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Abstract Systematic modeling of architectural patterns is a challenging task
mostly because of the inherent pattern variability and because pattern elements
do not match the architectural abstractions of modeling languages. In this paper,
we describe an approach for systematic modeling of architectural patterns using
a set of architectural primitives and a vocabulary of pattern-specific architectural
elements. These architectural primitives can be used as the basic building blocks
for modeling a number of architectural patterns. We introduce profiles for the
UML2 meta-model to express the architectural primitives. The use of the primi-
tives along with the stereotyping scheme is capable of handling some of the chal-
lenges for the systematic modeling of architectural patterns, such as expressing
pattern participants in software design.
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1 Motivation

Architectural patterns provide solutions to recurring problems at the architecture de-
sign level. These patterns not only document "how’ solution solves the problem at hand
but also *why’ it is solved, i.e. the rationale behind this specific solution [14]. So far,
a huge list of patterns has been documented in the literature [5,6]. These patterns have
been successfully applied to design software in different domains and provide concrete
guidelines for modeling the structural and behavioral aspects of software systems. Al-
though at present, the practice of modeling architectural patterns is largely ad hoc and
unsystematic, the topic of systematic pattern modeling is receiving increasing attention
from researchers and practitioners [3].
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In spite of the benefits that patterns offer for solving recurring design problems and the ever-
growing list of documented patterns, there is not yet a proven approach for the systematic model-
ing of architectural patterns and pattern variants in software design. Some architecture description
languages (ADLs), such as UniCon [13], Aesop [8], ACME [9], and Wright [2] capture specific
concepts for modeling patterns. However, none of the approaches presented so far, for modeling
architectural patterns, can effectively express the semantics of architectural patterns [11]. This
is because each pattern addresses a whole solution space comprised of different variants of the
same pattern, which are difficult to express in a specific ADL. In contrast to ADLs, UML offers
a generalized set of elements to describe software architecture but UMLSs support for modeling
patterns is weak because pattern elements do not match the architectural abstractions provided in
UML. In summary, both ADLs and the UML provide only limited support for modeling patterns.

In our previous work [14], we identified a set of architectural primitives. These primitives
offer reusable modeling abstractions that can be used to systematically model solutions that are
repetitively found in different patterns. In this paper, we introduce a few more primitives and use
all the primitives discovered during our current and previous work to devise an approach that is
capable of systematically modeling architectural patterns in system design. The main contribution
of this paper lies in modeling pattern variants using primitives, identifying pattern aspects that
are difficult to express using primitives, and devising a generalized scheme that uses a vocabulary
of pattern-specific components and connectors (e.g., pipes, filters) in conjunction with primitives
for systematically modeling architectural patterns.

The remainder of this paper is structured as follows: In Section 2 we present our approach
for representing patterns and primitives as modeling abstractions, exemplified using an extension
of the UML. Section 3 briefly introduces the primitives discovered in our previous work while
Section 4 gives detailed information of the new primitives documented in this paper. In section
5, we give an overview of the relationships between patterns and primitives. Section 6 describes
the modeling of few selected pattern variants using primitives and a pattern-elements vocabulary.
Section 7 compares related work and Section 8 discusses future work and concludes this study.

2 Extending UML to Represent Patterns and Primitives

UML is a widely known modeling language and is highly extensible [3]. There are two ap-
proaches for extending UML: extending the core UML metamodel or creating profiles which
extend metaclasses. Our work focuses on the second approach where we create profiles specific
to the individual architectural primitives. Although this work is exemplified using UML 2.0, the
same approach can be used for other modeling languages as long as the selected modeling lan-
guage supports an extension mechanism to handle the semantics of the primitives. The key idea
is that a modeling language can be extended to facilitate semantics of the architectural primitives
and that these primitives can then be used to model patterns.

We extend the UML metamodel for each discovered architectural primitive using UML pro-
files. That is, we define the primitive as extensions of existing metaclasses of the UML using
stereotypes, tagged values, and constraints:

— Stereotypes: Stereotypes are one of the extension mechanisms to extend UML metaclasses.
We use stereotypes to extend the properties of existing UML metaclasses. For instance, the
Connector metaclass is extended to generate a variety of primitive-specific specialized con-
nectors.

