
International Journal of Web Service Research , Volume 1, No. 3, 2004                1 

Pattern-Based Design of 
an Asynchronous 
Invocation Framework 
for Web Services 
Uwe Zdun 
Department of Information Systems, Vienna University of Economics, Austria 
E-mail: zdun@acm.org 

Markus Voelter 
voelter - Ingenieurbüro für Softwaretechnologie, Germany 
E-mail: voelter@acm.org 

Michael Kircher 
Siemems AG, Corporate Technology, Software and System Architectures, 
Germany 
E-mail: michael.kircher@siemens.com 
 
 

Abstract: Asynchronous invocations are needed in the context of distributed object 
frameworks to prevent clients from blocking during remote invocations. Popular Web 
Service frameworks offer only synchronous invocations (over HTTP). An alternative are 
messaging protocols but these implement a different communication paradigm.  When 
client asynchrony is not supported, client developers have to build asynchronous 
invocations on top of the synchronous invocation facility. But this is tedious, error-prone, 
and might result in different remote invocation styles used within the same application. We 
present a number of patterns for asynchronous invocations and explain how these patterns 
can be used to build asynchronous invocation facilities for Web Service frameworks. We 
exemplify this approach by explaining the design and implementation of an asynchronous 
invocation framework for Apache Axis. 

Keywords: Web Services, remote objects, asynchronous invocations, patterns. 

Biographical notes:  

Uwe Zdun is assistant professor in the department of information system at the Vienna 
University of Economics and Business Administration. He received his PhD from the 
University of Essen in 2002, where he has also worked as research assistant from 1999 to 
2002. His research interests include software patterns, scripting, object-orientation, 
software architecture, and web engineering. He is (co-)author of the object-oriented 
scripting language Extended Object Tcl (XOTcl), the web object system ActiWeb, and 
many other software systems.  

Markus Völter works as an independent consultant for software technology and 
engineering. He focuses on the architecture of large, distributed systems, as well as model-
driven software development. Markus is the author of several magazine  articles and 
patterns, a regular speaker at conferences and co-author of Wiley's “Server Component 
Patterns” book. He can be reached at voelter@acm.org or www.voelter.de. 

Michael Kircher is currently working as Senior Software Engineer at Siemens AG 
Corporate Technology in Munich, Germany.  His main fields of interest include distributed 



2    UWE ZDUN, MARKUS VOELTER, M ICHAEL KIRCHER 

object computing, software architectures, design patterns, Extreme Programming, and 
management of knowledge workers in innovative environments. During the last years he 
published at numerous conferences, like OOPSLA, EuroPLoP, PLoP, Middleware, XP, on 
topics such as patterns, open-source, software architectures for distributed systems, and 
extreme programming. 

 

 

INTRODUCTION 

This paper discusses asynchronous invocations in the 
context of Web Services. Web Services provide a 
standardized means of service-based, language 
indepdendent and platform independent interoperation 
between different, distributed software applications. The use 
of Web Services on the World Wide Web is expanding 
rapidly as the need for application integration and 
interoperability grows (Booth et al., 2003). 

Although there are many different kinds of distributed 
object frameworks that refer to the term Web Services, a 
Web Service can be described by a set of technical 
characteristics, including: 

- The HTTP protocol family (Fielding et al., 1999) is 
used as the basic communication protocol. 

- Data, invocations, and results are transferred in XML 
encoded formats, such as SOAP (Box et al., 2000) 
and WSDL (Christensen et al.,2001). 

- Remotely offered services are invoked with a simple, 
stateless request/response scheme, and thus Web 
Services are more often message-oriented than they 
are RPC-oriented. 

- Many Web Service frameworks are not limited to 
HTTP as transport protocol. 

- The services are often implemented with different 
back-end providers (for instance, a Java class, an EJB 
component, a legacy system, etc.) and a model for 
integration of these back-ends is provided by the Web 
Service framework. 

Advantages of this approach to invoke remote objects 
(Voelter, et al., 2002), or other kinds of service 
implementations such as procedures, are that Web Services 
provide a means for interoperability in a heterogeneous 
environment. Basing the information exchange only on 
stateless message exchanges leads to a loose coupling of 
clients and servers. Web Services are also relatively easy to 
use and understand due to simple APIs, and XML content is 
human-readable. The goals of Web Services go beyond 
those of classical middleware frameworks, such as CORBA, 
DCOM, or RMI: they aim at standardized support for 
higher-level tasks such as service and process flow 
orchestration, enterprise application integration (EAI), and 
providing a “middleware for middleware” (Vinoski, 2003). 

Current Web Service frameworks have some liabilities 
associated. In the spirit of the original design ideas of XML 

(Bray et al., 1998) and XML-RPC (Winer, 1999) as the 
predecessor of today’s standard Web Service message 
format SOAP, XML encoding was expected to enable 
simplicity and readability as a central advantage. However, 
today’s XML-based formats used in Web Service 
frameworks, such as XML Namespaces, XML Schema, 
SOAP, and WSDL, are quite complex and thus not very 
easy to read and understand (by humans). In many cases, 
stateless communication as imposed by HTTP and SOAP 
causes some overheads because it may result in repeated 
transmission of the same data (for instance, for 
authentication or identifying the current session). Cai et al. 
(2002) provide detailed benchmarks comparing different 
encoding mechanism for Web Services. This study leads to 
the following results: XML as a (string-based) transport 
format is bloated compared to more condensed (binary) 
transport formats. This results in larger messages, as well as 
a more extensive use of network bandwidth. This problem 
can be avoided by compressing XML data, but compression 
leads to an additional performance overhead. XML consists 
of strings for identifiers, attributes, and data elements. 
String parsing is more expensive in terms of processing 
power than parsing binary data. 

Many Web Service frameworks, such as Apache Axis 
(Apache Software Foundation, 2003), only allow for 
synchronous invocations (for synchronous protocols such as 
HTTP). That is, the client process (or thread) blocks until 
the response arrives. For client application that have higher 
performance or scalability requirements, the sole use of 
blocking communication is usually a problem because 
latency and jitter makes invocations unpredictable. In such 
cases we require the client to handle the invocation 
asynchronously. That is, the client process should resume its  
work while the invocation is handled. Also, the intended 
loose coupling of Web Services is something that suggests 
asynchronous invocations. That is, a client should not 
depend on the response time of a Web Service. As most 
Web Service frameworks are not designed for asynchronous 
communication we need to provide the asynchronous 
behaviour on top of the synchronous invocation layer. 

