
Patterns of Service-Oriented
Architecture

Uwe Zdun

Email: zdun@infosys.tuwien.ac.at, zdun@acm.org

WWW: http://www.infosys.tuwien.ac.at/staff/zdun/

Distributed Systems Group

Vienna University of Technology

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 1

Agenda

• Service-oriented architectures (SOA)

• Patterns and pattern languages

• Basic service architecture

• SOA layers and basic remoting architecture

• SOA variation points and adaptation

• SOA and business processes

• Integration of services and processes

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 2

Service-oriented architectures (SOA)

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 3

Software architecture

There are many definitions of software architecture

For instance, following Bass, Clements, and Kazman. Software Architecture in Practice,

Addison-Wesley, 1997:

• Every software has an architecture

• Architecture defines components and their interactions

• Interfaces (externally visible behavior) of each component are part of the architecture

• Interfaces allow components to interact with each other

• A system comprises many different kinds of components, but none of these is the

architecture

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 4

Complexity and change

Software architecture is a metaphor that helps us to better cope with the challenges we

see in today’s software systems

These challenges are described by a number of so-called “Laws of Software Evolution”

(Lehman and Belady, 1980). The two most prominent are:

• Law of continuing change

• Law of increasing complexity (entropy)

But: Software architectures are not easy to document, create, and maintain

⇒ Description of the architecture using quality attributes

⇒ Software architectural principles

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 5

Architectural quality attributes (1)

• Quality of an architecture ∼ essential attributes for the fulfillment of the requirements

• Factors that are important to make an architecture good or bad

→ ISO 9126 International Standard for the Evaluation of Software

→ System by Bass, Clement, and Kazman

– System quality attributes: availability, reliability, maintainability, understandability,

changeability, evolvability, testability, portability, efficiency, scalability, security,

integrability, reusability, . . .

– Business quality attributes: time to market, costs, projected lifetime, targeted

market, legacy system integration, roll-out schedule, . . .

– Architecture quality attributes: conceptual integrity, correctness, completeness,

buildability, . . .

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 6

Architectural quality attributes (2)

Performance

Resource consumption

Costs

Time to market

Maintainability

Reliability

Changeability

Availability

Reusability

Solution

• Architects must find a proper balance between the quality attributes

• Many architectural choices influence the qualities of the architecture

• The quality attributes are generally hard to quantify objectively

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 7

Software architectural principles (1)

• More concrete guidelines than quality attributes are needed to make informed

decisions about the architecture

• System of software architecture principles:

– Principles have mainly be presented in the context of other fields than

architecture (OO, software engineering, . . .)

– Here: we explicitly focus on the architectural meaning of those principles

– Result: system of principles with rich interdependencies

– Loose coupling is central to building software architectures that can cope both

with increasing complexity and continuing change

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 8

Software architectural principles (2)

leads to
supports
unanticipated
changes

Incrementality
supports

supports

Self documentation

supports

supports

Information hidingAbstraction

supported by

is instance of

abstractions for
separated concerns
(platform independence,
interfaces, ...)

supports

Traceability

Loose coupling

Design for change

Separation of concerns

High cohesion

Modularity

Principles are not sufficient for building architectures because they provide only general

guidelines. For creating and maintaining software architectures more concrete guidelines

are necessary → Software patterns, reference architectures, . . .
Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 9

Loosely coupled architectures and SOA

Software architecture

Loosely coupled architecture

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 10

Loosely coupled architectures and SOA

SOA Distributed object system Adapter architecture ...ESB

Software architecture

Loosely coupled architecture

Process-driven architecture AOP

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 11

Loosely coupled architectures and SOA

SOA Distributed object system Adapter architecture ...ESB

Software architecture

Loosely coupled architecture

Process-driven architecture AOP

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 12

Service-oriented architectures (SOA)

• A service-oriented architecture (SOA) is essentially a collection of services that are

able to communicate with each other

• Each service is the endpoint of a connection, which can be used to access the

service and interconnect different services

• Communication among services can involve only simple invocations and data

passing, or complex coordinated activities of two or more services

• In this sense, service-oriented architectures are nothing new

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 13

SOA: Properties

• Services offer public, invokable interfaces

• These interfaces are defined using interface description languages

• Each interaction is independent of each other interaction

• Many protocols are used and co-exist

• Platform-independent

• SOA is an architectural concept, not a specific technology:

– Nothing new (many CORBA systems realize SOAs, for instance)

– Not equal to Web services (just one technology to realize SOAs)

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 14

SOA: Goals

• SOAs are not well-defined at the moment and there is not much architectural

guidance how to design a SOA

– Many definitions and guides are focused on concrete technologies

– Not on the essential elements of the architecture

• Providing an architectural framework for Service-Oriented Architectures (SOA)

• Survey of patterns relevant for building SOAs

• Towards a reference architecture based on software patterns

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 15

Patterns and pattern languages

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 16

Pattern definition

• Software patterns provide reusable solutions to recurring design problems in a

specific context

• Pattern definition by Alexander: A pattern is a three-part rule, which expresses a

relation between a certain context, a problem, and a solution.

• Heavily simplified definition

• Alexander’s definition is much longer. Summary by Jim Coplien:

Each pattern is a three-part rule, which expresses a relation between a certain

context, a certain system of forces which occurs repeatedly in that context, and a

certain software configuration which allows these forces to resolve themselves.

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 17

Elements of a pattern

• Name

• Context

• Problem

• Solution

• Forces

• Consequences

• Examples/Known Uses

• Pattern Relationships

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 18

Kinds of patterns

• Last couple of years: Patterns have become part of the mainstream of OO software

development

• Different kinds of patterns:

– Design patterns (GoF)

– Software architecture patterns (POSA, POSA2, SEI)

– Analysis patterns (Fowler, Hay)

– Organizational patterns (Coplien, Harrison)

– Pedagogical patterns (PPP)

– Many others

• Many of the patterns in this tutorial are architectural patterns

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 19

Software architecture patterns

• Problem: Quality attributes and principles are very generic and hard to use for

solving concrete problems

• Goal: Concrete, but yet generic guidelines for documenting, creating, and

maintaining SW architectures

• Solution: Software architecture patterns

= Patterns working in the architectural realm

→ Most patterns presented in this tutorial are architectural patterns

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 20

From patterns to pattern languages

• Single pattern = one solution to a particular, recurring problem

• However: “Real problems” are more complex → Pattern relationships:

– Compound patterns

– Family of patterns

– Collection or system of patterns

– Pattern languages

• Pattern languages:

– Language-wide goal

– Generative

– Sequences → has to be applied in a specific order

– Pattern defines its place in the language → context, resulting context

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 21

Example: Pattern language overview
diagram – Basic remoting patterns

describes
interface of

Remote Object

describes
interface of

dispatches
invocation to

raises

raises

raises

raises

uses to send
requests and
receive replies

dispatches
requests to

uses to build
up requests

uses for
marshalling/

de-marshalling

uses for
marshalling/

de-marshalling

Marshaller

Remoting Error

Server Request Handler

Invoker

Client Request Handler

Requestor

Client Proxy

Interface Description

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 22

Patterns and SOA

• Pattern-based approach enables a broad, platform-independent view on SOAs that

still contains all relevant details about the technical realization alternatives

• Many architectural patterns are important for SOAs:

– General software architecture (POSA, SEI, . . .)