— Constraints: We use Object Constraint Language (OCL) [1] to place additional semantic
restrictions on extended UML elements. For instance, constraints can be defined on associa-
tions between components, navigability, direction of communication, etc.
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— Tagged Values allow one to associate tags to architectural elements. For example, tags can

be defined to represent individual layers in a layered architecture using layer numbers.

We chose the UML profiles extension mechanism due to the following reasons:

— A large community of software architects understands UML as a software modeling lan-

guage. This enables us to use the existing set of UML elements as the basis for extensions.
Thus, the time needed to learn a new language and the risks of a novel approach are reduced.

— UML allows the creation of profiles without changing the semantics of the underlying ele-

ments of the UML metamodel. Profiles are good enough to serve for this purpose.

— A number of UML tools are available to design software architecture and support profiles

out-of-the-box. In contrast, a metamodel extension would require an extension of the tools.

In the architectural primitives, presented in this paper, we mainly extend the following classes

of the UML 2 metamodel to express the primitives:

3

Components are associated with required and provided interfaces and may own ports. Com-
ponents use connectors to connect with other components or with its internal ports.
Interfaces provide contracts that classes (and components as their specialization) must com-
ply with. We use the interface meta-class to support provided and required interfaces, where
provided interfaces represent functions offered by a component and required interfaces rep-
resents functions expected by a component from its environment.

Ports are the distinct points of interaction between the component that owns the ports and its
environment. Ports specify the required and provided interfaces of the component that owns
them.

Connectors connect the required interfaces of one component to the provided interfaces of
other matching components.

Architectural Primitives

This section provides an extension to our previous work [14] where we listed nine architectural
primitives along with the mechanism to discover primitives in architectural patterns. We have
used the same mechanism to discover new primitives in this paper. We first present five primi-
tives discovered in the Component-Connector view that are repetitively found as abstractions in
modeling variants of a number of patterns. Moreover some patterns documented in [7] are used
as solution participants of other patterns, hence we consider their modeling solution as primi-
tives and include them in our collection. Subsequently, in the next section, we extend the set of
primitives with five new primitives.

Our original set of primitives was comprised of the following [14]:

Callback: A component B invokes an operation on Component A, where Component B
keeps a reference to component A in order to call back to component A later in time.
Indirection: A component receiving invocations does not handle the invocations on its own,
but instead redirects them to another target component.

Grouping: Grouping represents a Whole-Part structure where one or more components work
as a Whole while other components are its parts.

Layering: Layering extends the Grouping primitive, and the participating components follow
certain rules, such as the restriction not to bypass lower layer components.

Aggregation Cascade: A composite component consists of a number of subparts, and there
is the constraint that composite A can only aggregate components of type B, B only C, etc.
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— Composition Cascade: A Composition Cascade extends Aggregation Cascade by the further
constraint that a component can only be part of one composite at any time.

— Shield: Shield components protect other components from direct access by the external
client. The protected components can only be accessed through Shield.

— Typing: Using associations, custom typing models are defined with the notion of super type
connectors and type connectors.

— Virtual Connector: Virtual connectors reflect indirect communication links among compo-
nents for which at least one additional path exists from the source to the target component.

4 Description and Modeling Solutions to Architectural Primitives
in the Component-Connector View

In this section, we present five primitives that are repetitively found among a number of architec-
tural patterns. For the first selected primitive, we briefly describe the primitive, discuss the issues
of modeling the primitive in UML, present UML profile elements as a concrete modeling solution
for expressing the primitive, and motivate known uses of the primitive in architectural patterns.
For the sake of simplicity, the modeling issues and modeling solutions of remaining primitives
are detailed in the Appendix.

4.1 Push-Pull

Context: Push, Pull, and Push-Pull structures are common abstractions in many software patterns.
They occur when a target component receives a message on behalf of a source component (Push),
or when a receiver receives information by generating a request (Pull). Both structures can also
occur together at the same time (Push-Pull).