Note that there are various efforts to integrate messaging 
protocols in Web Services, such as the use of Java 
Messaging Service (JMS) in Axis and WSIF (Apache 
Software Foundation, 2002), JAXM, or Reliable HTTP 
(HTTPR) (IBM, 2002). These protocols provide asynchrony 
on the protocol level, whereas the approach proposed in this 



PATTERN-BASED DESIGN OF AN ASYNCHRONOUS INVOCATION FRAMEWORK FOR WEB SERVICES   3 

paper provides asynchronous invocations at the invocation 
layer or on top of an existing distributed object framework. 
The messaging approaches are more sophisticated than 
simple asynchronous invocations. For instance they support 
reliability of message transfers as well. But they use a 
different communication paradigm than synchronous 
protocols. Under high volume conditions, messaging might 
incur problems such as a bursty and unpredictable message 
flow. Messages can be produced far faster than they can be 
consumed, causing congestion. Such issues require the 
messages to be throttled by flow control. In this paper, we 
do not deal with messaging protocols, even tough it is 
possible to use a messaging protocol in the lower layers of 
our framework design. Yet the synchronous programming 
model would stay and clients cannot take advantage of 
concurrent execution – or, alternatively, client developers 
need to be aware of the asynchronous protocol and use a 
different invocation style for asynchronous invocations.  

There are many different styles of asynchronous 
invocations. For instance, the client might not be interested 
in the invocation result, or it might be informed via a 
callback, or it might actively obtain the result when it has 
finished some subsequent tasks. Hard-coding different 
styles of asynchronous invocation into a client application 
by hand for each use is tedious and error-prone. Instead, the 
invocation model should be offered to the developer that 
supports all invocation variants with a simple and intuitive 
interface. 
In this paper, we present patterns for implementing 
asynchronous invocations (Voelter, et al., 2003). These are 
part of a larger pattern language for building distributed 
object frameworks (Voelter, et al., 2002; Voelter, et al., 
2004). To provide the context, we also describe the 
asynchrony and concurrency patterns from POSA2 
(Schmidt et al., 2000) on which the implementations of 
these patterns rely. We apply the patterns to an 
asynchronous invocation framework for Apache Axis. 
Using the patterns, different variants of synchronous and 
asynchronous invocations can be chosen to fulfill the 
specific client-side requirements for synchronous or 
asynchronous invocation in the Web Service context (here: 
on top of HTTP). The framework is designed to be easily 
adapted to other Web Service frameworks and/or other 
synchronous or asynchronous communication protocols. 

The paper is structured as follows: First we give an 
overview of the goals of an asynchronous invocation 
framework in the context of Web Services. Next we 
introduce the aforementioned patterns from (Voelter, et al., 
2002; Voelter, et al., 2003; Voelter, et al., 2004; Schmidt et 
al., 2000) briefly. Then we discuss the design of an 
asynchronous invocation framework for Apache Axis and 
compare its performance with synchronous invocations. 
Finally, we present some related work and conclude. 

 
 

GOALS OF AN ASYNCHRONOUS INVOCATION 
FRAMEWORK IN THE CONTEXT OF WEB SERVICES 

There are a number of issues about Web Services because of 
the limitation to synchronous invocations only. To avoid the 
work-around of hard coding asynchronous invocations in 
the client code, we provide an object-oriented framework 
(Johnson & Foote, 1988) that can be reused as an extension 
for existing Web Service frameworks. The framework 
design is based on a number of software design patterns. 
Before we explain these patterns in the next section, let us 
summarize the goals of our asynchronous invocation 
framework: 
- Better Performance of Client Applications: 

Asynchronous invocations typically lead to better 
performance of client applications, as idle times waiting 
for a blocking invocation to return are avoided. 

- Simple and Flexible Invocation Model: The invocation 
model must be simple to use by developers. 
Asynchronous invocations should not be more 
complicated to use than synchronous invocations. That 
is, the client developer should not have to deal with 
issues such as multi-threading, synchronization, or 
thread pooling. There are different kinds of invocations, 
including synchronous invocations and various ways to 
provide asynchronous invocations. All these kinds of 
invocation should be offered with an integrated 
invocation model that is easy to comprehend. 

- Support for multiple Web Services Implementations and 
Protocols: The strength of Web Services is 
heterogeneity. Thus an asynchronous invocation 
framework should (potentially) work with different 
protocols (such as JMS or Secure HTTP) and 
implementations. An invocation framework that builds 
on top of an existing Web Service framework 
automatically integrates the different protocols 
provided by that Web Service framework. 

- Avoiding the Use of Messaging Protocols: Messaging 
protocols such as JMS or HTTPR can provide 
asynchrony on the protocol level. But they use a 
different communication paradigm than synchronous 
invocations and may cause problems such as a bursty 
message flow or congestion of the message consumer. 
To provide for heterogeneity, Web Services should not 
depend on a special protocol such as JMS, but all 
required functionality should be provided for all 
supported protocols. For instance, if asynchrony is 
required and HTTP should be used, then asynchrony 
should be provided for HTTP natively. 

- Client as a Reactive Application: Some clients are 
reactive applications, such as GUI applications or 
server applications that are clients to another servers. In 
such reactive clients a blocking invocation is not 
possible because that would mean to block the reactive 
event handling as well. A blocking server or GUI is 
usually not acceptable. 

Asynchronous invocation support can be found in many 
distributed object frameworks. However, when designing  



4    UWE ZDUN, MARKUS VOELTER, M ICHAEL KIRCHER 

an asynchronous invocation framework for a given 
synchronous Web Service infrastructure, we have to deal 
with the particularities of that infrastructure. In the case of 
Web Services this means in particular that we can rely on 
the operation types defined by WSDL (Christensen, 2001) 
(synchronous handling of In-Out, In-only, Out-only, and 
Out-In operations), as these are provided by most Web 
Service infrastructures. A framework design should not 
limit the heterogeneity of services, infrastructures, and 
protocols, as this is one of the main goals of the Web 
Services approach. As a minimum requirement, the HTTP 
protocol family should be supported with its typical 
properties such as stateless interaction. Web Service 
frameworks usually provide invocation handling with 
requesters (Voelter, et al., 2002) or client proxies (Voelter, 
et al., 2002) that are automatically generated from WSDL 
interface descriptions (Voelter, et al., 2002), as well as 
runtime construction of invocations. An asynchronous 
invocation framework should support both invocation 
schemes. 

PATTERNS FOR ASYNCHRONOUS INVOCATIONS 

In this section, we present a number of patterns for 
asynchronous invocations. These patterns are part of a 
larger pattern language for distributed object 
communication – see (Voelter, et al., 2002; Voelter, et al., 
2003; Voelter, et al., 2004). We also present some patterns 
from (Schmidt et al., 2000) that are typically used for 
implementing asynchronous and concurrent systems. 

