Towards the Usage of Dynamic Object Aggregations as a
Foundation for Composition-

Gustaf Neumann
Department of Information Systems
Vienna University of Economics and BA, Austria

gustaf.neumann@wu-wien.ac.at

ABSTRACT

Many current programming languages offer insufficient sup-
port for the aggregation relationship. They do not offer a
language support for composite structures (object hierar-
chies, whole/part hierarchies) on the object-level. Instead
they rely on techniques, like embedding or referencing
through pointers, which do not fully incorporate the seman-
tics of aggregation. As a superior technique we present the
language construct dynamic object aggregations.

Categories and Subject Descriptors

D.2 [Software|: Software Engineering

General Terms

Object aggregation, object composition

1. INTRODUCTIONANDRELATEDWORK

In almost every software system objects that are composed
out of other objects exist. In this paper we will focus on
the enhancement of the aggregation relationship, commonly
found in object-oriented design concepts, but only weakly
supported by current programming languages. Our view
of the aggregation relationship is influenced by investiga-
tions on the level of modules, like [7], in database systems,
like [13], and in object-oriented concepts/languages, like in
C++, Java, [3], or [8]. In general we can distinguish be-
tween aggregation of descriptive structures (aggregation of
classes) and aggregation of instances (aggregation of ob-
jects). Several languages offer aggregation of descriptive
structures through nested classes (e.g. Java, Beta, C++),

*Accepted for publication at Symposium of Applied Com-
puting (SAC00), Como, Italy, March, 2000.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright ACM 0-89791-88-6/97/05 ..$5.00

Uwe Zdun
Specification of Software Systems
University of Essen, Germany

uwe.zdun@uni-essen.de

which can be used as a form of static composition, as shown
in [1].

We see aggregation as a composition technique for design
and implementation of software systems, e.g. applicable
for descriptive structures (like classes), software compo-
nents, and objects. Composition means any assembly of
several parts to a whole. Composition is more general
than aggregation, e.g. composition of an object with
a role or portion-object composition [12] can be mod-
eled/implemented through other techniques (especially if
parts share data with the whole/other parts). Note, that
the definition of composition in UML is rather comparable
to our definition of aggregation, while aggregation in UML
is comparable to our view association.

In order to implement aggregation its semantics must be
strict and automatically ensured. The language support for
aggregation that we present in this paper is implemented in
the object-oriented scripting language XOTcL [11]. XOTcL
is a language offering a dynamic object and class system,
read/write introspection, extensibility through components,
and several high-level language constructs. These include
the interception techniques per-object mixins [9] and filters
[10]. Furthermore, it provides assertions, meta-data, nested
classes, and dynamic object aggregations.

2. DYNAMIC OBJECT AGGREGATIONS

DEFINITION 1 (OBJECT AGGREGATION). An object
system supports aggregation iff every object is allowed
to aggregate other objects. The aggregated (inner) objects
are part of the aggregating (outer) objects.

The process of inserting one object into another object is
called aggregation, the inverse step is called disaggregation.

DEFINITION 2 (OBJECT HIERARCHY). Through aggre-
gation objects form object trees (object hierarchies) with
global objects as roots. Each object is member of exactly one
object tree.

As a consequence of this definition, every aggregated object
is part of exactly one other object (which might be a global
object). Another consequence of the definition is that an
object can not contain itself (directly or transitively).

DEFINITION 3 (DYNAMIC OBJECT AGGREGATION). An
object system supports dynamic aggregation iff arbitrary ob-
jects may be aggregated or disaggregated at arbitrary times
during execution.

The opposite of dynamic aggregation is static aggregation,
which permits only the creation and deletion of aggregates,
but not the dynamic change of the aggregation in an al-
ready created structure. The following operations are used
to construct/modify an object hierarchy:

e Object creation: Every object is created with an iden-
tifier that is unique in the scope where it was created.

e Object hierarchy restructuring: A copy/move/delete
operation works on the subtree of the object hierar-
chy starting with the named object.

The restructuring operations affect an object and all its con-
tained objects. These operations may not violate the tree
property of the object hierarchy.