Modeling Issues: Semantics of push-pull structures are missing in UML diagrams. It is dif-
ficult to understand whether a certain operation is used to push data, pull data, or both. A major
problem in modeling the patterns using Pushs or Pulls in UML is that although Push-Pull struc-
tures are often used to transmit data among components, it cannot be explicitly modeled in UML.

Modeling Solution: To properly capture the semantics of Push-Pull in UML, we propose a
number of new stereotypes for dealing with the three cases Push, Pull, and Push-Pull. Figure 1
illustrates these stereotypes according to the UML 2.0 profile package, while Figures 2 and 3
depict the notation used for the stereotypes.

The Push-Pull primitive consists of the following stereotypes and constraints:

— [Push: A stereotype that extends the Interface metaclass and contains methods that Push data
among components.

— [Pull: A stereotype that extends the Interface metaclass and contains methods that Pull data
among components.

— PushPort: A stereotype that extends the Port metaclass and is supported by [Push as provided
interface and IPull as required interface. This can be formalized using two OCL constraints:

A Push port is typed by [Push as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll (
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Figure 1. Stereotypes for modeling Push-Pull
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i:Core::Interface |
IPush.baselInterface->exists (j | j=1))

A Push port is typed by IPull as a required interface
inv: self.basePort.required->size() = 1
and self.basePort.required->forAll (
i:Core::Interface |
IPull.baselnterface->exists (j | j=1))

PullPort: A stereotype that extends the port metaclass and is supported by [Push as required
interface and IPull as provided interface. This can be formalized using two OCL constraints for
the Pull port:

A Pull port is typed by IPull as a provided interface

inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll (
i:Core::Interface |
IPull.baselInterface->exists (j | j=1))

A Pull port is typed by IPush as a required interface
inv: self.basePort.required->size() = 1
and self.basePort.required->forAll (
i:Core::Interface |
IPush.baselInterface->exists (j | j=1))

Push: A stereotype that extends the Connector metaclass and connects a PushPort with a
matching PullPort of another component.
A Push connector has only two ends.
inv: self.baseConnector.end->size() = 2
A Push connector connects a PushPort of a component to a matching PullPort of another
component. A PushPort matches a PullPort if the provided interface of the former matches the

required interface of the later

inv: self.baseConnector.end->forAll (

el,e2:Core::ConnectorEnd | el <> e2 implies (
(el.role->notEmpty () and
e2.role->notEmpty ()) and

(if PushPort.basePort->exists(p |
p.oclAsType (Core: :ConnectableElement) =
el.role)
then
(PullPort.basePort->exists(p |
p.oclAsType (Core::ConnectableElement) =
e2.role)
and
el.role.oclAsType (Core: :Port) .required =
e2.role.oclAsType (Core: :Port) .provided)
else
PullPort.basePort—->exists (pl|
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p.oclAsType (Core::ConnectableElement) =
el.role)
endif)))

cmp Component Model /
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Figure 2. Ports and interfaces to model Push structure from B to A

Pull: A stereotype that extends the Connector metaclass and connects a PullPort with a
matching PushPort of another component.

A Pull connector has only two ends.
inv: self.baseConnector.end->size() = 2

A Pull connector connects a PullPort of a component to a matching PushPort of another
component. A PushPort matches a PullPort if the provided interface of the former matches the
required interface of the later

inv: self.baseConnector.end->forAll (
el,e2:Core::ConnectorEnd | el <> e2 implies (
(el.role->notEmpty () and
e2.role—>notEmpty () ) and
(if PushPort.basePort->exists(p |
p.oclAsType (Core: :ConnectableElement) =
el.role)
then
(PullPort.basePort->exists(p |
p.oclAsType (Core::ConnectableElement) =
e2.role)
and
el.role.oclAsType (Core: :Port) .required =
e2.role.oclAsType (Core: :Port) .provided)
else
PullPort.basePort->exists (p|
p.oclAsType (Core::ConnectableElement) =
el.role)
endif)))

Known uses in patterns:
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Figure 3. Ports and interfaces to model Pull structure from A to B

— In the Model-View-Controller [4] pattern, the model pushes data to the view, and the view
can pull data from the model.