A pattern is a proven solution to a problem in a context, 
resolving a set of forces. Each pattern is a three-part rule, 
which expresses a relation between a certain context, a 
problem, and a solution (Alexander, 1979). A pattern 
language is a collection of patterns that solve the prevalent 
problems in a particular domain and context, and, as a 
language of patterns, it specifically focuses on the pattern 
relationships in this domain and context. As an element of 
language, a pattern is an instruction, which can be used, 
over and over again, to resolve the given system of forces, 
wherever the context makes it relevant (Alexander, 1979). 
We present pattern names in SMALLCAPS font. 

Invocation Asynchrony Patterns 
 

There are four patterns that represent basic alternatives for 
implementing asynchronous invocations. All four patterns 
are alternatives to synchronous invocations. We use two 
other patterns from (Voelter, et al., 2004) to explain the 
asynchronous invocation patterns: REQUESTER and REMOTE 
OBJECT .  

A REMOTE OBJECT  is a distributed object (here: the Web 
Service), offered by a server application, that should be 
reached by the client remotely. Note that a REMOTE OBJECT 
describes the remote interface, not the actual 
implementation – thus the service implementation can well 

comprise a set of procedures or be a wrapper to a legacy 
system.  

The pattern REQUESTER describes how to build up a 
remote invocation on client side and hand it over to the 
transport layer of the distributed object framework. Note 
that clients often do not access the REQUESTER 
implementation directly, but use a (generated) CLIENT 
PROXY instead. The CLIENT PROXY offers the interface of the 
REMOTE OBJECT  in the client process and uses the 
REQUESTER internally to build up the remote invocation. 

The four patterns for asynchronous invocations are in 
particular: 
- FIRE AND FORGET: In many situations, a client 

application needs to invoke an operation of a REMOTE 
OBJECT simply to notify the REMOTE OBJECT of an 
event. The client does not expect any return value. 
Reliability of the invocation is not critical, as it is just a 
notification that, for instance, might be resent in regular 
intervals. When invoked, the REQUESTER sends the 
invocation across the network, returning control to the 
caller immediately. The client does not get any 
acknowledgment from the REMOTE OBJECT receiving 
the invocation. 

- SYNC WITH SERVER: FIRE AND FORGET is a useful but 
extreme solution in the sense that it can only be used if 
the client can really afford to take the risk of not 
noticing when a remote invocation does not reach the 
targeted REMOTE OBJECT . The other extreme is a 
synchronous invocation where a client is blocked until 
the remote operation has executed successfully and the 
response arrives back. Sometimes the middle of both 
extremes is needed. The client sends the invocation, as 
in FIRE AND FORGET, but waits for a reply from the 
server application informing it about the successful 
reception, and only the reception, of the invocation. 
After the reply is received by the REQUESTER, it returns 
control to the client and execution continues. The server 
application independently executes the invocation. 

- POLL OBJECT : There are situations, when an application 
needs to invoke an operation asynchronously, but still 
requires to know the results of the invocation. The 
client does not necessarily need the results immediately 
to continue its execution, and it can decide for itself 
when to use the returned results. As a solution POLL 
OBJECTS receive the result of remote invocations on 
behalf of the client. The client subsequently uses the 
POLL OBJECT  to query the result. It can either just query 
(poll), whether the result is available, or it can block on 
the POLL OBJECT until the result becomes available. As 
long as the result is not available on the POLL OBJECT , 
the client can continue asynchronously with other tasks. 

- RESULT CALLBACK: The client needs to be actively 
informed about results of asynchronously invoked 
operations of a REMOTE OBJECT . That is, if the result 
becomes available to the REQUESTER, the client wants 
to be informed immediately to react on it. In the 
meantime the client executes concurrently. A callback-
based interface for remote invocations is provided 



PATTERN-BASED DESIGN OF AN ASYNCHRONOUS INVOCATION FRAMEWORK FOR WEB SERVICES   5 

within the client. Upon an invocation, the client passes 
a RESULT CALLBACK object to the REQUESTER. The 
invocation returns immediately after sending the 
invocation to the server. Once the result is available, the 
REQUESTER calls a predefined operation on the callback 
object, passing it the result of the invocation. 

In (Voelter, et al., 2004) we present another pattern, 
MESSAGE QUEUE, that is often used together with the 
asynchronous invocation alternatives, introduced above. A 
MESSAGE QUEUE deals with (temporal) problems of the 
networked environment, such as network latency, network 
unreliability, or server crashes. It can be added between the 
network and invocation layers, both on client and server 
side. When the client sends a request, it is not transmitted 
immediately, but first put into a MESSAGE QUEUE. The 
request is kept in this queue until it can be reliably 
transmitted to the server side, and an acknowledgement is 
received. When a new request arrives at the server side, it is 
added to a MESSAGE QUEUE as well, and an 
acknowledgement is sent back to the client. Either 
immediately, some time later, the server process consumes 
the message and invokes the REMOTE OBJECT . The result has 
to be transmitted back to the client. The reply is sent back 
using the same scheme. First, it is put into a MESSAGE 
QUEUE on server side, then it is transmitted and put into the 
client’s MESSAGE QUEUE, and eventually it is consumed by 
the client process. 

Invoking operations asynchronously, using one of the 
patterns FIRE AND FORGET, SYNC WITH SERVER, POLL 
OBJECT , or RESULT CALLBACK, allows to avoid blocking 
clients. However, using these patterns, the client has to care 
for dealing with problems of (temporal) unreliability of a 
networked environment.  That is, if the server cannot be 
reached, the client needs to deal with the resulting 
REMOTING ERROR, for instance, by resending the invocation 
or raising an exception. MESSAGE QUEUES, in contrast, can 
be used to decouple and temporarily store multiple requests 
or replies handled either synchronously or with one of the 
patterns POLL OBJECT  or RESULT CALLBACK.  

MESSAGE QUEUE is the basic pattern for implementing  
messaging systems. Today’s messaging systems and 
protocols, however, deal with multiple other issues than 
implemented by simple MESSAGE QUEUES, such as 
guranteed delivery, message channels, or message 
expirations. See (Hophe & Woolf, 2003) for patterns 
describing these aspects of messaging systems. 

Figure 1 presents an overview of the invocation 
asynchrony patterns. Table 1 illustrates the alternatives for 
applying the patterns. It distinguishes whether there is a 
result sent to the client or not, and whether the client gets an 
acknowledgment or not. If there is a result sent to the client, 
it may be the client’s burden to obtain the result or it is 
informed using a callback. 

