Distributed Web Application Development with Active Web Objects

Gustaf Neumann
Department of Information Systems

Vienna University of Economics, Austria

Abstract

Modern distributed web applications should
offer high customizability, various communi-
cation resources, flexible data and document
representations, persistence, metadata, mech-
anisms for interaction and coordination, etc.
Often these requirements are either badly sup-
ported by the development tools or a diverse
set of technologies has to be wused which is
orthogonal to web technology and is based
on overlapping concepts, abstractions, and
paradigms. In this paper we present ACTI-
WEB as a single framework centers around
the notion of active web objects. Those inte-
grate web documents with objects of an object-
oriented scripting language. The scripting
language enables rapid application develop-
ment and component gluing. Moreover, sev-
eral basic services, such support for XML,
RDF, remote procedure calls, code mobility,
object persistence, and object registration are
provided.

Keywords: web objects, distributed web applica-
tions, scripting

1 Introduction

The World Wide Web (WWW) was developed
with a set of desired qualities, such as portabil-
ity, interoperability, a simple form of scalability,
and extensibility. These goals led to a simple
architecture that is centered around document
structures, but which also provides resources to
develop web-based applications in a distributed
client/server environment. Advantages, like the
simplicity of the architecture, the ability of hu-
man beings to understand the presented infor-
mation directly, the ease of adding new infor-
mation, and the ease of connecting information
pieces through links have led to a dominating po-
sition for web-based information systems. But
this simple architecture has several drawbacks
for distributed web application development:

Uwe Zdun
Specification of Software Systems
University of Essen, Germany

e It lacks support for interactive or collabo-
rative multi-user applications [1] and is not
well suited to exploit the benefits of today’s
distributed (object) technologies.

e The basic data structure of the web — hy-
perlinked HTML pages — is too restricted to
support complex applications [2]. The inte-
gration of important services, such as di-
verse communication infrastructures, data
representations, metadata, persistence, in-
teraction and coordination of web-based ap-
plications, etc. is often missing.

e Current web object models, as in [3], lack
integration with these services and do not
provide powerful abstractions of modern
0O languages.

e Web-application development in system
languages, such as C, C++, or Java, e.g.
with the CGI interface is often complex and
misses the flexibility and customizability re-
quired by many web applications (see [4, 5]).
To meet the requirements of developing and
maintaining a dynamic web site, a devel-
oper should use tools and technologies that
maximize flexibility and minimize develop-
ment time.

e Building flexible, distributed web applica-
tions on top of current web standards is
not impossible. However, distributed tech-
nologies/services and web standards, like
the HTTP protocol, are often not well inte-
grated [6].

In this paper, we present an extensible,
component-based framework for distributed
web-based applications that centers around the
notion of active web objects. The basic con-
cept is not new, it has been used in the con-
text of other domain. However, the framework
presented is implemented with today’s web tech-
nology without suffering from the complexity of

middleware approaches. It also avoids the lim-
itations of CGI-like architectures, like problems
with client-to-client interaction, customizability,
performance, etc.

2 A Framework for Active Web
Objects

This section presents the basic architecture of
our AcTIWEB framework. In this section, give
firstly a very brief overview of the object-
oriented scripting language XOTcL in which Ac-
TIWEB is implemented. XOTcL provides a set of
uncommon properties that ease the implementa-
tion of our component framework. Then we dis-
cuss the conceptual hierarchy of the basic web
object types, the integration with code mobility,
and the base-line architecture of service compo-
nents on top of a flexible HT'TP implementation.
In Section 3 we discuss the service components
in more detail.

2.1 Extended Object Tcl (XOTcL)

Extended Object Tcl (XOToL) [7] (pronounced
ezotickle) is an object-oriented extension of the
language TcL. Scripting languages gain flexibil-
ity through language support for dynamic ex-
tensibility, read/write introspection, and auto-
matic type conversion. TcL and similar scripting
languages are designed as two-level languages,
consisting of components written in efficient and
statically typed languages, like C or C++, and
of scripts for component glueing. The primary
purpose of the scripted layer is flexible composi-
tion of components.