As an example we model video films. Default part of each
film is an intro. Therefore the property object is aggregated
in the constructor init:

Class Film
Class Intro
Film instproc init args { Intro [self]::intro }

Using the Class command the two new classes are created.
Afterwards the constructor of the class Film aggregates a
new object intro for each new film. All objects are accessi-
ble through a fully qualified name containing “::” as separa-
tors. But in the common cases the explicit full qualification
is not necessary, because in XOTcL methods, the current
object can be accessed via the self-command, which is the
reference to the current object. E.g. a certain film starWars
gets an object starWars::intro automatically:

Film starWars

The implied constraints of the dynamic aggregation relation-
ship are preserved automatically. A part of a video film we
record from TV may be commercials, which are not default
ingredients of films. Therefore, we aggregate them dynami-
cally.

Class Commercials
Commercials starWars::commerciall

All relationships are dynamically changeable. At arbitrary
times during run-time a new object may be aggregated or
destroyed. E.g. if we want to cut the commercials from our
star wars film copy, we model the situation by:

starWars: :commerciall destroy

Often an aggregated object is not destroyed but moved into
another aggregating object. The XOTcL method move pro-
vides this functionality. Another common behavior is imple-
mented by the copy method which clones the actual object
to a destination object. The two methods have the syntax:

objName move destination
objName copy destination

E.g. if we want to reuse an imperial march object of star
wars for star wars 2, we can just copy the object:

starWars::imperialMarch copy starWars2::imperialMarch

Information about the current aggregation relationship of
objects can be obtained through introspection using the info
method with the following syntax:

oijame info children
objName info parent

E.g. a song player can ask the object whether imperialMarch
is part of the film object or not, before it tries to play the
song.

3. AGGREGATION FOR COMPOSITION

In the previous sections we the presented language construct
with its implied semantics. Now we will present some of our
current research topics, where we use the language construct
as a composition technique.

3.1 Sharing Aggregated Objects

An intrinsic property of the aggregation according to the
definition in Section 2 is that an object may only be part
of one aggregation. This notion of the aggregation can be
observed in reality very often, e.g. a room may be a part of
only one building. Nevertheless, many modeling languages
permit overlapping aggregations, e.g. the description of the
whole-part pattern in [4] names the ability to share parts as
an advantage of the pattern.

Despite the violation of the semantics of aggregation-/part
of relationship, as it is used in the every day life (and de-
fined in Section 2), there are several reasons for sharing ag-
gregated objects. Often one and the same object is part of
several orthogonal hierarchies. E.g. songs that are part of
several films may be also part of a song collection. Often
sharing is necessary for other reasons, like saving of storage,
as in the flyweight pattern [6].

A mechanism enabling sharing, but differing from normal
aggregations, would resolve this contradiction. Here, a link
object adapts to the “real” aggregated object (as in the
adapter pattern [6]). But a conventional implementation
that explicitly forwards all calls suffers from the necessity
to change all link objects if the real object changes. This
is elaborate and error prone. A better solution is to use an
interception technique, like filters [11] that automatically
adapts all requests to the real object.

- link, destroy _ _ adapterFilter
|
M link
destroy

Figure 1: Link Realized through an Adapter Filter

Figure 1 shows the behavior of a link in general. The link
contains a reference to an adaptee, named link. A special
getter/setter instance method, also named 1link, is capable

of changing this reference. Beneath this method only the de-
structor destroy reaches the link object. All other requests
are adapted to the link’s adaptee (the “real” object) auto-
matically and transparently. As an example we can reuse a
song from a film in a song collection:

Link songCollection::marchl -link starWars::imperialMarch

3.2 Aggregation Patterns

Dynamic object aggregations can be used as a foundation for
proper implementation of design patterns that rely directly
on aggregation, like the composite pattern [6], the cascade
pattern [5], and the whole-part pattern [4]. In order to lan-
guage support the patterns their further semantics have to
be ensured additionally.

The composite pattern implements an aggregation hierar-
chy of objects of the same base type and assumes that all
calls to parent objects are forwarded to all their children re-
cursively. In [10] we show how to combine dynamic object
aggregation with filters and meta-classes in order to perform
these semantics automatically.

The cascade pattern describes a composite hierarchy, where
a complex whole is additionally structured through layers,
which are themselves composites. To implement cascade
properly the implementation of composite has to be en-
hanced with the constraint that cascaded composites may
only aggregate components of their component type. This
constraint may be implemented through assertions [11].