Asynchrony and Concurrency Patterns  
There a number of other synchronization, asynchrony, and 
concurrency patterns, described in  (Schmidt et al., 2000), 
that are important to be understood in order to implement 

the invocation asynchrony patterns, explained above. We 
describe those patterns briefly in this section. 

When accessed asynchronously, a REMOTE OBJECT is very 
similar to an ACTIVE OBJECT (Schmidt et al., 2000). An 
ACTIVE OBJECT  decouples method invocation from method 
execution. The same holds true for REMOTE OBJECTS that 
use one of the above presented patterns for asynchronous 
invocations. However, when REMOTE OBJECTS are invoked 
synchronously the invocation and execution of a method is 
not decoupled, even though they run in separate threads of 
control. 

ACTIVE OBJECTS typically create Future objects that 
clients use to retrieve the result from the method execution. 
The implementation of such future objects can be used 
within a RESULT CALLBACK and POLL OBJECT . 

In the case of a RESULT CALLBACK, an ASYNCHRONOUS 
COMPLETION TOKEN (Schmidt et al., 2000) can be used to 
allow clients to identify different results of asynchronous 
invocations to the same REMOTE OBJECT . 

MONITOR OBJECT (Schmidt et al., 2000) is an alternative to 
ACTIVE OBJECT for synchronizing and scheduling 
concurrently invoked remote operations. A MONITOR 
OBJECT  ensures that only one operation runs within an 
object at a time by queuing operation executions on a mutex 
– this is a key difference to ACTIVE OBJECT  where requests 
are queued. It applies one lock per monitor object to 
synchronize access to all operations. 

The pattern HALF-SYNC/HALF-ASYNC decouples 
asynchronous and synchronous processing by defining an 
asynchronous and a synchronous service processing layer. A 
queue between these layers maps asynchronous invocations 
to synchronous execution.  

A HALF-SYNC/HALF-ASYNC architecture has a few 
drawbacks, in particular, the data passing overhead (for 
dynamic memory allocation, synchronization operations, 
etc.) and the latency are unnecessarily high. The pattern 
LEADER/FOLLOWERS (Schmidt et al., 2000) solves these 
problems. It also allocates a number of threads, however, it 
does not separate the architecture into a synchronous and an 
asynchronous layer. Instead the threads take turns being the 
leader. The leader receives an event, and handles it (or tries 
to handle it). Before event handling, the leader promotes 
one of the threads in the pool (the “followers”) to become 
the new leader, which then receives events. After handling 
the event, the thread is put back into the pool. 

HALF-SYNC/HALF-ASYNC and/or LEADER/FOLLOWERS can 
be used to manage network connections and threading 
efficiently. POOLING (Schmidt et al., 2000) can be used to 
thus minimize the initialization overhead of threads or 
connections. The threads of a thread pool can be managed 
by  LEADER/FOLLOWERS. 

 
 
 
 



6    UWE ZDUN, MARKUS VOELTER, M ICHAEL KIRCHER 

DESIGN AND IMPLEMENTATION OF AN 
ASYNCHRONOUS INVOCATION FRAMEWORK FOR 
APACHE AXIS 

In this section, we explain a framework design 
implementing the invocation asynchrony patterns, explained 
in the previous section, in a generic and efficient way for a 
given Web Service implementations. We use the popular 
Apache Axis framework for our implementation in Java, 
though the general framework design can also be used with 
other Web Service implementations. 

Requesters 
Our general design relies on the REQUESTER pattern 
(Voelter, et al., 2004). A REQUESTER is provided as a local 
object within the client process that can construct 
invocations to arbitrary REMOTE OBJECTS in a generic way. 
A REQUESTER dynamically constructs an invocation and 
hides networking details. In most distributed object 
frameworks, CLIENT PROXIES (Voelter, et al., 2004) are 
provided as well: CLIENT PROXIES offer the REMOTE 
OBJECT ’S interface. They are most often generated from an 
INTERFACE DESCRIPTION (Voelter, et al., 2004), such as 
WSDL in the case of Web Services. In our description, we 
first concentrate on a REQUESTER that builds up remote 
invocations at runtime. We also discuss how to use the 
CLIENT PROXIES that are automatically generated from 
WSDL (see below). 

In our framework we provide two kinds of REQUESTERS, 
one for synchronous invocations and one for asynchronous 
invocations. Both use the same invocation scheme. The 
synchronous REQUESTER blocks the invocation until the 
response returns. Thus it is just a wrapper to the ordinary 
REQUESTER of the Axis framework, provided for 
convenience. A client can invoke a synchronous REQUESTER 
by instantiating it and waiting for the result: 

 
SyncRequester sr = new SyncRequester(); 
String result = (String)  
  sr.invoke(endpointURL, operationName,  
            null, rt); 
 
This REQUESTER simply instantiates a handler for dealing 

with the invocation, and after the response has arrived, it 
returns control to the client. 

The asynchronous REQUESTER is used in a similar way. It 
offers invocation methods that implement the four client 
asynchrony patterns discussed in the previous section. For 
this goal a client invocation handler, corresponding to the 
kind of invocation, is instantiated in its own thread of 
control. The general structure of asynchronous invocations 
is quite similar to synchronous invocations. The only 
difference is that we pass an AsyncHandler and clientACT 
as arguments and do not wait for a result (AsyncHandler 
and client invocation handlers are described in the next 
sections in detail): 

 
AsyncHandler ah = ...; 

Object clientACT = ...; 
AsyncRequester ar = new asyncRequester(); 
ar.invoke(ah, clientACT, endpointURL,  
          operationName, null, rt); 
// ... resume work 
 
Note that the clientACT field is used here as a pure client-

side implementation of an ASYNCHRONOUS COMPLETION 
TOKEN (ACT) (Schmidt et al., 2000). The ACT pattern is 
used to let clients identify different results of asynchronous 
invocations. In contrast to the clientACT field, the ACT in 
the description in (Schmidt et al., 2000) is passed across the 
network to the server, and the server returns it to the client 
together with the result. We do not need to send the 
clientACT across the network here because in each thread 
of control we use synchronous invocations and use multi-
threading to provide asynchronous behaviour. We thus can 
identify results by the invocation handler that has received 
it, or, more precisely, on basis of its socket connection. This 
handler stores the associated clientACT field. 