— In the Pipes and Filters [4] pattern, filters push data, which is transmitted by pipes to other
filters. In addition, pipes can request data from source filters (Pull) to transmit it to the target
filters.

— In the Publish-Subscribe [4] pattern, data is pushed from a framework to subscribers and
subscribers can pull data from the framework.

— In the Client-Server [4] pattern, data is pushed from the server to the client, and the client
can send a request to pull data from the server.

4.2 Virtual Callback

Context: Consider two components are connected via a callback mechanism. In many cases the
callback between components does not exist directly, rather there exist mediator components be-
tween the source and the target components. Such information should be represented at the design
level. For instance, in the MVC pattern, a model may call a view to update its data but this data
may be rendered first by the mediator components before it is displayed on the GUI.

Modeling Issues: The virtual relationship is an important aspect to show collaborating ele-
ments. The standard UML supports connector or association links to model virtual relationships.
However, such a relationship cannot be made explicit in standard UML as it may become difficult
to determine which components have subscribed to other components to be called back virtually.

Modeling Solution: To capture the semantics of Virtual Callback properly in UML, we extend
the Callback [14] primitive with constraints that a virtual callback can only be used between two
components where there is a path of components and connectors that links A to B using following
constraints:

To capture the semantics of callback primitive properly in UML, we use the following stereo-
types: VirtualCallback, EventEnd, and CallbackEnd. The VirtualCallback extends the Connector
metaclass while the EventEnd and CallbackEnd extend the ConnectorEnd metaclass where the
EventOccurence takes place at the sender component (EventEnd) while the EventExecution takes
place at the receiver end (CallbackEnd).

Known Uses in Patterns:

— In the MVC [4] pattern, the view and model components may communicate to each other
virtually using callback operation.

— In the Observer [6] pattern, the subjects may observe the target objects virtually.

— In the Publish-Subscribe [4] pattern, the publishers may callback subscribers virtually.
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Figure 4. The notation of the stereotypes in Virtual Callback Modeling

4.3 Delegation Adaptor

Context: This primitive converts the provided interface of a component into the interface the
clients expect. The Delegation Adaptor primitive is a close match to the Object Adaptor [?]
pattern.

Modeling Issues: Adaptors shield the underlying system implementation from its surround-
ings. However, adaptors can not be explicitly modeled using the architectural abstractions present
in UML as their task is more focused on conversion rather than computation.

Modeling Solution: To capture the semantics of Adaptor properly in UML, we propose the
following new stereotypes: AdaptorPort extends the Port metaclass and is typed by the IAdap-
tor as provided interface and IAdaptee as required interface. Both the IAdaptor and IAdaptee
stereotypes extend the Interface metaclass.

Known Uses in Patterns:

— In the Layers [4] pattern, the adaptor supports the separation of explicit interface of a layer
from its implementation.

— In the Broker [4] pattern, the adaptor translates the messages coming from remote services
to the underlying system.

— In the Microkernel [4] pattern, the adaptor is used to map communication between external
and internal servers.

— Inthe Proxy [6] pattern, the adaptor is used to separate the interface from the implementation.

4.4 Passive Element

Context: Consider an element is invoked by other elements to perform certain operations. Passive
elements do not call operations of other elements.
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Modeling Issues: UML components do not structurally differentiate between active and pas-
sive elements. Such a differentiation is important to understand clearly the responsibility of indi-
vidual elements in the design.

Modeling Solution: To capture the semantics of Passive Element properly in UML, we use
the following new stereotypes: PElement extends the Component metaclass and attaches the Pas-
sivePort. The IPassive stereotype extends the Interface metaclass and types the PassivePort, which
extends the Passive metaclass.

Known Uses in Patterns:

— In the Pipes and Filters [4] pattern, the passive filter cannot pull or push data to its neighbor-
ing filters.

— In the MVC [4] pattern, the passive view only receives or displays data to the user and does
not invoke any operation on a model or controller elements.