– Pattern languages for remoting, messaging, resource management

– Networked and concurrent objects

– Object-oriented design

– Component and language integration

– Process-driven architectures, business objects, and workflow systems

– Integration of processes and services

• Domain-specific combination of these patterns – in the SOA domain

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 23

Pattern-based reference architecture for
SOAs

Reference architecture

General architecture knowledge

derived

Software patterns
Architectural patterns
Architecture principles
Architectural concepts
...

Reference model

Software architecture

• Principles are used in a specific way

• Specific quality attributes are in focus

• SOAs are described in a technology-neutral fashion

• Nonetheless: Concrete guidelines are given

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 24

Basic service architecture

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 25

Basic SOA concept

• A service offers a remote interface with a well-defined INTERFACE DESCRIPTION

• The interface description contains all interface details about the service

• The service advertises itself at a central service, the LOOKUP service

Lookup

Service Directory

Service Client

Service Provider

find service and
lookup service details

invoke service

publish service

Client Application

Server Application Backends

access "real" service
implementation

BackendsBackends

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 26

Lookup in SOAs

• Developers usually assign logical OBJECT IDS to identify services

• But they are only valid in the local server application context

• An ABSOLUTE OBJECT REFERENCE extends OBJECT IDS to include location

information, such as host name and port

• The LOOKUP pattern plays a central role in a SOA:

– Services are published in a service directory

– Clients can lookup services

• LOOKUP is queried for properties (e.g. provided as key/value pairs) of the service

and other details

• Usually clients can lookup the ABSOLUTE OBJECT REFERENCES of a service

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 27

Service composition

A service client is often itself a service provider, leading to the composition of services.

Example:

Flight Reservation Service

Client

Supplier Service

Order Management Service Credit Service Seat Reservation Service

1) book flight

3) check order validity 4) check credit 5) lookup and hold seats

8) notify

6) fulfill order

2) book flight

7) notify

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 28

Service contracts

• Central idea: Services reflect a contract between the service provider and service

clients

• Concept derives from the design-by-contract concept:

– Originally developed for software modules

– An approach to design in which each method has a contract with its callers

regarding preconditions, postconditions and invariants

• Service contracts define the interaction between service client and service provider

• Intention: a service needs to be specified a step further than simple remote

interactions, such as RPC-based invocations in a middleware

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 29

Elements of service contracts

• Communication protocols

• Message types, operations, operation parameters, and exceptions

• Message formats, encodings, and payload protocols

• Pre- and post-conditions, sequencing requirements, side-effects, etc.

• Operational behavior, legal obligations, service-level agreements, etc.

• Directory service

• . . .

Note: Not all of these contract elements can be expressed with today’s Web services

implementations easily

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 30

Expressing the elements of the service
contract

• A service contract is realized by a mixture of explicit and implicit specifications

• Implicit, non-electronic specifications are inconvenient for the technical specification

elements though (e.g. ABSOLUTE OBJECT REFERENCES distributed by hand)

• Some elements are often specified only implicitly or non-electronically:

– Documentation of the services behaviour and its implied semantics

– Business agreements

– Quality of service (QoS) guarantees

– Legal obligations

– . . .

• Might be needed in electronic form, e.g. to verify or monitor the quality of the service

(e.g. using the pattern QOS OBSERVER)

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 31

The role of Interface Descriptions in
service contracts

• Communication channels and messages are usually described with INTERFACE

DESCRIPTIONS

• INTERFACE DESCRIPTION pattern:

– Describes the interface of remote objects (services)

– Serves as the contract between CLIENT PROXY and INVOKER

– Used to enable code generation or runtime configuration techniques

• The INTERFACE DESCRIPTION of a SOA needs to be more sophisticated than the

INTERFACE DESCRIPTIONS of (OO-)RPC distributed object middleware, however

• Needs to be able to describe a wide variety of message types, formats, encodings,

payload, communication protocols, etc.

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 32

Example: WSDL

Endpoint
Specification

Service Interface
Specification

Service Access
Specification

contains
Port Type Operation

describes
inputs and

outputs
Message

describes
invocation describes

encoding
describes

formats and
protocols

implements

Port
contains

Service

Binding

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 33

Example: WSDL generation in Axis (1)

«Interface, Remote Object»
SimpleDate

String getDate()
String getDate(String)

String getDate()
String getDate(String)

w sdlDate

«Interface»
SimpleDate

String getDate()
 throws RemoteException
String getDate(String)
 throws RemoteException

wsdlDate.w s

«Interface, Factory»
SimpleDateService

«Factory»
SimpleDateServiceLocator

«Client Proxy»
WsdlDateSoapBindingStub

«Invoker»
WsdlDateSoapBindingImpl «proxy

for»
date

11

«creates»

«creates»

«generated
from»

«Remote Object»
SimpleDateImpl

From the WSDL INTERFACE DESCRIPTION we generate the CLIENT PROXY and INVOKER

code
Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 34

Example: WSDL generation in Axis (2)

Client
Application

Client Proxy

Axis Framework Axis Framework

Invoker

Remote Object
Implementation

Client Server

Network

Interface:
wsdlDate.ws.SimpleDate
Implementation:
wsdlDate.ws.WsdlDateSoapBindingImpl

Interface:
wsdlDate.ws.SimpleDate
Implementation:
wsdlDate.ws.WsdlDateSoapBindingStub

Interface:
wsdlDate.SimpleDate
Implementation:
wsdlDate.SimpleDateImpl

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 35

Lookup and service contracts

A SOA lookup service might offer not only the ABSOLUTE OBJECT REFERENCES, but also

elements of the service contract:

• INTERFACE DESCRIPTION of the service

• a location where the INTERFACE DESCRIPTION can be downloaded

• other metadata about the service (e.g. described using domain-specific schemas or

ontologies, as for instance industry-specific XML schemas like OFX or MISMO)

• elements of the service contract, such as operational behaviour, legal obligations,

and service-level agreements

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 36

Example: Lookup of Web Services with
UDDI

• Many possible ways to realize lookup with Web Services

• UDDI is an automated directory service that allows one to register services and

lookup services

• All UDDI specifications use XML to define data structures

• An UDDI registry includes four types of documents:

– A business entity is a UDDI record for a service provider

– A business service represents one or more deployed Web Services

– A technical model (tModel) can be associated with business entities or services

– A binding template binds the access point of a Web Service and its tModel

• UDDI allows a service provider to register information about itself and the services it

provides

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 37

Example: Semantic lookup service

Remote Lookup
Service Interface

Server Application

Semantic Lookup
Service

Object-Oriented
XOTcl Interface

Client

Redland RDF Store

Domain-Specific
Interface

Service

RDF Graph

Client
Application

Service

Server
Application

Service Announcement

Service Announcement Query Script

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 38

Service interface and service adapter (1)

• If SOA is used within larger client and server applications for integration purposes,

then it is advisable to introduce:

– a service interface to the server application and

– a service adapter on the client side

• Both are separated from the rest of the application and encapsulate all

communication issues

• This way the client and server applications are isolated from changes in the service

contract or the SOA in general

• Note: Service interface and adapter encapsulate service contracts

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 39

Service interface and service adapter (2)

Network

Service Provider

Server
Application

Client
Application

Service
Adapter

Service
Interface

Service Client

Contract

• Service adapter can be realized using the PROXY pattern

• I.e.: service adapter is a remote proxy to the service interface

• Service interface wraps the server application, following the COMPONENT WRAPPER

pattern

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 40

Service interface and service adapter (3)

• Important task is handling synchronization issues:

– Services are sometimes message-oriented, sometimes they are RPC-oriented

– For realizing messages, sometimes reliable messaging protocols are used,

sometimes unreliable asynchronous RPC is used

• Client and server applications might support many different service adapters and

service interfaces, supporting different models

– On client side, invocation asynchrony patterns or messaging patterns can be

used

– Service interface on server side must receive asynchronous messages, perform

the invocation (and perhaps wait synchronously for the result), and then send a

reply message to the client

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 41

Example: Indigo ports and channels

Process

Network

Port

Port

Network
Transport

Channel

Channel

Channel

Message

S
ervice

S
erviceMessage

Message

Message Message

Process
Port

Channel

Message Message

S
ervice

Network
Transport

Any process can send/receive messages → ports/channels are used for realizing

service interfaces und service adapters

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 42

SOA layers and basic remoting
architecture

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 43

A look inside the message processing
architecture of a SOA

• SOAs generally have a highly symmetrical architecture on client side and server side

• Architecture follows the LAYERS pattern:

– Service composition (optional): composition of services, service orchestration,

service coordination, service federation, business process management (BPM)

– Client applications and service providers

– Remoting: middleware functionalities of a SOA (for instance a Web services

framework) follows a BROKER architecture

– Communication: defines the basic message flow and manages the operating

system resources, such as connections, handles, or threads

• In addition, there are a number of orthogonal extension tasks, such as: management

functionalities for services, security of services, description of services

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 44

SOA layers

S
er

vi
ce

 D
es

cr
ip

tio
n

Communication Layer

R
em

ot
in

g
La

ye
r

Adaptation Layer

Invocation Layer

Client Application/Service Provider Layer

Service Composition Layer
(Orchestration/Coordination/Federation/BPM)

S
ec

ur
ity

M
an

ag
in

g
Orthogonal Aspects Layers

Request Handling Layer

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 45

Example: Typical Web Services stack

B
ase T

echniques
X

M
L, D

T
D

, X
M

L S
che

m
a

Processes
Business Flow: BPELWS, WS-Coordination, WS-Transact ion,

WSFL, Xlang, Discovery/Publication: UDDI

M
anagem

ent

Service Description
WSDL

Messages
SOAP Extensions: Reliability, Correlation,

Transactions, ..., SOAP

Communications
HTTP, FTP, SMTP, Messaging (JMS, ...), IIOP, ...

S
ecurity

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 46

Remoting layer

• A BROKER hides and mediates all communication between the objects or

components of a system

• Remoting patterns detail the BROKER architecture

• The remoting layer consists itself of three layers:

– invocation

– adaptation

– request handling

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 47

Basic remoting patterns

• REQUESTOR constructs invocation on client side

• CLIENT PROXY supports the same interface as the remote object,translates the local

invocation into parameters for the REQUESTOR, and triggers the invocation

• INVOKER accepts invocations on server side and performs the invocation on the

targeted remote object

• SERVER REQUEST HANDLER deals with all communication issues of a server

application

• CLIENT REQUEST HANDLER handles network connections for all requestors within a

client

• MARSHALLER is responsible for marshaling/demarshaling invocations on client and

server side

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 48

Basic remoting patterns

Broker

Process A

Requestor

M
ac

hi
ne

 B
ou

nd
ar

y

Process B

Broker

Client
Remote
Object

Invoker

Request
Handler

Marshaller
Marshaller

Request
Handler

1. submit request

2. marshal request 3. send

4. forward

5. invoke
6. unmarshal

7. invoke operation

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 49

Example: Structure of the Leela
communication framework

 1..*clientProtocolPlugIns

Peer

Requestor Invoker

requestor * peers

RequestHandler
requestor

*

invokers

LeelaApp
«instmixin»

ProtocolPlugInClient ProtocolPlugInServer

 1..* serverProtocolPlugIns

leelaApp

SOAPPlugInClient SOAPPlugInServer

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 50

SOA variation points and adaptation

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 51

SOA variation points: Overview

Client Server

Invocation
Interceptor

Service
Client

Network

P
rotocol P

lug-In 1

P
rotocol P

lug-In 2

P
rotocol P

lug-In n

...

Server Request
Handler

P
rotocol P

lug-In 1

P
rotocol P

lug-In 2

P
rotocol P

lug-In n

...