XOTcL enhances the “glueing of components”
idea of TcL with language constructs to support
architectural fragments, such as design pattern
parts, and to provide explicit support for com-
position and decomposition. All object-oriented
constructs are fully introspectable and all rela-
tionships are dynamically changeable. XOTcL
offers a set of basic constructs which are singular
objects, classes, meta-classes, nested classes, and
language support for dynamic aggregation struc-
tures. Furthermore, it offers the message in-
terception techniques per-object mizin, per-class
mizin, and filter to support changes, adapta-
tions, and decorations of message calls.

2.2 Active Web Objects

The goal of active web objects is to provide a
unifying entity for application development and
for information exchange in a machine under-
standable manner. Web objects provide active-
ness for web artifacts. That is, web artifacts
are represented by an object that contains meth-
ods defining the web artifact’s behavior. In this
context, the traditional web with interconnected
web pages can be interpreted as a drastically
simplified system of web objects, where the web
pages can be seen as objects (unambiguously
identified by URLs), and links can be seen as
methods (invoked via a web server, which func-
tions as dispatcher). We generally see each ob-
ject that is accessible via a URL as a web object.

The notion of web objects also manifests in
variants of dynamic HTML and the Document
Object Model (DOM) [8] which treat HTML
documents like programmable objects. In such
approaches, the programmer can interact with
document elements without parsing the text.
However, DOM based approaches only offer lim-
ited suitability for general application devel-
opment, since they are conceptually centered
around classical web documents rather than pro-
viding resources for expressing the application
semantics of distributed systems.

Therefore, our notion of active web objects
goes further. An active web object is a full-
fledged programming language object which is
capable to represent itself on the web. An ac-
tive web object contains methods and data, has
a runtime state, a location, and an URL to be
accessed via the web. Requests for the objects
via the web (e.g. HTTP requests) are mapped
directly to method invocations of the active web
objects. For a client of the system, like a web
browser, active web objects look exactly like tra-
ditional web pages.

An important property of a web object is its
location. An active web object “lives” in the
runtime environment of an HTTP server. The
HTTP server has the responsibility to translate
URL requests to method invocations on the ob-
ject. In ACTTWEB active web objects can also be
called via direct RPC calls (on top of HTTP)
without HTML markup.

In AcTIWEB every object that can be accessed
through a place is called a web object. Each
place is uniquely identified by a host name and

the port number of the HTTP server which pro-
vides access to the place. A web object is unam-
biguously identified through a URL comprising
of host name, port number, and object name.
There are different special web object types: A
web document is a web object which contains a
web artifact, such as an HT'ML page, a picture,
a sound file, etc. An mobile agent is a web ob-
ject that can exploit mobile code primitives, like
migrate or clone. A web agent is a mobile agent
that supports — beside the mobile agent abili-
ties — views on the agent’s state and behavior in
various web representations, like HTML, XML,
etc.

‘WebObject
1Y
bile Code: y y bject =

N!o 2 Geite: Agent I | WebDocument | Documentaso ject __>
- invoke Place is web server with
- clone I I I active web objects

- migrate

e s 4 ot aw & o

Figure 1: Conceptual Class Structure of Web
Objects

Figure 1 presents the conceptual class struc-
ture of web objects. We call it a conceptual class
hierarchy because in XOTcL a class hierarchy is
highly flexibly and does not necessarily express
only the intrinsic properties of an object. In
XOTcL it is, for instance, possible to attach —
dynamically and transparently — a class to an
arbitrary object by per-object mixins [9] as an
implementational role. Therefore in ACTIWEB
an agent object can easily behave exactly like a
web document and vice versa.