— In the Client-Server [4] pattern, the passive server does not invoke any operation on client-
side and responds only to the client requests.

4.5 Interceder

Context: Sometimes certain objects in a set of objects cooperate with several other objects. Al-
lowing direct link between such objects can overly complicate the communication and result in
strong coupling between objects [6]. To solve this problem, Interceder components are used.

Modeling Issues: Interceder components are typically involved in decoupling components
and store the collective behavior of interacting components. The structural representation of me-
diator components in UML diagrams is hard to understand.

Modeling Solution: To capture the semantics of Interceder primitive properly in UML, we
propose following new stereotypes: Incdr, IncdrPort, and IFIncdr. Incdr extends the Component
metaclass and attaches IncdrPort. IncdrPort extends the Port metaclass and is typed by the pro-
vided interface IFIncdr.

Known Uses in Patterns:

— In the PAC [4] pattern, a controller is used to intercede communication between agents in
the PAC hierarchy.

— In the Microkernel [4] pattern, an interceder component receives requests from external
server and dispatches these requests to one or more internal servers.

— In the Reflection [4] pattern, the meta level components intercede communication by pro-
viding interfaces to facilitate modification in underlying components.

5 The Pattern-Primitive Relationship

Architectural patterns and architectural primitives are complementary concepts. Modeling pat-
terns in a system design is applying one of the alternate solutions to solve specific problems at
hand [4] where as primitives serve as the building blocks for expressing architectural patterns.
In this context, patterns offer general solutions while primitives offer relatively more specific
solutions. Similar to the selection of architectural patterns among complementary patterns, prim-
itives might also need to be selected among complementary primitives, e.g., based on the system
requirements you might choose either Shield or Indirection. Such a decision to select the ap-
propriate primitive involves the context in which the pattern is applied, and the specific solution
variant addressed by the pattern. Moreover, certain primitives can be used in combination with
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Primitives

Patterns

Indirection
Grouping
Layering

Aggregation Cascade

Composition Cascade

Shield

Typing

Virtual Connector

Push

Adaptor

Passive Element

Control

Interceder

Active Repository [5]

»|| Callback

> || Pull

> || Virtual Callback

Broker [4]

~

Cascade [6]

o

Client Server [4]

Component and Wrapper [5]

X <

Composite [6]

Facade [6]

Event [6]

Explicit Invocation [6]

Indirection Layers [5]

Interceptor [6]

Interpreter [6]

Knowledge Level [5]

Layered System [5]

Layers [4]

Message Redirector [5]

Microkernel [4]

MVC [4]

Observer [6]

Object System Layer [5]

Organization Hierarchy [5]

PAC [4]

Pipes and Filters [4]

Proxy [4]

Publish Subscribe [4]

Reactor [6]

Reflection [4]

Remote Proxy [5]

Type Object [5]

Virtual Machine [5]

X

Visitor [6]

X

Wrapper Facade [5]

X

X

Table 1. Patterns to Primitives mapping (X: found in documented pattern)
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other primitives. For example, the Callback and Push-Pull primitives can work in conjunction to
serve a Common purpose.

Table 1 provides a patterns-to-primitives mapping, which is based on the primitives discov-

ered so far in our work. The detailed discussion about the discovery of each primitive in the
related patterns is already documented in the Known Uses in Patterns subsections of our current
and previous work (see Section 3 and [14] for details). The intention is to use the pool of all
available primitives to model several architectural patterns. However, the mapping from patterns
to primitives is not one-to-one: rather different variants of the patterns can be modeled using a
different combination of primitives. Thus, the decision to apply a specific primitive for modeling
patterns lies with the architect who selects primitive(s) that best meet the needs to model the se-
lected pattern(s).
The issues addressed above directly deal with the traditional challenge of modeling pattern vari-
ability. The solution variants entailed by a pattern can be applied in infinite different ways and
so is the selection of primitives for modeling pattern variants. More important is that whichever
pattern variant is applied in system design, it should address the solution clearly with structural
and semantic presence. Using our primitives allows an architect to apply a near infinite solution
variants with certain level of reusability. Such a reusability support also depends on the context in
which the pattern is applied as in some cases extra constraints or missing pattern semantics may
be required.