Client Request
Handler

Communication
Protocol

Adaptation

Invocation
InterceptorInvocation
Interceptor

Requestor

Client
Proxy

Invocation
InterceptorInvocation
InterceptorInvocation
Interceptor

Invoker

Service
Provider Backend

Service
Client

Adaptation
Service
Provider

Adaptation

Message
Processing
Adaptation

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 52

Communication protocol adaptation

• A SOA allows for a number of communication protocols to be used

• And: different styles of communication, such as synchronous RPC, asynchronous

RPC, messaging, publish/subscribe, etc.

• Thus, on the communication layer, we require a high flexibility regarding the

protocols used

• Variation at the communication layer is usually handled via PROTOCOL PLUG-INS:

– PROTOCOL PLUG-INS extend the CLIENT REQUEST HANDLER and SERVER

REQUEST HANDLER with support for multiple, exchangeable communication

protocols

– They provide a common interface to allow them to be configured from the higher

layers

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 53

Example: Protocol integration in Web
Services frameworks

• Heterogeneity of communication protocols of Web Service frameworks

– Most Web Service frameworks provide for some extensibility at this layer

– Slightly different REQUEST HANDLER/PROTOCOL PLUG-IN architectures

• In the default case HTTP is used as a communication protocol

• SOAP also allows for other communication protocols

• For instance: Axis supports PROTOCOL PLUG-INS for HTTP, Java Messaging Service

(JMS), SMTP, and local Java invocations

• Protocol plug-ins are responsible for implementing a message queue, if needed (e.g.

JMS-based messaging)

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 54

Adaptation of message processing

• Adapting the message processing is necessary . . .

– to handle various control tasks, like management and logging

– to handle pervasive tasks, like security

– to deal with multiple payload formats with different marshalling rules

• These tasks need to be flexibly configurable

• Often realized using the INVOCATION INTERCEPTOR pattern:

– INVOCATION INTERCEPTORS are automatically triggered before and after request

and reply messages pass the INVOKER or REQUESTOR

– The INTERCEPTOR intercepts the message at these spots and can add services

to the invocation

• Usually: same INVOCATION INTERCEPTOR architecture on client and server side

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 55

Example: Invocation Interceptor on
server side

Process A

M
ac

hi
ne

 B
ou

nd
ar

y

Process B

1) invoke

2) before invocation (name, params, ...)

4) invoke

Client AuthenticationInterceptor

Remote
Object

LoggingInterceptor

3) before invocation (name, params, ...)

5) after invocation (name, params, ...)

6) after invocation (name, params, ...)

Invoker

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 56

Invocation contexts

• For many tasks, we need to pass additional information between client and server

– E.g.: For an authentication interceptor on the server side we require additional

information to be supplied by the client side: the security credentials (such as

user name and password)

– These can be provided by an INVOCATION INTERCEPTOR on client side

– However, how to transport this information from client to server?

• This is the task of the pattern INVOCATION CONTEXT:

– The INVOCATION CONTEXT bundles contextual information in an extensible data

structure

– It is transferred between client and remote object with every remote invocation

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 57

Example: Adaptation of message
processing in Apache Axis

• Concerns on client and server side:

– there are many different, orthogonal tasks to be performed for a message,

– there is a symmetry of the tasks to be performed for request and response,

– similar problems occur on client side and server side, and

– the invocation scheme and add-ons have to be flexibly extensible.

• Solution: Combination of the patterns: REQUESTOR, INVOKER, INVOCATION

INTERCEPTOR, CLIENT/SERVER REQUEST HANDLER, INVOCATION CONTEXT.

• INTERCEPTORS are implemented as COMMANDS are ordered in a chain

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 58

Example: Apache Axis’s message
processing architecture

ServerClient

Requestor

Client

Invoker
(Provider)

Web Service
Object

M
a

ch
in

e
 B

o
un

da
ry

Request
Handler Chain

HTTP Message
Handler

SOAP Request

HTTP Message
HandlerSOAP Response

Request
Handler Chain

Handler Chain

Request
Handler Chain

Request
Handler Chain

Handler Chain

request

request
request

request response

response
response

response

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 59

Example: Apache Axis’s message
context structure

«Invocation Context»
MessageContext Message

responseMessage

0..1

requestMessage

0..1

«Inte rface»

Part

SOAPPart Attachment

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 60

Example: Log handler in Apache Axis

public class LogHandler extends BasicHandler {
...
public void invoke(MessageContext msgContext)

throws AxisFault {
...
if (msgContext.getPastPivot() == false) {

start = System.currentTimeMillis();
} else {

logMessages(msgContext);
}
...

}
...

}

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 61

Example: Handler configuration with
deployment descriptors in Apache Axis

<handler
name="logger"
type="java:org.apache.axis.handlers.LogHandler"/>

...
<chain name="myChain"/>

<handler type="logger"/>
<handler type="authentication"/>

</chain>
...
<service name="DateService" provider="java:RPC">

...
<requestFlow>

<handler type="myChain"/>
</requestFlow>

</service>

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 62

Service provider adaptation (1)

• Service provider = remote object realizing the service

• Often the service provider does not realize the service functionality solely, but

instead uses one or more backends

• When a SOA is used for integration tasks, it should support multiple backend types

→ Only the service interfaces are exposed and service internals are hidden from the

service client

→ Integration of any kind of backend with one common service provider model

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 63

Service provider adaptation (2)

• Service provider adaptation needs to be supported by:

– Remote objects realizing the service and

– INVOKER that is used for invoking them

• Common realization:

– One INVOKER type for each backend type

– Make INVOKERS flexibly exchangeable (e.g. using deployment descriptors)

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 64

Service provider adaptation (3)

INVOKERS used in this way realize the pattern COMPONENT WRAPPER:

• COMPONENT WRAPPER: wrap an external component using a first-class object of the

programming language

• Use of COMPONENT WRAPPERS gives the application a central, white-box access

point to the component

• Component access can be customized without interfering with the client or the

component implementation

• Because all components are integrated in the same way, a variation point for

white-box extension by component’s clients is provided for each component in a

system

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 65

Example: Apache Axis providers

• Almost all Web Services frameworks provide some dynamic form of deployment

• In Axis, a provider actually invokes the Web Services (a pluggable INVOKER)

• Many different providers are implemented in Axis, including those for Java, CORBA,

EJB, JMS, RMI, . . .