AcTIWEB is an object-oriented mobile code
environment which integrates agent-technology
and object-oriented programming with the cur-
rent web infrastructure. This reflects our base-
line architecture and terminology. To implement
HTTP-based mobile agents, we require a central
access point in the HTTP server. We also re-
quire such a central access point for integrating
web documents with an object system. There-
fore, the place abstraction of the mobile code
paradigm is a good access point for the active
web object system. It also serves for other cen-
tral issues, like the mapping of URLs to methods

of web objects or to provide security and access
control issues.

place = execution environment remote

agentX
[methc

invocation
agen

-
imethod:! method.

method2 method
ageni3 local
method 1 method
invocation
= agent meeting

5
% HTTP implementation

network layer

Figure 2: Mobile Code and Active Web Object
System — Communication Resources

Figure 2 presents a snapshot with migration
paths of an hypothetical application. Places
form safe execution environments for active web
objects (and other objects of the application).
Each agent can communicate via RPC calls and
clone/migrate. An web agent additionally con-
tains methods to return a certain representation,
like HTML or other web representations. The
place maps URLs to method implementations.

3 Components of ACTIWEB

The AcTIWEB system (see Figure 3) is imple-
mented in XOTcL. On top of the XOTcL layer
a set of basic services is implemented. Generally
all components can be substituted by compatible
ones. xoComM [10] provides an object-oriented
implementation of an HTTP server and HTTP
access. All communication in ACTIWEB relies on
this service. Places, the basic execution environ-
ments of ACTIWEB, contain exactly one HTTP
server identified by host and port. ACTIWEB ob-
jects (like agents) have access to other (remote)
AcTIWEB objects via HT'TP.

The metadata service provides an object-
oriented implementation of an XML- (called
Xx0XML) and a RDF-parser/-interpreter (called
xoRDF). RDF metadata is used in ACTIWEB as
a canonical data representation. XOSTORE is a
general persistence service for XOTcL providing
persistent objects. A registry service XOREG en-
ables registration of ACTIWEB objects, say, to
find an object through the specification of cer-
tain properties. XoMOS implements the mobile
object system based on the lower level services.

Applications

ActiWeb

Mobile Object System
xoMOS

Registry Service
XoReg

S

Metadata Services | Communication Services

xoComm
XORDF
XoXML |Http Access ” Http Server

XOTecl

Figure 3: AcTiWEeB: Basic Architecture

The active web objects component X0OAWO pro-
vides web-representations for active objects and
agents. All components can be loaded on de-
mand. The following sections describe these
components in more detail.

3.1 Flexible Data Representation and
Metadata Services

For flexible data representation an XML and
RDF parser/interpreter framework is integrated
in ActiWEeB [11]. XML is primarily used as a
flexible data glue and a platform independent
data representation.

The problem handled by the metadata service
is that data on the web is machine readable,
but hardly machine understandable. The Re-
source Description Framework [12] is a formally
defined model for description of web resources
with metadata. RDF metadata can be expressed
in various forms. The RDF data model itself
is visualized by directed graphs, with two kinds
of nodes for web resources and properties. But
RDF metadata can also be linearized to XML.

In AcTiWEB we use RDF metadata as a gen-
eral form of knowledge representation about web
objects. These include ordinary web documents
which are described by metadata, like author,
title, etc. But it also includes agents which
have similar metadata properties and additional
properties solely defined for agents, like the in-
formation an agent uses for migration. These are
the code of the agent, the current state, and a
start command with which the agent resumes its
actions at the migration target. Agents migrate

by automatically generating these RDF meta-
data and by sending them in an XML lineariza-
tion.

3.2 HTTP-Based
Service

Communication

xoComM [10] is a communication infrastructure
for web applications, based on the HTTP pro-
tocol. It provides an HTTP server and client
access. Furthermore it is the basic communi-
cation service for the AcTiWEB web object and
mobile code system. The HTTP server compo-
nent of xoCoMmM is used to implement ACTIWEB
places. The places use the HTTP client access
to provide the RPC communication means for
their agents.