Client Invocation Handlers 
In the case of a synchronous invocation, invocation 
dispatching and subsequent invocation handling do not need 
to be decoupled. This is because the invoking process (or 
thread) blocks until the invocation is completely handled. In 
contrast, asynchrony means that multiple invocations are 
handled in parallel, and the invoking thread can continue 
with its work while an invocation is handled. Therefore, 
invocation dispatching and invocation handling should be 
decoupled. 

Synchronous and asynchronous invocation handling is 
performed by different kinds of invocation handlers. These, 
however, require the same information about the invocation, 
such as endpoint URL, operation name, an argument list, 
and a return type. Also constructing an invocation using a 
REQUESTER (in Axis this is done using the type Call) from 
these information is common for all different kinds of 
invocation handlers (see Figure 2). 

The synchronous invocation handler mainly provides a 
method invoke that synchronously invokes the service 
constructed with constructCall. The invocation returns 
when the response arrives. 

The asynchronous invocation handler 
AsyncInvocationHandler implements the Runnable 
interface. This interface indicates that the handler 
implements a variant of the COMMAND pattern (Gamma et 
al., 1994) that can be invoked in the handler’s thread of 
control using a method run. The class 
AsyncInvocationHandler associates a handler object to 
hand the result back to the client thread. It also contains a 
clientACT field that stores the ASYNCHRONOUS 
COMPLETION TOKEN supplied by the client. Usually, the 
field is used identify the invocation later in time, when the 
response has arrived. 

The AsyncInvocationHandler decides on basis of the 
kind of handler object which asynchrony pattern should be 
used, RESULT CALLBACK, POLL OBJECT , or SYNC WITH 



PATTERN-BASED DESIGN OF AN ASYNCHRONOUS INVOCATION FRAMEWORK FOR WEB SERVICES   7 

SERVER (see below). The decision is done using Java’s 
instanceof primitive. 

Finally, FIRE AND FORGET is implemented in its own 
invocation handler class (see next Section). 

Fire and Forget Invocations 
The FIRE AND FORGET pattern is not implemented in the 
class AsyncInvocationHandler (or as a subclass of it) due 
to a specialty of Web Services: the WSDL standard 
(Christensen, 2001) that is used for INTERFACE DESCRIPTION 
of Web Services supports so-called one-way operations. 
These are thus implemented by most Web Service 
frameworks that support WSDL. Therefore, we do not 
implement FIRE AND FORGET with the 
AsyncInvocationHandler class, but use the one-way 
invocations to support FIRE AND FORGET operations. All 
invocations dispatched by the AsyncInvocationHandler 
class are request-response invocations.  

A FIRE AND FORGET invocation executes in its own thread 
of control. The FIRE AND FORGET invocation simply 
constructs the invocation using Axis’ class Call, performs 
the invocation, and then the thread terminates. 

A special invokeFireAndForget method of the 
AsyncRequester class is used for invoking FIRE AND 
FORGET operations: 

 
AsyncRequester ar = new AsyncRequester(); 
ar.invokeFireAndForget(endpointURL, 
                       operationName, 
                       null, rt); 

 
Figure 3 shows the dynamic invocation behaviour of a 

FIRE AND FORGET invocation. 

Asynchrony Pattern Handlers 
To deal with the asynchrony patterns RESULT CALLBACK, 
POLL OBJECT , and SYNC WITH SERVER the client asynchrony 
handler types ResultCallback, PollObject, and 
SyncWithServer are provided. These are instantiated by the 
client and handed over to the REQUESTER, for instance, in 
the invoke method. 

The asynchronous REQUESTER handles the invocation with 
an AsyncInvocationHandler. Each invocation handler runs 
in its own thread of control and deals with one invocation. A 
thread pool is used to improve performance and reduce 
resource consumption (see below). The client asynchrony 
handlers are sinks that are responsible for holding or 
handling the result for clients. 

For an asynchronous invocation, the client simply has to 
instantiate the required client asynchrony handler. An  client 
asynchrony handler is a class implementing one of the 
following interfaces: ResultCallback, PollObject, and 
SyncWithServer. The client provides the asynchrony 
handler to the REQUESTER’S operation invoke. This 
operation is defined as follows: 

 
public void invoke(AsyncHandler handler,  
                   Object clientACT, 

                   String endpointURL,  
                   String operationName, 
                   Object[] arguments,  
                   QName returnType) 
  throws InterruptedException {...} 
 
The parameter handler determines the responsible 

handler object and type. It can be of any subtype of 
AsyncHandler. clientACT is a user-defined identifier for the 
invocation. The client can use the clientACT parameter to 
correlate a specific result to an invocation. The four last 
parameters specify the service ID, operation name, and 
invocation data. 

For instance, the client might invoke a POLL OBJECT by 
first instantiating a corresponding handler and then 
providing this handler to invoke. Subsequently, it polls the 
POLL OBJECT  for the result and works on some other tasks 
until the result arrives: 

 
AsyncRequester requester = new AsyncRequester(); 
PollObject p = (PollObject)  
                  new SimplePollObject(); 
requester.invoke(p, null, endpointURL, 
                 operationName, null, rt); 
while (!p.resultArrived()) { 
  // do some other task ... 
} 
System.out.println("Polled Result Arrived = " + 
                   p.getResult()); 
 
Note that the clientACT parameter is set to null in this 

example because we can use the object reference in p to 
obtain the correct POLL OBJECT . 

The pre-defined client asynchrony handlers and interfaces 
are depicted in Figure 4. 

The client asynchrony handlers that are informed of the 
results run in the invoking thread. To enable 
synchronization of the access from different threads (and 
clients) we apply the MONITOR OBJECT pattern (Schmidt et 
al., 2000), which is supported by Java’s synchronized 
language construct. The operations of each client 
asynchrony handler are synchronized and the access is 
scheduled. 

Figure 5 shows the dynamic invocation behaviour of a 
POLL OBJECT  invocation. The dynamics of handling a 
RESULT CALLBACK are identical, with the exception that a 
RESULT CALLBACK asynchrony handler is passed to the 
REQUESTER, and the client does not poll it. A SYNC WITH 
SERVER uses the SYNC WITH SERVER asynchrony handler and 
does not obtain the result , but only an acknowledgment. 