The whole-part pattern represents a form of aggregation
where a whole aggregates parts of arbitrary types that form
a semantic unit. The whole aggregates its constituent com-
ponents (the parts), arranges collaboration between these,
and provides a common interface, that ensures that parts
are only accessed through the whole. The pattern may also
be implemented using dynamic object aggregations. Fil-
ters, per-object mixins, or assertions are capable of hinder-
ing clients to access parts directly.

3.3 Miscellaneous Applications

Other applications for the dynamic object aggregation lan-
guage construct, which we are currently investigating, are:

e Role implementation: Roles may be implemented
through per-object mixins if they should operate on
a shared data space, as shown in [9]. If each role
needs its own data space, an implementation through
aggregation can be used, as in the role-object pattern
[2]. We are currently building a framework, which lets
aggregated roles and the whole appear as an opaque
object to clients.

o Meta-level composition: In meta-object protocols a
base-level is controlled by a meta-level. Objects on
the meta-level may be singular objects. Often a struc-
turing into a chain can be found. Further structuring
into a meta-level composer controlling its constituent
parts can be achieved through aggregation. The
meta-level composer can implicitly handle tasks, like
concurrency or adaptations of meta-object operations.

e Aggregating relationships: In [3] the current view on
aggregation is enhanced with the notion of relations
that are parts of an aggregate and relations that are
themselves aggregates, but no implementation concept
for the constructs is given. It would be interesting to
investigate in how far such a concept may be combined
with a language support for aggregation.

4. CONCLUSION

We have presented a new language construct called dy-
namic object aggregations which language supports the
widely used aggregation relationship. This relationship is
mainly used to compose objects out of other objects. This
form of composition can be found in almost every object-
oriented software system. The language construct preserves
the semantics and asserts the implied constraints of the ag-
gregation relationship automatically. Therefore it eases the
use of the relationship and prevents errors. Finally, we have
presented an approach for sharing aggregates, described how
to implement certain design patterns that rely on aggrega-
tion, and named open compositional problems, which may
be solved through dynamic object aggregations. XOTcL is
available from http://nestroy.wi-inf.uni-essen.de/xotcl/.

5. REFERENCES

[1] G. Banavar. Nesting as a form of composition. In Proc.
of CIOO Workshop at ECOOP, July 1996.

[2] D. Biumer, D. Riehle, W. Siberski, and M. Wulf. The
role object pattern. In Proc. of 4th Conference on Pat-
tern Languages of Programms (US), 1997.

[3] C. Bock and J. Odell. A more complete model of re-
lations and their implications: Aggregation. Journal of
Object-Oriented Programming, 11(5), September 1998.

[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal. Pattern-Oriented Software Architecture -
A System of Patterns. J. Wiley and Sons Ltd., 1996.

[6] T. Foster and L. Zhao. Cascade. Journal of Object-
Oriented Programming, 11(9), Feb. 1999.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[7] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamen-
tals of Software Engineering. Prentice Hall, 1991.

[8] T. Hartmann, R. Junghans, and G. Saake. Aggregation
in a behavior oriented object model. In O. Madsen, ed-
itor, Object-Based Distributed Processing, pages b57-77.
LCNS 615, Springer-Verlag, 1992.

[9] G. Neumann and U. Zdun. Enhancing object-based sys-
tem composition through per-object mixins. In Proceed-
ings of Asia-Pacific Software Engineering Conference
(APSEC), Takamatsu, Japan, December 1999.

[10]

[11]

[12]

[13]

G. Neumann and U. Zdun. Filters as a language sup-
port for design patterns in object-oriented scripting
languages. In Proceedings of COOTS’99, 5th Confer-
ence on Object-Oriented Technologies and Systems, San
Diego, May 1999.

G. Neumann and U. Zdun. XOTcL, an object-oriented
scripting language. In Proceedings of Tcl2k: Tth
USENIX Tecl/Tk Conference, Austin, Texas, February
2000.

J. Odell. Six different kinds of composition. Journal of
Object-Oriented Programming, 5(8), January 1994.

J. Smith and D. Smith. Database abstractions: Ag-
gregation and generalization. ACM Transactions on
Database Systems, 2(2), 1977.