In AcTIWEB each place is a SINGLETON [13] in
one process at a distinct port. Each place aggre-
gates a web server object. Per default all place
communication is handled by the place’s web
server. Each AcCTIWEB agent invokes, clones,
and migrates itself via HTTP access. Agents
generally exploit asynchronous communication.
In order to be able to exploit communication fa-
cilities agents must register themselves with a
place. Therefore, from the point of view of a
client agents act as HTTP clients and servers.
The place controls which methods of which ac-
tive web objects are accessible from the outside.
All other URL requests are not redirected to the
object, but produce an HTTP error. Further-
more, on the accessible objects we may add basic
and digest access control.

3.3 Persistence Service

To let agents migrate to unknown hosts or even
let them act autonomously for a while, the un-
derlying mobile code system has to secure the
agent for faults in foreign hosts. A persis-
tence service enables recovery of agent from non-
volatile storage when a place has a fault or is
turned down temporarily. But object persis-
tence is also required in most distributed web
applications which do not rely on code mobility.
If an object persistence service is missing, it usu-
ally has to be programmed by hand, e.g. on top
of a relational database.

The XOSTORE persistence service realizes per-
sistence through an abstract storage interface

that allows us to use different storage STRATE-
GIES with a unique interface. To let the stor-
ages be exchanged dynamically and transpar-
ently we attach them as PER-OBJECT STRATE-
GIES which are implemented conveniently using
per-object mixins [9]. Legacy components — like
databases — are attached to the special storage
strategies using the WRAPPER FACADE [14] pat-
tern. A persistence MANAGER allows us to use
different storage suppliers at once and even ex-
change them at runtime to the most convenient
storage form.

Agents (and all other objects that need per-
sistence) may add persistence transparently and
dynamically through PER-OBJECT STRATEGIES
for persistence. Currently clients can choose be-
tween an eager strategy that writes changes in
the object’s data to the storage as they occur,
and a lazy strategy that writes the object’s data
when the process terminates.

3.4 Mobile Web Object System

The components of the mobile object system im-
plement an RP and RPC environment for mo-
bile agents. Important components are mobile
agents, places, and agent management. To let a
web object be able to be called via a remote call,
the web object class has a method exportProcs
that lets an object dynamically specify which
methods are currently exported for remote calls.
Only these method calls are dispatched by the
place. All other calls result in an HTTP error.

Every remote call is handled via the place.
Places are unique to a process and unambigu-
ously identified by host name and port. The
place is a specializable SINGLETON [13]. All
web objects are also identified unambiguously by
an URL. To let object-oriented calls be invoked
using URLs, we automatically transform them
with the web standard CGI encoding/decoding
(e.g., spaces are transformed to +’). The gen-
eral form for object-oriented calls via a URL is:

http://hostname:port/objName+methodName+arguments

An agent management component imple-
ments a special agent that fulfills the manage-
ment tasks for agents of the place. All agents
of a place have to register/deregister with the
agent manager. It (lazily) creates RDF meta-
data on the agents code if an agent clones or
migrates to a foreign host. Agent management

also includes immigration from a foreign host.
For immigration, RDF metadata that contains
the agents code and data has to be transformed
into XOTcL code. Then the start command that
represents the last state of the agent at the origin
host has to be evaluated.

The agent component extends web objects
by allowing an agent to invoke RPC calls and
by implementing RP abilities using clone and
migrate. To let a place distinguish RPC and RP
call, we use the HT'TP method GET to denote
an RPC call and the HT'TP method PUT for RP
calls. invoke takes an object-oriented call, codes
it with CGI encoding, and asynchronously sends
it via HTTP GET. clone calls the agent man-
ager to lazily create an RDF metadata script, if
it is not already existing. The script captures the
current code and state of the agent. A dynami-
cally processed start command is used to specify
where the agent resumes its work at the foreign
host. Finally, the agents is sent via a PUT re-
quest. migrate clones the agents and destroys it
afterwards locally.

3.5 Registry Service

Sometimes an web object’s services have to be
searched in the network. Often object/agent in-
teraction has to be coordinated. Such tasks can
be solved by a service-based registry architec-
ture: Each place contains a registry which is able
to store properties for its objects. Objects can
register themselves with a set of RDF metadata,
like type, name, attributes, etc.