Queued Asynchrony Handlers 
MESSAGE QUEUES can be used at the transport level, for 
instance, for building a simple messaging system. As 
mentioned before, MESSAGE QUEUES can be used together 
with RESULT CALLBACK and POLL OBJECT for result queuing. 
To a certain extent, MESSAGE QUEUES can also be used in 
context of SYNC WITH SERVER for queuing the 



8    UWE ZDUN, MARKUS VOELTER, M ICHAEL KIRCHER 

acknowledgments. However, MESSAGE QUEUES at the 
transport layer will not work for SYNC WITH SERVER, as long 
as somebody between client and the transport layer, such as 
the REQUESTER, blocks until the acknowledgement is 
received. If MESSAGE QUEUES are not supported at the 
transport level, we can introduce queues at the invocation 
layer to support acknowledgment queuing for SYNC WITH 
SERVER or result queuing for RESULT CALLBACK or  POLL 
OBJECT  (as exemplified below). 

Consider we want to use one instance to handle multiple 
responses. A simple implementation of such behaviour is an 
asynchrony handler that uses a queue for the arriving 
responses. Such queuing handlers with FIFO (first-in, first-
out) behaviour are pre-defined in our framework for RESULT 
CALLBACK, POLL OBJECT , and SYNC WITH SERVER. In the 
SYNC WITH SERVER variant the acknowledgements are stored 
in the queue, otherwise the results. Figure 4 already depicts 
these queuing variants. 

In the queuing variant the client cannot use the handler 
object reference to identify the invocation that belongs to 
the result. Thus generally the clientACT field should be 
used to identify the invocation that belongs to an 
asynchrony handler. The clientACT field is also important 
for clients, if they need to customize the handler objects. For 
instance, if a RESULT CALLBACK should forward the callback 
to an operation of the client object, a reference to the client 
object is needed. This reference can be passed as part of a 
clientACT structure, which is then used by the custom 
asynchrony handler to dispatch the callback to the client. 

As a second example, consider a developer defines a 
RESULT CALLBACK class as an extension of the existing 
RESULT CALLBACK type ResultCallbackQueue: 

 
class DateClientQueue  
  extends ResultCallbackQueue {...} 
 
Then the client can use this custom type to handle 

invocations. When we use a queue handler type, we usually 
want to handle more than one result with the same handler; 
thus we instantiate a number of invocations in different 
threads of control: 

 
AsyncRequester ar = new AsyncRequester(); 
DateClientQueue results =  
  new DateClientQueue(10); 
for (int i = 0; i < 10; i++) { 
  String id = "callback" + i; 
  ar.invoke(results, id, endpointURL,  
            operationName, null, rt); 
} 
 
In this example the ten invocations are all reported to one 

and the same queuing RESULT CALLBACK object. This object 
can either handle the result on its own (for instance if the 
client is just a main method) or forward the callback to the 
client object that has invoked it. Of course, if the client is an 
object that implements the ResultCallback interface it can 
also be itself handed over as a RESULT CALLBACK object. 

Using WSDL Generated Asynchronous Client Proxies 
WSDL (Christensen, 2001) is used as a standard INTERFACE 
DESCRIPTION (Voelter, et al., 2004) language in the context 
of Web Services. The main goal of using WSDL is to 
provide a language to interchange information about Web 
Services and transfer these to clients. 

Axis provides two models of invocation: 
- The Call interface provided by Axis can be used to 

construct an invocation at runtime. This REQUESTER 
interface is used by the constructCall operation 
mentioned earlier. 

- When using WSDL, Axis generates a CLIENT PROXY 
class that internally constructs the invocation using 
the Call interface. Thus, when this CLIENT PROXY is 
provided by the client, the asynchronous invocation 
framework can directly use the CLIENT PROXY and 
does not need to invoke the constructCall operation. 

PERFORMANCE CONSIDERATIONS 

The asynchronous invocation framework provides a better 
client performance than synchronous invocations regarding 
the invocation times because the client can resume its work 
after dispatching an invocation. Yet, compared to 
synchronous invocation dispatching, multi-threaded 
invocations also incur an invocation overhead due to 
instantiating the threads. This overhead can be minimized 
with thread pooling (which is discussed first in this Section). 
Next, we compare the performance of asynchronous 
invocations to synchronous invocations in our framework. 

Thread Pooling 
To optimize resource allocation for threading, the threads 
can be shared in a pool using the POOLING pattern (Kircher 
& Jain, 2004). This optimization can be combined both with 
a HALF-SYNC/HALF-ASYNC (Schmidt et al., 2000) or a 
LEADER/FOLLOWERS (Schmidt et al., 2000) concurrency 
architecture. As explained above, LEADER/FOLLOWERS is 
used for sharing a resource between several threads.  

Clients can acquire the resources from the pool, and 
release them back into the pool, when they are no longer 
needed. To increase efficiency, the pool eagerly acquires a 
pre-defined number of resources after creation. If the 
demand exceeds the available resources in the pool, it lazily 
acquires more resources. Pooling thus reduces the overhead 
of instantiating and destroying threads.  

We use a generic thread pool with thread pool workers 
that require the client to provide COMMANDS (Gamma et al., 
1994) of the type Runnable (see discussion above). The 
thread pool acquires a pre-defined number of thread pool 
workers in its idle workers list. Whenever a thread pool 
worker is required, it is obtained from the pre-instantiated 
worker pool, if possible. If there is no worker idle, the 
thread pool lazily instantiates more workers. After the work 
is done, the (pre-defined) workers are put back into the pool. 

The asynchronous invocation handlers implement the 
Runnable interface and can thus be used with the thread 



PATTERN-BASED DESIGN OF AN ASYNCHRONOUS INVOCATION FRAMEWORK FOR WEB SERVICES   9 

pool. Thus each invocation handler runs in its own thread of 
control and is automatically pooled. 

Figure 6 shows the thread pool design. 

Performance Comparison 
For a performance comparison we have used a simple Web 
Service that just returns the current date as a string. For each 
variant we have tested 1, 3, 10, and 20 invocation in a row. 
The thread pool had a size of 10 pre-initialized workers. All 
results are measured in milliseconds. We have used the Sun 
JDK 1.4, Jakarta Tomcat 4.1.18, Xerces 2.3.0, and Axis 1.0. 
All measurements were performed on an Intel P4, 2.53 
GHz, 1 GB RAM running Red Hat Linux. We have 
measured all performance tests 10 times and used the best 
results (the average results were quite close to the best 
results and therefore we omit them here). 

The results are summarized in Table 2. 
For synchronous invocations we have simply measured 

the time that all invocations took. We can see that the 
invocation times increase as the number of invocations 
increases. 

For FIRE AND FORGET and SYNC WITH SERVER we have 
measured the time until the requests were sent. We can see 
that the times are much shorter than the synchronous 
invocations, as expected. Only the 20 invocations case is 2-
3ms slower than it could be expected when a linear 
progression would be assumed. This overhead is 
approximately the time needed to instantiate 10 thread pool 
workers. 