5.1 Expressing Missing Pattern Semantics in UML

An important aspect of modeling architectural patterns is the explicit demonstration of patterns
in system design and support for automated model validation. Such a representation helps in bet-
ter understanding of the system by allowing the user to visualize and validate the patterns. The
primitives described above capture recurring building blocks found in different patterns. How-
ever, it may be the case that certain pattern aspects of a specific solution variant may not be fully
expressed by the existing set of primitives. Therefore, for expressing missing pattern semantics
that are not covered by the primitives, we provide support to the user with a vocabulary of design
elements that can be used alongside with the primitives to fully express pattern semantics such as
pipes, filters, client, server etc. For this purpose, we define few stereotype in UML with known
semantics of the selected architectural patterns. For instance, a component can be stereotyped
as filter and a connector can be stereotyped as pipe. The stereotyping scheme presented here is
further complimented by using these stereotypes for modeling the example patterns in the next
section.

The use of pattern-specific design elements for expressing pattern variants has a number of
significant benefits. First, it offers reusability support for expressing patterns in system design.
The well-known properties entailed by documented pattern variants can be reapplied in system
design as a solution to new problems. Second, this makes it easier for a stakeholder to understand
design of the system. For example, the use of design vocabulary to express pipes and filters in sys-
tem design makes an architecture more explicit to understand and the way different architectural
elements fit in the structure. Third, it offers a good support for automated model validation by
ensuring that selected patterns are correctly applied in a system design. All of these three benefits
compliment our use of primitives for modeling patterns. The intention is that though primitives
offer good reusability and model validation support, as advocated in our current and previous
work [14], the stereotyping scheme presented in this section makes the story complete for the
systematic modeling of architectural patterns and pattern variants.
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6 Modeling Architectural Patterns Using Primitives

In this section, we use the primitives and stereotyping scheme described in the previous sections
to model specific pattern variants. The patterns modeled in this section are specialization to the
patterns documented in POSA [4] and hence are called pattern variants. We do not claim to cover
all the variability aspects of the selected patterns. However, an effort to describe selected pattern
variants using primitives provides a solid base for modeling unknown pattern variants as well. To
serve this purpose, we have selected three traditional architectural patterns namely the Layers,
Pipes and Filters, and Model-View-Controller (MVC). We use the following guidelines to model
each selected pattern variant:

— A brief description of selected pattern variants

Mapping selected pattern variants to the list of available primitives
Highlight the issues in modeling pattern variants using primitives
Use stereotyping scheme to capture the missing pattern semantics.

6.1 Pipes and Filters

The Pipes and Filters pattern consists of a chain of data processing filters, which are connected
through pipes. The filters pass the data output to the adjacent filters through pipes. The elements
in the Pipes and Filters pattern can vary in the functions they perform e.g. pipes with data buffer-
ing support, feedback loops, forks, active and passive filters etc. The primitives discovered so
far address many such variations for systematically modeling Pipes and Filters pattern. However,
certain aspects of the Pipes and Filters pattern may not be fully expressed by the primitives e.g.
feedback loops, forks, etc. The requirements we consider in this section for modeling the specific
Pipes and Filters pattern variant are: a) filters can push or pull data from the adjacent filters; b)
filters can behave as active or passive elements; and c) feedback loop.

At first, we map the selected Pipes and Filters pattern variant to the list of available primitives.
We select the Push, Pull, and Passive Element primitives from the existing pool of primitives. The
rationale behind the selection of these primitives is as follows:

— The Push and Pull primitives are used to express the pipes that transmit streams of data
between filters.

— The filters that are not involved in invoking any operations on their surrounding elements are
expressed using the Passive Element primitive.

Missing Semantics: As described in section four, the challenge to model missing pattern se-
mantics is solved by stereotyping UML elements. In the current example, the selected primitives
are sufficient to express the Push, Pull, and Passive Elements in the Pipes and Filters pattern.
However, we identify that the feedback loop cannot be fully expressed using the existing set of
primitives. The existing primitives can express that the data is pushed or pulled between the filters
but this does not express the presence of a feedback structure. Similarly, the semantics of the Pipe
and Filter elements are not applied using the existing set of primitives.