Other agents can send a request for properties
to the registry agent. The request is compared
to the attributes and a list of matching agents is
returned. Another variant is to directly redirect
the call to one of the matching agents via HT'TP
REDIRECT. A special service for agents that
are not permanently connected can test from
time to time whether an agent is still connected
and removes it from the registry if not. Sev-
eral registry agents in different places may be
connected and can forward queries to other reg-
istries, e.g., in a hierarchical fashion (similar to
the domain name service (DNS)).

3.6 Web Representations for Active
Web Objects

Different users have different requirements for
representations. Mobile agents allow us to give
applications interfaces that can be invoked by
other agents or that can migrate as mobile code
to a user’s host. In both cases an user interface
that runs on the user’s host has to be shipped
with the user’s client. Often it is hard to pre-
dict all required user interfaces, or it may not be
possible to implement an interface for the user’s
platform. Active web objects, as in the AcTI-
WEB system, are an extensible form of represen-
tations (including a web representation). A user
can access one and the same object via several
different representations.

An active web object can provide web rep-
resentations that are accompanied or generated
from the object’s methods. There are two differ-
ent kinds of active web objects: Special agents
that also have a web representation and ordinary
web documents, like HTML pages, pictures, etc.
that also have active parts in form of methods.
The two forms may also be combined to active
web agents that contain a web document (e.g.,
if a document should migrate with an agent to
a foreign host).

Through the extensible invocation interface of
the place we add a representation invoker for ev-
ery additional representation. A client accesses
these representations through special FACADE
objects that hides the representation. The place
acts as a PROXY and forwards calls for a spe-
cial representation to the proper FACADE. For
clients the FACADEs hide the underlying sub-
system’s implementation through their represen-
tation.

Web documents are web objects that have the
capability to attach or detach files, like HTML
pages, pictures, etc. A document FACTORY al-
lows us to automatically create objects with
names comprising a directory and file name.
Therefore, a whole tree of a web server can
be automatically transformed into an object-
oriented representation using MIME type guess-
ing. For a client the ACTTWEB system then acts
as a normal web server for clients, but all doc-
uments may be extended by active parts. The
object names (which are encoded in the URL)
are identical to the filename part in the URL.
E.g., the place can easily distinguish requests
from different hosts and can behave differently

for certain files. E.g., confidential files can be
protected by access control, if they are accessed
from outside the local area network.

4 Related Work

A solution of the preceding example using CGI
interface would have several drawbacks in com-
parison to the presented solution. The architec-
ture would be a loose coupling of scripts with-
out a component concept which are hard to
maintain. Most tasks would have to be pro-
grammed by hand instead of exploration of a
service framework. CGI scripts do not support
suitable direct client-to-client interaction. The
CGI concept is not equipped with mobile code
abilities. Therefore, it can suffer from problems
of performance and customizability.

If we compare the example solution to a sim-
ilar solution using a distributed object system,
like CORBA [15] or DCOM, we can assess that
both solutions are able to hide the networking
details. Both offer an integrated component con-
cept. For data collection and synchronization
the mobile code solution may offer significantly
better performance and customization abilities.
The distributed object system does not have a
solution for static and active web representations
of an implementation and it does not provide
various facades for one business logic. Several
services, like registry, persistence, etc. have to
be programmed by hand. Some of these ap-
proaches, like CORBA 3.0 or Java RMI/EJB,
also offer a component model integrated with
distributed objects.

The usage of a conventional application server
(like WebLogic, WebSphere, etc.) offers a con-
cept for giving a business logic an additional web
representation. But it does not ease the usage
of other representations. Furthermore the pure
server-side approach means a significant network
load for client to client interaction, as needed in
the presented example for the project manage-
ment implementation, the clients, the data col-
lection and the synchronization.