For POLL OBJECT and RESULT CALLBACK we have 
measured the times until the invocations are dispatched and 
the invoking thread can resume its work. These numbers are 
more or less equal to the times of FIRE AND FORGET and 
SYNC WITH SERVER. Also we have measured the times until 
the last response has arrived. We can see that these numbers 
are similar to the synchronous invocation times, yet there is 
a slight overhead. 

RELATED WORK AND OTHER KNOWN USES OF THE 
PATTERNS 

In this section we summarize some known uses of the 
asynchrony patterns as related work. 

There are various messaging protocols that are used to 
provide asynchrony for Web Services on the protocol level, 
including JAXM, JMS, and Reliable HTTP (HTTPR) (IBM, 
2002). In contrast to our approach these messaging 
protocols do not provide a protocol-independent interface to 
client-side asynchrony and require developers to use the 
messaging communication paradigm. Yet these protocols 
provide a reliable transfer of messages, something that our 
approach does not deal with. Messaging protocols can be 
used in the lower layers of our framework. 

The Web Services Invocation Framework (WSIF) 
(Apache Software Foundation, 2002) is a simple Java API 
for invoking Web Services with different protocols and 
frameworks, similar to the internal invocation API of Axis. 

It provides an abstraction to circumvent the differences in 
protocols used for communications, similar to our 
invocation framework. However, it does deal with 
asynchrony using messaging protocols (HTTPR, JMS, IBM 
MQSeries Messaging, MS Messaging). The approach 
presented in this paper can potentially be used on top of 
with WSIF – only implementing a few ADAPTERS (Gamma 
et al., 1994) is necessary. 

A similar situation can be found in the Mind Electric’s 
GLUE (The Mind Electric, 2003), another popular Java 
implementation of Web Services, that supports HTTP, 
HTTP over SSL, and JMS as transport protocols. JMS has 
to be used to support client asynchrony.  

For a long time CORBA (Object Management Group, 
2000) supported only synchronous communication and 
unreliable one-ways operations, which were not really an 
alternative due to the lack of reliability and potential 
blocking behaviour. Since the CORBA Messaging 
specification appeared, CORBA supports reliable one-ways. 
With various policies the one-ways can be made more 
reliable so that the patterns FIRE AND FORGET as well as 
SYNC WITH SERVER, offering more reliability, are supported. 
The RESULT CALLBACK and POLL OBJECT patterns are 
supported by the Asynchronous Method Invocations (AMI) 
with their callback and polling model, also defined in the 
CORBA Messaging specification. 

.NET (Microsoft, 2003) provides an API for asynchronous 
remote communication. Similar to our approach, client 
asynchrony does not affect the server side. All the 
asynchrony is handled by executing code in a separate 
thread on the client side. POLL OBJECTS are supported by the 
IAsyncResult interface. One can either ask whether the 
result is already available or block on the POLL OBJECT . 
RESULT CALLBACKS are also implemented with this 
interface. An invocation has to provide a reference to a 
callback operation. .NET uses one-way operations to 
implement FIRE AND FORGET. SYNC WITH SERVER is not 
provided out-of-box, but it can be implemented with a 
similar approach as used in this paper. 

Actiweb (Neumann & Zdun, 2001) is a web object system 
implemented in Tcl. It provides sink objects for all kinds of 
blocking and non-blocking communication. A client can 
register a callback for the sink to implement RESULT 
CALLBACKS, block on the sink, or use the sink as a POLL 
OBJECT . FIRE AND FORGET can be implemented by using 
sinks with an empty RESULT CALLBACK. Similarly, SYNC 
WITH SERVER can be implemented by a RESULT CALLBACK 
that raises an error if a timeout exceeds and does nothing if 
the server responds correctly. 

CONCLUSION 

In this paper we have provided a pure client side approach 
to provide asynchronous invocations for Web Services 
without necessarily using asynchronous messaging 
protocols. The framework was designed from a set of 
patterns of a larger pattern language for distributed object 



10    UWE ZDUN, MARKUS VOELTER, M ICHAEL KIRCHER 

frameworks. The functionalities as well as the performance 
measurements indicate that the goals of the framework, as 
introduced at the beginning of this paper, were reached; in 
particular: 

- A client can significantly faster resume with its work. 
That is, the client does not depend on the dispatching 
and processing time of the remote invocation. 

- The invocation framework is very simple and can 
flexibly be extended with custom handlers. 

- Other communication protocols than HTTP and back-
ends of Web Services (so-called “service providers”), 
supported by Axis, can be used with our framework. 
The framework design does not rely on Axis though. 
By writing ADAPTERS for our framework, other Web 
Service frameworks can be used with our framework 
as well. 

- If the client is a reactive server applications, a remote 
invocation does not block it. 

As a drawback, an asynchrony framework on top of a 
synchronous invocation framework always incurs some 
overhead in terms of the overall performance of the client 
application. We have quantified this overhead in the 
performance measurement section. As we have provided a 
pure client side implementation, functionalities that rely on 
server framework support, such as synchronous 
acknowledgments for SYNC WITH SERVER can only be 
realized at the application layer; that is, with support in the 
REMOTE OBJECT  implementation. Further functionalities of 
messaging protocols, such as guaranteed delivery, message 
channels, or message expirations, are not supported. But as 
messaging protocols can be used internally this is not a 
severe drawback. 

The framework, described in this paper, can freely be 
downloaded from: http://saiws.sourceforge.net 

REFERENCES 

C. Alexander (1979) The Timeless Way of Building. Oxford Univ. 
Press. 

Apache Software Foundation (2002) Web services invocation 
framework (WSIF). http://ws.apache.org/wsif/ 

Apache Software Foundation (2003) Apache Axis. 
http://ws.apache.org/axis/ 

M. Cai, S. Ghandeharizadeh, R. Schmidt, S. Song (2002) A 
Comparison of Alternative Encoding Mechanisms for Web 
Services. In Proceedings of the 13th International Conference 
on Database and Expert Systems Applications (DEXA), Aix 
en Provence, France. 

D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. 
Ferris, D. Orchard (2003) Web Services Architecture, W3C 
Working Draft 8 August 2003, 
http://www.w3.org/TR/2003/WD-ws-arch-20030808/ 

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, 
H. F. Nielsen, S. Thatte, and D. Winer (2000) Simple object 
access protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP/ 

T. Bray, J. Paoli, and C. Sperberg-McQueen (1998) Extensible 
markup language (XML) 1.0. 
http://www.w3.org/TR/1998/REC-xml-19980210 

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana 
(2001) Web services description language (WSDL) 1.1. 
http://www.w3.org/TR/wsdl 

R. Fielding, J. Gettys, J. Mogul, H. Frysyk, L. Masinter, P. Leach, 
and T. Berners-Lee (1999) Hypertext transfer protocol – 
HTTP/1.1. RFC 2616 

E. Gamma, R. Helm, R. Johnson, and J. Vlissides (1994) Design 
Patterns: Elements of Reusable Object-Oriented Software. 
Addison-Wesley. 