Additional Stereotypes: We apply the Feedback stereotype on the Push primitive to capture
the structural presence of feedback loop in the Pipes and Filters pattern. Such a structure repre-
sents that the data is pushed from one filter to another filter using the feedback loop. The original
Push primitive, as described in section four, extends the UML metaclasses of connector, inter-
face, and port. While the feedback stereotype further specializes the Push primitive by labeling
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it as Feedback. The introduction of feedback stereotype does not introduce new constraints nor
affects the underlying semantics of the Push primitive. Figure 5 shows the stereotypes used for
expressing Pipes and Filters pattern.

cmp Pipe_Filter_Profile /

amatsclasss artenden Filter g&
Component

«mataclzzss wadanden Pipe €3
Connector

Input @3
E L wzxtandss
emataclazss
Port
waxtandsy Tm——_| El
Clutput @3‘

Figure 5. UML stereotypes for expressing Pipes and Filters pattern participants

Feedback: A stereotype that is applied to the Push primitive for expressing the Feedback
structure in the Pipes and Filters pattern variant. Feedback stereotype extends the Connector
metaclass of UML.

The second stereotype named Filter that we use from the existing vocabulary of design ele-
ments is defined as follows:

Filter: A stereotype that extends the Component metaclass of UML and attaches input and
output ports.

A Filter component is formalized using the following OCL constraints:

An Input port is typed by linput as a provided interface

inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll (
i:Core::Interface |
Iinput.baselInterface->exists(j | 7 = 1i))
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An Output port is typed by Ioutput as a required interface
inv: self.basePort.required->size() = 1
and self.basePort.provided->forAll (
i:Core::Interface |
Toutput.baselInterface->exists(j | j = 1))

The third stereotype that we use from the existing vocabulary of design elements is Pipe that
is defined as follows:
Pipe: A stereotype that extends the Connector metaclass of UML and connects the output port of
one component to the input port of another component.
A Pipe is formalized using following OCL constraints:

inv: self.baseConnector.end->size() = 2

As shown in figure 6, the first filter in the chain works as a passive filter and does not invoke
any operations on its surrounding filters. While the second filter is an active filter, which pulls
data from the passive filter and after processing pushes this data to the next filter in the chain. The
third filter in the chain sends data back to the passive filter for further processing, and sends the
final processed data to the sink.

cmp Pipe-Filter

Source

aPushs «Pushs

«Feadback, Pushs

Figure 6. Modeling Pipes and Filters Pattern Variant Using Primitives

6.2 Model-View-Controller

The structure of the MVC pattern consists of three components namely the Model, View, and
Controller. The Model provides functional core of an application and notifies views about the
data change. Views retrieve information from the Model and display it to the user. Controllers
translate events into requests to perform operations on View and Model elements. Usually a
change propagation mechanism is used to ensure the consistency between the three components
of the MVC pattern [4].

As a first step, we map the MVC pattern to the list of available primitives as shown in the
table in section four. We select the Callback, Passive Element and Control primitives for modeling
the MVC pattern. The rationale behind the selection of these primitives is as follows:

— The View subscribes to the model to be called back when some data change occurs and
works as passive object by not invoking any operation on the Model.
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Missing Semantics: However, not every aspect of the MVC pattern can be modeled using
the existing set of primitives. For instance, the Model, View, and Controller components are not
mapped to any primitives discovered so far. Keeping in view the general nature of these compo-
nents, there is a need to provide reusability support by including these three pattern elements in
the existing vocabulary of design elements.

Additional Stereotypes: As described above, despite the reusability support offered by the
selected primitives, the MVC pattern semantics are not structurally distinguishable. We use the
following three stereotypes from the existing set of design elements:

Model: A stereotype that extends the Component metaclass of UML and attaches ports for
interaction with the Controller and View components.