Nevertheless, commercial products, like dis-
tributed object system and application servers,
offer a great number of services, supported plat-
forms, etc. that are still missing in ACTIWEB.
But through XOTcL’s extensibility with C com-
ponents commercial products written in C or

C++, like CORBA ORBs, transaction moni-
tors, message queueing systems, etc. can rela-
tively easy be integrated. Furthermore, AcTI-
WEB makes use of several web standards, like
the HTTP protocol, URLs, CGI de-/encoding,
RDF metadata, etc. These are supported by
most languages on most platforms.

Telescript [16] is an object-oriented program-
ming language that pioneers in the area of mo-
bile code. The terminology of this work is re-
lated to Telescript and several abilities of Tele-
script, like persistence, mobile code, etc. are im-
plemented in AcTIWEB. Telescript does not sup-
port web representations and is not integrated
with web standards. D’Agent [17] is another
mobile code system that supports the languages
Java, Scheme, and TCL. Agents can clone, mi-
grate, and send code to another agent. The sys-
tem lacks the additional service, especially the
web representation abilities. In [18] the general
idea to provide one general framework for devel-
opment of distributed and information-oriented
applications is presented. In ACTIWEB we also
provide mobile code abstractions and scripting,
but additionally a tight integration with the web
and object-orientation is provided.

In [3] several means for building a web ob-
ject model on the available web means is dis-
cussed. These include XML, RDF, DOM, em-
bedded scripts, and simple RPC messaging tech-
niques. There are several approaches for inter-
action using RPC based calls on the web, like
WIDL [19], XML-RPC [20], or WebBroker [6].
Those send their data using an XML encoding.
However, these approach misses several impor-
tant parts of ACTIWEB, like the integration with
the scripting language for rapid customization
and component integration, the persistence ser-
vice, and code mobility. Moreover, integration of
the provided services is rather low-level. In con-
trast, ACTIWEB provides one language model,
paradigm integration, and services as dynami-
cally loadable components.

ZOPE [21] is an object-oriented development
environment for web pages that is based on the
object-oriented scripting language Python. It
also contains an object-oriented database and
a web server. Web documents are treated as
objects that can have active parts through the
document template markup language (DTML).
Object calls are also mapped to URLs. The ap-
proach of ZOPE is quite similar to ACTIWEB
for web site development, has currently a better

development environment with rich integration
facilities predefined, but it lacks important ser-
vices, like registry, mobile code, metadata rep-
resentation, etc.

There are several other application servers
and document management systems integrated
with scripting (and some of the other presented
services), including AOL Server, Web Shell, Vi-
gnette V/5, or [5]. These system offer some ser-
vice not available in AcTIWEB, as for instance
document management functionalities. How-
ever, many important base services of ACTTWEB,
like code mobility or integration with object-
orientation, are missing.

5 Conclusion

As described in the previous section, there are
several systems which implement partial as-
pects of our AcTiIWEB system, but lack other
parts completely. In contrast to many cur-
rent commercial middleware systems, like dis-
tributed object systems or application servers,
AcTIWEB provides extensibility, is based on web
standards, enables several web representations,
is integrated with an object-oriented scripting
language, is extensible with C/C++ compo-
nents, and solves customizability and perfor-
mance problems by providing code mobility.
Moreover, AcTTWEB has integrated some of the
most prevalently needed service for distributed
web applications: Integration with HTTP com-
munication, object persistence, flexible data rep-
resentation through XML, metadata through
RDF, and registry services.

The major benefit of using an integrated sys-
tem with these feature is that is provides a
single framework with a single language model
for integrated development of distributed sys-
tems. Through the extensive use of web stan-
dards it enables principle interoperation with
the most programming languages and platforms.
The component model of the XOTcL language
enables legacy integration and integration with
applications written in other languages, such as
C/C++. L.e., XOTcr handles the paradigm and
language integration issues, so that the web de-
veloper has only to deal with the object-oriented
paradigm and with one language model. Ap-
plication parts, written in other languages, are
integrated as dynamically loadable components.
The component-based approach lets web appli-

cations be dynamically extensible with new ser-
vices or service versions. The scripting language
allows for flexible component glueing and eases
construction/manipulation of string-based web
content. Thus we gain high customizability of
web applications.