• Configured using the deployment descriptor; e.g. to select the RPC provider:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
xmlns:java="

http://xml.apache.org/axis/wsdd/providers/java">
<service name="DateService" provider="java:RPC">

<parameter name="className"
value="simpleDateService.DateService"/>

<parameter name="allowedMethods" value="getDate"/>
</service>

</deployment>

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 66

Service provider adaptation requires
lifecycle & resource management

• Service providers and invokers need to be tightly integrated with the LIFECYCLE

MANAGER: Central place for lifecycle management in the SOA

• INVOKER selects the best-suited lifecycle strategy pattern for the service

– STATIC INSTANCES: live from application startup to its termination

– PER-REQUEST INSTANCES: live only as long as a single invocation, advisable for

most systems that access a backend

– CLIENT-DEPENDENT INSTANCES: when session state needs to be maintained

between invocations; the CLIENT DEPENDENT INSTANCE must implement a

session model and a LEASING model compatible with the model of the backend

• The LIFECYCLE MANAGER should also handle resource management tasks, such as

POOLING or LAZY ACQUISITION

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 67

Example: Lifecycle handling in Axis

Axis supports the following lifecycle patterns using a scope option chosen in the

deployment descriptor

• PER-REQUEST INSTANCE: default, request scope

• STATIC INSTANCE: application scope

• CLIENT-DEPENDENT INSTANCE: session scope

– Sessions are supported either by HTTP cookies or by - communication protocol

independent - SOAP headers

– Each session object has a timeout (which can be set to a certain amount of

milliseconds). After the timeout expires, the session is invalidated. A method

touch can be invoked on the session object, which re-news the lease.

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 68

Service client adaptation (1)

• Service clients should also be adaptable

• Goals are different than on the server side:

– independence of service realization

– loose coupling

• Service client adaptation is mainly reached by LOOKUP of services and well-defined

INTERFACE DESCRIPTIONS

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 69

Service client adaptation (2)

• Other aspects of service client adaptation:

– Flexible (e.g. on-the-fly) generation of CLIENT PROXIES

– Direct use of REQUESTORS to construct invocations on-the-fly

• Client must be adapted to how the result is sent back (if there is any)

– Synchronous blocking

– Client invocation asynchrony patterns: FIRE AND FORGET, SYNC WITH SERVER,

POLL OBJECT, and RESULT CALLBACK

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 70

Example: Service client adaptation and
client-side asynchrony

• Axis 1 does not support client-side asynchrony patterns without using a messaging

protocol

• SAIWS: Asynchrony layer on top of synchronous invocation layer provided by Axis,

http://saiws.sourceforge.net

• Two kinds of REQUESTORS:

– one for synchronous invocations

– one for asynchronous invocations

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 71

Example: SAIWS – Invocation handlers

void invoke (...)
...

AsyncClientProxy

Call constructCall ()

String endPointURL
String operationName
Object[] arguments
QName returnType

ClientInvocationHandler
1 *

«create»

Object invoke ()
...

SyncInvocationHandler

void run ()
...

FireAndForgetHandler

void run()
...

Object clientACT

AsyncInvocationHandler

«interface»
AsyncHandler

«interface»
Runnable

* 1

handlerObj

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 72

Overview: Remoting Patterns in typical
Web Services architectures

Serve r

Web Serv ice
Implementation

 Transport Listene r

UDDI se rve r or
proprie tary

discovery system

CONFIGURATION

GROUP

CLIENT PROXY

Remote Object

INVOCATION

INTERCEPTOR

CLIENT REQUEST

HANDLER

LOOKUP

REACTOR

SERVER REQUEST

HANDLER

INVOKER

MARSHALLERLOCAL OBJECT

PROTOCOL

PLUG -IN

Http Https JMS...

Soap M essage
Handle r

Client

Web Se rv ice Clie nt

 Transport Sender

Http Https JMS...

Soap M essage
Handle r

Other Handle rs

Call
Inte rface

We b Serv ice
Proxy

REQUESTOR

INVOCATION

INTERCEPTORS

Web Serv ice
Prov ide r

Other Handle rs

INTERFACE

DESCRIPTION

CONFIGURATION

GROUP

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 73

SOA and business processes

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 74

Business process management

• Process Engineering aims at optimizing the business processes of an organization

– Business processes need to be implemented quickly

– Cope with a dynamic business environment

• Latest definitions of the term Business Process Management (BPM) illustrate that

workflow technology brings together the formerly separate worlds of . . .

– organizational design

– technical design

Business Process Management implies, on a technical level, the design of

technological platforms that allow organizational flexibility

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 75

BPM and flexible technology platforms

• Design of flexible technology platforms for BPM is already strongly demanded by

many industries

– Time to react on organizational change requirements is becoming shorter and

shorter

– IT of an organization is the key enabling factor

– Organizationally inflexible technology implies cost-intense implementation of

organizational changes

• Many enterprises are shifting to process-oriented organizations

• IT platforms have to consider this process approach conceptually

→ It is important to address the link between business processes and SOA

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 76

Process engineering & SOA

• At the top layer of the SOA architecture: introduce the decoupling of process control

logic by a service orchestration layer

→ Process-driven concept for SOA

– Decoupling process logic implies another level of organizational flexibility

– Perspectives of technical architecture and organizational architecture merge via

the process paradigm

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 77

A high-level pattern perspective (1)

• Most abstract pattern perspective: several patterns that follow a process-oriented

approach:

– MANAGED COLLABORATION

– MANAGED PUBLIC PROCESSES

– MANAGED PUBLIC AND PRIVATE PROCESSES

– EXPOSED BUSINESS SERVICES

• Mapped to SOA these patterns address variations of service orchestration within an

enterprise or across enterprise boundaries

• However: they represent design guidelines at a high level where principle

collaborative decisions are made at the business level

– Explain what collaborative patterns are appropriate for a certain business problem

– Help finding appropriate patterns of service collaboration
Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 78

A high-level pattern perspective (2)

• Concerning integration of SOA and business processes there are several important

integration patterns, such as:

– ROUTER

– BROKER

– MANAGED PROCESS

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 79

Integration of services and processes

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 80

Integrating services and processes

• Fundamentally, a process-aware information system is shaped by 5 perspectives:

– data (or information)

– resource (or organization)

– control flow (or process)

– task (or function)

– operation (or application)

• Basic Mapping to the SOA approach:

– services are a specialization of the general operation perspective

– process control flow orchestrates the services via different process steps

– operations executed by tasks in a control flow correspond to service invocations

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 81

Overview: Link between SOA and
workflow processes

Control Flow

Data

Resource

TaskOperation

Control Data

Business
Object

Service

strictly structured or
flexibly structured

invokes

fulfillstransforms

uses

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 82

Mapping the data perspective

• In the data perspective distinguish between:

