
• RegularExpressionValidator
• CustomValidator

– Happens after button is pressed
– Error message may be placed on a Web

control "ValidationSummary"

ASP .NET / 5
<%@ Page Language="C#"%>
<body>

<form Runat="server">Name:
<asp:textbox id="lastname" runat="server"/>
<asp:RequiredFieldValidator id="reqVal"
ErrorMessage="Required field!" runat="server"/>
<asp:Button ID="ok" Text="OK"
OnClick="HandleClick" Runat="server"/>

</form>
</body>

Dynamic Web Architectures / 1

• Sun's Model 1 architecture
– One JSP processes request and generates

reply
– JSP's contain also process intensive task
– Significant amount of code may be embedded

in HTML code
– Weak concerning separation of content and

presentation

15

Model 1 architecture

JSP Beans

request

response

Dynamic Web Architectures / 2
• Sun's Model 2 architecture

– MVC paradigm
• Model – underlying Datamodel
• View – GUI

– Changes in the model are automatically represented in the view
• Controller

– interprets user interaction
– sends appropriate commands to Model

– Servlet acts as controller
– JSP acts as View
– JavaBeans act as Model (created by the servlet)

• Contain also connections to databases, EJB servers, ...
– No processing logic in the JSPs

• Processing logic
– Better separation of content and presentation

Model 2 architecture

(Controller)
Servlet

(View)
JSP

(Model)
Beans

request

response

1

2

34

Struts

• Framework for
– Model 2 architectures

• Provides its own controller
• Supports different technologies for Model

– JDBC, EJB, Hibernate
• Supports different technologies for View

– JSP, JSF, XSLT, JSTL, Velocity Templates

16

Cocoon

• XML based servlet framework
• Based on XSLT pipelines
• Sitemaps controls generation of pages

– generate starts pipeline
– transform applies stylesheet
– Serialize generates final output file

• Continuations
– Navigation flow written with JavaScript

Cocoon / 2

generate (start from file abc.xml)

transform (apply layout.xsl)

transform (apply book.xsl)

serialize (generate abc.html)