Object Management Group (2000) Common request broker 
architecture (CORBA). http://www.omg.org/corba 

G. Hohpe, B. Woolf (2003) Enterprise Integration Patterns,  
Addison-Wesley. 

IBM developerWorks (2002) HTTPR specification. http://www-
106.ibm.com/developerworks/webservices/library/ws-httprspec/ 

R. E. Johnson and B. Foote (1988) Designing reusable classes . 
Journal of Object-Oriented Programming, Vol. 1, No. 2, pp. 
22–35. 

M. Kircher and P. Jain (2004). Pattern-Oriented Software 
Architecture-Patterns for Resource Management, To be 
published by J. Wiley and Sons. 

Microsoft (2003) .NET framework. 
http:///msdn.microsoft.com//netframework 

The Mind Electric (2003). GLUE. 
http://www.themindelectric.com/glue/ 

G. Neumann and U. Zdun. (2001) Distributed web application 
development with active web objects. In Proceedings of The 
2nd International Conference on Internet Computing 
(IC’2001), Las Vegas, Nevada, USA. 

D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann (2000) 
Patterns for Concurrent and Distributed Objects. Pattern-
Oriented Software Architecture. J. Wiley and Sons Ltd. 

S. Vinoski (2003) IEEE Internet Computing. Toward Integration 
Column: Integration With Web Services. Nov-Dec 2003. 

M. Voelter, M. Kircher, and U. Zdun (2002) Object-oriented 
remoting: A pattern language. In Proceedings of The First 
Nordic Conference on Pattern Languages of Programs 
(VikingPLoP 2002), Denmark. 

M. Voelter, M. Kircher, and U. Zdun (2003) Patterns for 
asynchronous invocations in distributed object frameworks.  
In Proceedings of EuroPlop 2003, Irsee, Germany. 

M. Voelter, M. Kircher, and U. Zdun (2004) Remoting Patterns. 
To be published by J. Wiley and Sons Ltd. in Wiley’s pattern 
series in 2004. 

D. Winer (1999) XML-RPC specification. 
http://www.xmlrpc.com/spec 

 

 

 

 

 

 

 

 



PATTERN-BASED DESIGN OF AN ASYNCHRONOUS INVOCATION FRAMEWORK FOR WEB SERVICES   11 

TABLES 

 
 
 

 
 

Pattern name  Acknowledgement to client  Result to client Responsibility for result 
FIRE AND FORGET no     no    - 
SYNC WITH SERVER yes     no    - 
POLL OBJECT   yes     yes   The client is responsible for getting  
           the result. 
RESULT CALLBACK yes     yes   The client is informed via callback. 
MESSAGE QUEUE yes     yes   The server actively sends back the result. 
            The client can receive it synchronously 
            (by blocking on a message queue) or  
           asynchronously using one of the  
           other asynchrony patterns. 

Table 1: Summary of the Invocation Asynchrony Patterns 

Performance Test  Synchronous  FIRE AND FORGET SYNC WITH SERVER  POLL OBJECT  RESULT CALLBACK 

1 invocation   30ms   1ms  1ms  1ms/39ms  1ms/42ms 

3 invocation   68ms    2ms  2ms  2ms/89ms  2ms/69ms 

10 invocation   204ms    2ms  2ms  2ms/265ms  2ms/189ms 

20 invocation  378ms   5ms    4ms      5ms/409ms  4ms/368ms   

Table 2. Performance Comparison  



12    UWE ZDUN, MARKUS VOELTER, M ICHAEL KIRCHER 

 

FIGURES 

 

 
Figure 1: Overview Invocation Asynchrony Patterns 
 
 
 

Figure 2: Invocation Handlers 
 

 ClientInvocationHandler

String endpointURL 
String operationName 
Object[] arguments 
QName returnType 
Call constructCall () 
... 

SyncInvocationHandler 

Object invoke () 
... 

AsyncInvocationHandler FireAndForgetHandler 

void run () 
... 

void run () 
... 

Object clientACT; 

Runnable 
«interface» 

AsyncHandler  
«interface» handlerObj 

0..* 1 

AsyncRequester 

void invoke (...) 
void invokeFireAndForget(...) 
... 

«instantiate» 
1 0..* 

FIRE  AND FORGET SYNC WITH SERVER
extends reliably

POLL OBJECT RESULT CALLBACK

MESSAGE QUEUE
provides result via

pro
vide

s re
sult

 via

extends with result

REQUEST HANDLER

queuing
requests and
responses

alternatives

extends w
ith

result



PATTERN-BASED DESIGN OF AN ASYNCHRONOUS INVOCATION FRAMEWORK FOR WEB SERVICES   13 

 
 
 
Figure 3: Fire And Forget Dynamics 
 
 
 
 
 

 
Figure 4. Handlers for Obtaining Asynchronous Results  

:AsyncRequester

invokeFireAndForget()

client

new

execute()

:FireAndForgetInvocationHandler

async: run()

:Call

constructCall()

new

invokeOneWay()

AsyncHandler
«interface»

ResultCallback
«interface»

boolean resultArrived();
Object getResult();

PollObject
«interface»

int ackArrived()

SyncWithServer
«interface»

SingleSyncWithServer SingleResultCallback

QueuedResultCallback

void inform(Object clientData, Object result);

SinglePollObject

void doCallback()

ObjectQueue

QueuedPollObjectQueuedSyncWithServer



14    UWE ZDUN, MARKUS VOELTER, M ICHAEL KIRCHER 

 
 
Figure 5. Poll Object Dynamics 
 
 
 

 
Figure 6. Thread Pooling 

:AsyncRequester

invoke()

client

new

execute()

:AsyncClientInvocationHandler

async: run()

:Call

constructCall()

new

invoke()

result

:PollObject

new

pollObject

pollObject

inform()

resultArrived()

false

resultArrived()

false

resultArrived()

true

getResult()

result

AsyncInvocationHandler
Runnable
«interface»

ThreadPool ThreadPoolWorker
idleWorkers

0..*1
workers

0..*1

ThreadinternalThread

1 1

«processes in internal thread»