– process control data

– business objects that are transformed via the process flow

• Example:

– Business object: a customer order that is being processed via a process flow

– The actual processing of that order is controlled by control data that depicts the

routing rules, for instance

– Each process step can be interpreted as a certain state of the business object

• The SOA’s service orchestration has to deal with control data and business objects

being transformed and passed from one orchestration step to the next one

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 83

Patterns for the data perspective (1)

Business objects:

• Business objects are manipulated via the process steps (represented by services)

• Business objects following the ENTITY pattern represent entities in a REPOSITORY

• In the REPOSITORY: business objects depict a CANONICAL DATA MODEL for storing

process relevant business data

Process control data

• Many process engines struggle with changes to control data at runtime

→ GENERIC PROCESS CONTROL STRUCTURE pattern: design of a control data structure

that is unlikely to change

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 84

Patterns for the data perspective (2)

Integrating business objects and process control data:

• Business objects can concurrently be modified by different process instances

→ BUSINESS OBJECT REFERENCES must be part of the control data

• Pointers to business objects in a REPOSITORY and the concrete business objects can

thus be accessed concurrently via these references

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 85

Business objects being accessed via
process steps

Business Object Repository

Object A Object B Object C

write

read

read

modify

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 86

Control flow design

Control flow design (at microflow and macroflow level) usually follows (some of) the

workflow patterns:

Basic Control Flow Patterns
- Sequence
- Parallel Split
- Synchronization
- Exclusive Choice

Advanced Branching and Synchronization Patterns
- Multi-choice
- Synchronizing merge
- Multi-merge
- Discriminator

Structural Patterns
- Arbitrary cycles
- Implicit termination

Cancellation Patterns
- Cancel activity
- Cancel case

State Based Patterns
- Deferred choice
- Interleaved parallel routing
- Milestone

Patterns Involving Multiple Instances
- Multiple instances without synchronization
- Multiple instances with a priori design time knowledge
- Multiple instances with a priori design runtime knowledge
- Multiple instances without a priori design runtime knowledge

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 87

Further architectural control flow patterns

• ACTIVITY INTERRUPT: interrupting the processing of an activity without the loss of

data

• PROCESS INTERRUPT TRANSITION: terminating a process in a controlled way

• PROCESS BASED ERROR MANAGEMENT: managing errors returned by an invoked

service via the process flow

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 88

Problems of mapping the control flow
perspective

• Models of business processes must be developed considering the relationships and

interdependencies to technical concerns

• If technical concerns are tangled in the business process models:

– Business analysts are forced to understand the technical details

– Technical experts must cope with the business issues

• To create executable process models, somehow the two independent views need to

be integrated into a coherent system

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 89

Mapping the control flow perspective

• Control flow perspective is captured by a process engine

• In order to create the link between an activity of a process and a service, integration

logic is required (represented by a process flow)

• We distinguish between two general types of process flow:

– Macroflow representing the higher-level business process

– Microflow addressing the process flow within a macroflow activity

• Note: this is a conceptual decision in order to be able to design process steps at the

right level of granularity

– Macroflow ∼ long running business process level

– Microflow ∼ short running, more technical level

→ Important for separating the business problems from the technical problems

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 90

Adding macroflow and microflow to the
mapping

Macroflow

Data

Resource

Task

Operation

Microflow

uses

Control Data

Business
Object

invokes

fulfilstransforms

Service

invokes

fulfilstransforms

control flow
(strictly or flexibly structured)

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 91

Macro-Microflow Pattern

• Strictly separate the macroflow from the microflow

• Use the microflow only for refinements of the macroflow activities

Activity 1

Activity 2

Activity 3

Activity 4

Activity 1

Activity 2

Activity 1

Activity 2

Microflow
(transaction)

Microflow
(human interaction)

Macroflow
(Business Process)

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 92

Structural meta-model of macroflow and
microflow

Process

Macroflow Microflow

Automatic Flow Human Interaction Flow

Macroflow Activity

1

0..*

+invokedSubFlow

Human Activity

1

0..1

1..*

0..*

+invokedSubFlow

0..*
+associatedSubFlow

+consistsOf

Invoked Macroflow Automatic Activity

<< Microflow Activity >>
Automatic Activity

Invoked Automatic FlowAtomic Automatic Activity

<< Microflow Activity >>
Human Interaction Activity

Atomic Human
Interaction Activity

Invoked Human
Interaction Flow

+consistsOf

1

1..*
0..1

+consistsOf

1

1..*

0..*

1

+invokedSubFlow

0..*

+invokedSubFlow

1

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 93

Process service levels (1)

• A process flow orchestrates the service invocations

• A business process may be exposed itself as a service

– A process has a well defined service INTERFACE DESCRIPTION

→ The result are several levels of service invocation:

– business process service – a business process being exposed as a service

– process integration service – a process integration logic at the microflow level

– business application service – a service that is offering functionality of a business

application

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 94

Process service levels (2)

Business Process
Service

Business Process Level
(Macroflow)

invoke

Process Integration Level
(Microflow)

Process
Integration Service

Business Application
Service

invoke

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 95

Process-driven refinement of the Service
Composition Layer

Service Composition Layer

Macroflow Composition Layer

Macroflow Integration Layer

Dispatching Layer

Microflow Execution Layer

Client Application/Service Provider Layer

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 96

Overview: Patterns for Process-Oriented
Integration in SOAs

PROCESS-BASED INTEGRATION ARCHITECTURE

CONFIGURABLE ADAPTER
REPOSITORY

PROCES INTEGRATION

ADAPTER

manages

MACROFLOW INTEGRATION

SERVICE

RULE-BASED DISPATCHER

is realized with

forwards
requests

delegates requests

offers

is composed of

MICROFLOW ENGINE
BUSINESS-DRIVEN SERVICE

CONFIGURABLE ADAPTER

is realized with

manages

MACRO-MICROFLOW

conceptual foundation

is specialization of

MACROFLOW ENGINE

sends requests for
activity execution

interdependent design

is realized with

MICROFLOW EXECUTION

SERVICE

same
service interface

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 97

Layers and boundaries of a
Process-Based Integration Architecture

Process Integration Architecture

Process Integration
Adapter Repository

Activity
Dispatcher

Microflow Execution Business Application
Adapter Repository

Process
Integration
Adapter A

Process
Integration
Adapter B

Process
Integration
Adapter C

Microflow Engine A
Business

Application
Adapter A

Business
Application
Adapter B

Business Application A

Business Application B

Macroflow Engine A

Macroflow Engine B

Macroflow Engine C

Microflow Engine B

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 4

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3

S
er

vi
ce

 1

S
er

vi
ce

 2

S
er

vi
ce

 3
Macroflow integration

layer

Activity
dispatching

layer
Microflow execution layer Business application services layer

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 98

Collaboration using the Correlation
Identifier pattern

• The collaborative process between the different layers is managed via exchanging