The integration with an active web object sys-
tem lets us provide several representations for
one business logic. Since the integration is hid-
den in the place’s web server, the user on the
web browser does not see any difference to usual
web pages.

As we have discussed in the related work sec-
tion, there are still several services e.g. known
from commercial products, missing in ACTTWEB,
like transactions for persistent objects, scalabil-
ity issues, integration with several distributed
object technologies and DBMSs, etc. Moreover,
there are several open issues in the implemented
components, as for instance some open security
issues in the mobile code component.

XOTcL and the AcCTIWEB components are
freely available from http://www.xotcl.org/.

References

[1] P. Ciancarini, R. Tolksdorf, F. Vitali,
D. Rossi, and A. Knoche. Coordination
multiagent applications on the WWW: A
reference architecture. IEEE Transactions
on Software Engineering, 24(5), 1998.

[2] J. Bosak. XML, Java, and the future of the
web. http://sunsite.unc.edu/pub/sun-info/
standards/xml/why /xmlapps.htm, 1997.

[3] F. Manola. Technologies for a web object
model. IEEE Internet Computing, 3(1):38-
47, January /February 1999.

[4] J. K. Ousterhout. Scripting: Higher level
programming for the 21st century. IEEE
Computer, 31(3):23-30, March 1998.

[5] A.Shah and T. Darugar. Creating high per-
formance web applications using Tcl, dis-
play templates, XML, and database con-
tent. In Proceedings of the 6th Annual
Tcl/Tk Conference, San Diego, California,
September 1998.

[6] J. Tigue and J. Lavinder. = Webbro-
ker: Distributed object communication on

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

the web. http://www.w3.org/TR/1998/
NOTE-webbroker, 1998.

G. Neumann and U. Zdun. XOTcrL, an
object-oriented scripting language. In Pro-
ceedings of Tcl2k: The Tth USENIX Tcl/Tk
Conference, Austin, Texas, February 2000.

W3C. Document object model (DOM) level
1 specification. http://www.w3.org/TR/
REC-DOM-Level-1, 1998.

G. Neumann and U. Zdun. Enhancing
object-based system composition through
per-object mixins. In Proceedings of Asia-
Pacific Software Engineering Conference
(APSEC), Takamatsu, Japan, December
1999.

G. Neumann and U. Zdun. High-level de-
sign and architecture of an HT'TP-based in-
frastructure for web applications. World
Wide Web Journal, 3(1), 2000.

G. Neumann and U. Zdun. Pattern-based
design and implementation of an XML and
RDF parser/interpreter. ~ Submitted for
publication, 2000.

O. Lassila and R. R. Swick. Resource
description framework (rdf): Model and
syntax. http://www.w3.org/TR/WD-rdf-
syntax/, 1998.

E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994.

D. C. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Patterns for Concurrent
and Distributed Objects. Pattern-Oriented
Software Architecture. J. Wiley and Sons
Ltd., 2000.

S. Vinoski. Corba: Integrating diverse
applications within distributed heteroge-
neos environments. IEEE Communications
Magazine, 14(2), 1997.

J. White. Mobile agents white paper.
http://www.genmagic.com/technology/
techwhitepaper.html, General Magic, Inc.,
1995.

[17]

[20]

[21]

R. S. Gray, D. Kotz, G. Cybenko, and
D. Rus. D’Agent: Security in a multiple-
language, mobile-agent system. In G. Vi-
gna, editor, Mobile Agents and Security,
volume 1419 of LNCS. Springer-Verlag,
1998.

D. Kotz and R. S. Gray. Mobile agents and
the future of the internet. ACM Operating
Systems Review, 33(3), August 1999.

M. G. Wales. Widl: Interface definition
for the web. IEEE Internet Computing,
3(1):55-59, January/February 1999.

XML-RPC home page. http://www.xml-
rpc.com/.

A. Latteier. The insider’s guide to Zope: An
open source, object-based web application
platform. Web Review, March 1999.