asynchronous service requests and responses

• The CORRELATION IDENTIFIER pattern allows for relating requests and responses

between the different components involved

– Each request is assigned a unique ID which is passed back in the response

– Thus, a MACROFLOW ENGINE may correlate a response to the original request

Process
Integration

Adapter

Activity
Dispatcher

Correlation
Identifier

1..* 1 Microflow
Execution

Service

Correlation
Identifier

1..*1
send/receive

message Business
Application

Service

Correlation
Identifier

*1
send/receive

message
send/receive

messageMacroflow
Engine

Correlation
Identifier

1..* 1
send/receive

message

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 99

Service-Based Integration of Macroflows

• The automatic functions required by macroflow activities from external systems are

designed and exposed as dedicated MACROFLOW INTEGRATION SERVICES

• Services integrate external systems in a way that suits the business process view of

the macroflow activity

Activity 1

Automatic
Activity 2

Activity 3

Macroflow
(Business Process)

obj : Process Control Data
String attributeA = „Attrib a“
String attributeB = „Attrib b“
String attributeC

Service _for_Activity2(
 String Input_Param1 ,
 String Input_Param2 ,
 String Output_Param)

Send service request:
Input_Param1 = obj.attributeA
Input_Param2 = obj.attributeB

Service result :
obj.attributeC = Output_Param

obj : Process Control Data
String attributeA = „Attrib a“
String attributeB = „Attrib b“
String attributeC = „Result“

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 100

Connecting Process-Engines to Target
Systems

• A PROCESS INTEGRATION ADAPTER connects to the specific interface and

technology of the process engine to an integrated system

• Transforms activity execution requests into requests that can be understood by the

target system’s interface and technology

• Transforms responses from the target system backwards to the interface and

technology of the process engine

• CORRELATION IDENTIFIERS are used to relate requests and responses

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 101

Conceptual structure of a Process
Integration Adapter

<< interface >>
Configurable Component

+ init ()
+ finalize()
+ suspend()
+ resume()
+ info()

Process Integration Adapter

+ getAdapterID()
- transformRequest()
- transformResponse()
- getProcessEngineRequest()
- sendTargetRequest()
- getTargetResponse()
- sendProcessEngineResponse()

- adapterID

Transformation Rule

1..*

1
+transformationRules

Process Engine

+ sendRequest()
+ getResponse()

1..*

Correlation
Identifier

1

send request /
receive response

Target System

+ getRequest()
+ sendResponse()

1..*

Correlation
Identifier

1

send request /
receive response

while (NOT finalize AND NOT suspend) {
 getProcessEngineRequest ()
 transformRequest()
 sendTargetRequest()
 getTargetResponse()
 transformTargetResponse()
 sendProcessEngineResponse()
}

Process Engine
Connector

1

1

Target System
Connector

11

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 102

Activity Dispatching

• Problem: It is necessary to add, replace, or change systems in the backend for

executing process activities

• In many process-driven systems, this must be possible at runtime

• A RULE-BASED DISPATCHER dynamically decides on basis of (business) rules, where

and when a (macroflow) activity has to be executed

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 103

Conceptual structure of a Rule-Based
Dispatcher

<< interface >>
Configurable Component

+ init ()
+ finalize()
+ suspend()
+ resume()
+ info()

Rule-Based Dispatcher

- getRequest()
- forwardRequest()
- getResponse()
- forwardResponse()

Dispatching Rules

1..*

1 +dispatchingRules

Configurable Adapter
1..*

Correlation
Identifier

send (activity)
request / receive

response 1..*

Correlation
Identifier

forward (activity) request /
receive response

while (NOT finalize AND NOT suspend) {
 getRequest()
 forwardRequest()
 getResponse()
 forwardResponse()
}

1
Component

1

Hold Queue

Process Integration
Adapter

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 104

Configurable Adapter

• Problem: The system interfaces change over time

• Implement a CONFIGURABLE ADAPTER to another system that should be connected

• The adapter abstracts the specific interface (API) of that system

• Make the adapter configurable, by using asynchronous communication protocols

and following the COMPONENT CONFIGURATOR pattern

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 105

Conceptual structure of a Configurable
Adapter

<< interface >>
Configurable Component

+ init ()
+ finalize()
+ suspend()
+ resume()
+ info()

Configurable Adapter

- adapterID

Sytem

1

1

Connected
System

1

Correlation
Identifier

1..*

send request /
receive response

Connector
1

1

Asynchronous
Connector

11

+ getAdapterID()

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 106

Adapter Repositories

• Use a central CONFIGURABLE ADAPTER REPOSITORY to manage the adapters as

components

• The CONFIGURABLE ADAPTER REPOSITORY manages the access to its adapters

based on the configuration state of the adapter

Configurable Adapter Repository

+ add(in a: Configurable Adapter)
+ getFirst() : Configurable Adapter
+ getNext() : Configurable Adapter
+ get(in adapterID) : Configurable Adapter
+ remove(in adapterID)

Configurable Adapter

1..*

1 +adapters

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 107

Microflow Execution Services

• Expose a microflow as a MICROFLOW EXECUTION SERVICE

– Abstracts the technology specific API of the MICROFLOW ENGINE to a

standardised well-defined service interface

– Encapsulates the functionality of the microflow

• Define the interface of this service according to a particular MACROFLOW

INTEGRATION SERVICE

Macroflow
Integration Service

Microflow
Execution Service

11

Rule-Based
Dispatcher

Microflow
*1Microflow

Engine

11

Configurable
Adapter

executesconnectscorresponds

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 108

Macroflow Engine

Delegate the macroflow aspects of the business process definition and execution to a

dedicated MACROFLOW ENGINE

Macroflow Engine Macroflow

+ add(in mf: Macroflow)
+ remove(in macroflowID)
+ execute(in macroflowID)

*1

- macroflowID

+ getID()

IT System exposes
1..*1

Macroflow
Control Data

Resource

Business
Function

transforms

uses
1..*1

1..*

1

Macroflow
Stephas

1..* 1

*

1

invokes

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 109

Microflow Engine

Delegate the microflow aspects of the business process definition and execution to a

dedicated MICROFLOW ENGINE

Microflow Engine Microflow

+ add(in mf: Microflow)
+ remove(in microflowID)
+ execute(in microflowID)

*1

- microflowID

+ getID()

IT System exposes
1..*1

Microflow
Control Data

Function

transforms

1..*1

1..*

1

Microflow
Stephas

*

1

invokes

Business-Driven
Service

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 110

Patterns for modeling the microflow

• At the microflow level, we must:

– route requests of service invocations sent by a process-step to the right endpoint

– route the corresponding responses backwards

– perform data transformation

• Technical solutions:

– The request for service invocation sent by the process-step must be routed to the

right endpoint, which is done by a BROKER

– In message-oriented communication between a process engine and a service,

various messaging patterns are used: MESSAGE ROUTER, MESSAGE

TRANSLATOR, and their specializations like CONTENT-BASED ROUTER, DYNAMIC

ROUTER, ENVELOPE WRAPPER, CONTENT ENRICHER

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 111

Business-Driven Service Design

High-Level Strategic Business Goals

To-Be Business Processes

Top-down
driven

Business goals are mapped to
to-be business processes

Macroflow models of to-be
business processes are created

Activities in macroflow models are mapped
to MACROFLOW INTEGRATION SERVICES

Microflow models are derived from
MACROFLOW INTEGRATION SERVICES

Activities in microflow models are mapped
to BUSINESS-DRIVEN SERVICES

Sub-microflows

Sub-macroflows

Statically de-
composed

Bottom-up
driven

Identified BUSINESS-DRIVEN SERVICES are
orchestrated in microflows

Microflow models are depicted as
MACROFLOW INTEGRATION SERVICES

MICROFLOW INTEGRATION SERVICES are
invoked by macroflow models

Macroflow models relate to /influence
to-be business processes

To-be business processes relate to /influence
high-level strategic business goals

Macroflow Models of To-Be Business Processes

MACROFLOW INTEGRATION SERVICES

BUSINESS-DRIVEN SERVICES

Microflow Models

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 112

Enterprise Service Bus (1)

• ENTERPRISE SERVICE BUS (ESB):

– Architectural pattern that integrates concepts of SOA, EAI, and workflow

management

– Based on MESSAGE BUS pattern

• Various components connect to a service bus via their service interfaces

• Service adapters are used to connect those components to the bus

• Service bus handles service requests

• Represents a message-based ROUTER and/or BROKER

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 113

Enterprise Service Bus (2)

Business Application Services

Enterprise Service Bus (ESB)

Service Interface

Business
Application

Service Interface

Business
Application

Service Interface

Business Object
Repository

Service Interface

Macroflow Engine

Service Interface

Process Services Information Services Interaction Services Partner Services

classified access to services

internal service infrastructure

Microflow Engine

Infrastructure
Services

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 114

Enterprise Service Bus (3)

Service requests are routed to appropriate components connected to the bus, where

services are invoked → ESB can act as a:

• CONTENT-BASED ROUTER

• MESSAGE FILTER

• DYNAMIC ROUTER

• AGGREGATOR

• MESSAGE BROKER

• . . . or other message routing patterns

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 115

Enterprise Service Bus (4)

• Message transformation patterns are applied by the bus to integrate different service

interfaces:

– NORMALIZER

– ENVELOPE WRAPPER

– CONTENT ENRICHER

• Often a repository of business objects is connected to the service bus

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 116

Cross-organizational processes

Enterprise C

Enterprise B

Enterprise A

Enterprise D

1. lookup process service
2. invoke process service

1. lookup process service
2. invoke process service1. lookup process service

2. invoke process service

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 117

Final Remarks

• Better understanding of service-oriented architectures by mapping them to the

conceptual space of patterns from various domains

• Patters are successful solutions that have proven their value in numerous

architectures

• We surveyed and explained the “timeless” concepts in SOAs, apart from technology

details

– Technically detailed but yet technology-neutral approach

– Informally described the cornerstones of a SOA reference architecture

• Because patterns are solution guidelines, the patterns are also useful as SOA

design guidelines

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 118

Further Reading

• Uwe Zdun, Carsten Hentrich, Wil van der Aalst: A Survey of Patterns for

Service-Oriented Architectures, International Journal of Internet Protocol

Technology, Inderscience

• M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns. Pattern Series. John Wiley

and Sons, 2004.

• C. Hentrich and U. Zdun. Patterns for process-oriented integration in

service-oriented architectures. EuroPLoP 2006, Irsee, Germany, July 2006.

• G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-Wesley, 2003.

• C. Hentrich. Six patterns for process-driven architectures. In Proceedings of the 9th

Conference on Pattern Languages of Programs (EuroPLoP 2004), 2004.

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 119

Further Reading

• W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.

Advanced workflow patterns. In 7th International Conference on Cooperative

Information Systems (CoopIS 2000), volume 1901 of Lecture Notes in Computer

Science, pages 18–29. Springer-Verlag, Berlin, 2000.

• W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow

Patterns. BETA Working Paper Series, WP 47, 2000.

• W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow

Patterns. Distributed and Parallel Databases, 14:5–51, 2003.

• E. Evans. Domain-Driven Design - Tackling Complexity in the Heart of Software.

Addison-Wesley, 2004.

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 120

Further Reading

• O. Vogel. Service abstraction layer. In Proceedings of EuroPlop 2001, Irsee,

Germany, July 2001.

• U. Zdun. Some patterns of component and language integration. In Proceedings of

EuroPlop 2004, Irsee, Germany, July 2004.

• F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented

Software Architecture - A System of Patterns. J. Wiley and Sons Ltd., 1996.

• E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 1994.

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 121

Further Reading

• M. Kircher and P. Jain. Pattern-Oriented Software Architecture, Volume 3: Patterns

for Resource Management. J. Wiley and Sons Ltd., 2004.

• D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Patterns for Concurrent and

Distributed Objects. Pattern-Oriented Software Architecture. J.Wiley and Sons Ltd.,

2000.

• J. Adams, S. Koushik, G. Vasuveda, and G. Calambos. Patterns for e-Business - A

Strategy for Reuse. IBM Press, 2001.

Uwe Zdun, Distributed Systems Group, Vienna University of Technology Patterns of Service-Oriented Architecture 122