Controller: A stereotype that extends the Component metaclass of UML and attaches ports
for interaction with the Model and View components.

View: A stereotype that extends the Component metaclass of UML and attaches ports for
interaction with the Model and Controller components.

As shown in Figure 7, the Controller receives input and translates it into requests to the
associated model using the Control primitive. While, the Model calls back View when a specific
data change occurs.

cmp MVC 7

ll &)

«Controllers «Passive, Views

«Callbacks

|

~ BE

«Models

1

Figure 7. Modeling MVC Pattern Using Primitives

6.3 Layers

The Layers pattern groups elements at a certain level of abstraction where lower layers provide
services to the adjacent upper layer. Such a structure is used to reduce dependencies between
objects in different Layers. As a first step, we map the Layers pattern to the list of available
primitives and select the Layering primitive. The rationale behind the selection of this primitive
is as follows:
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— Components are members of specific layers where each lower layer provides services to the
adjacent upper layer
— A component can only be a member of one layer

Missing Semantics: In the Layers pattern, the high-level functions implementation relies on
the lower level ones. Such system requires horizontal partitioning where each partition carries
operations at a certain level of abstraction. As each layer in the Layers pattern is a virtual entity so
it cannot exist without the presence of at least one component. Moreover, the upper layers cannot
bypass the layers for using services in the bottom layers i.e. in Figure 8, the group members from
layer3 can call components in layer2, but not into layerl.

Additional Stereotypes: Almost all structural characteristics of the Layers pattern are modeled
using the Layering primitive as shown in Figure 8. Using the layering primitive, the constraints
assure that within an individual layer all component work at the same level of abstraction and no
component belongs to more than one layer at any time. Moreover, no additional stereotyping of
UML elements is required to model this specific variant of the layers pattern.

cmp Layers
Component]
Layerd
Component2
Layer2
Componentd
Layer1
Componentd

Figure 8. Modeling Layers Pattern Using Primitives

7 Related Work

The approach described in this paper is based on our previous work [14] where we present an
initial set of primitives for modeling architectural patterns. However, the idea to use primitives
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for software design is not novel and has been applied in different software engineering disciplines
[12]. The novelty of our work lies in the use of primitives for systematically modeling architec-
tural patterns, which has not be addressed before.

Using different approaches, a few other researchers have been working actively on the systematic
modeling of architectural patterns [8]. Garlan et al. [8] proposes an object model for represent-
ing architectural designs. The authors characterize architectural patterns as specialization of the
object models. However, each such specialization is built as an independent environment, where
each specialization is developed from scratch using basic architectural elements. Our approach
significantly differs in a way that our focus is on reusing primitives and pattern elements and
only where required we extend the primitives and pattern elements to capture the missing pattern
semantics.

Simon et al. [10] extends the UML metamodel by creating pattern-specific profiles. The work
by Simon et al. maps the MidArch ADL to the UML metamodel for describing patterns in soft-
ware design. However, this approach does not address the issue of modeling a variety of patterns
documented in the literature rather manual work is required to create profiles for each newly dis-
covered pattern. Our approach distinctively differs from this work as we focus on describing a
generalized list of patterns using the primitives.

Mehta et al. [12] propose eight forms and nine functions as basic building blocks to compose
pattern elements. Their approach focuses on a small set of primitives for composing elements of
architectural styles. Our approach is different in the sense that we offer a more specialized set
of primitives that are captured at a rather detail level of abstraction. Moreover, we use vocabu-
lary of pattern elements in parallel to architectural primitives to capture the missing semantics of
architectural patterns.

8 Conclusion

Using architectural primitives and pattern-specific design elements vocabulary in combination
offers a systematic way to model patterns in system design. We have extended the existing pool
of primitives with the discovery of five more primitives. With the help of few examples, we
show an approach for modeling architectural pattern variants using primitives. The scheme to use
stereotyping in conjunction with primitives offers: a) reusability support by providing vocabulary
of design elements that entail the properties of known pattern participants; b) automated model
validation support by ensuring that the patterns are correctly modeled using primitives; and c)
explicit representation of architectural patterns in system design.

To express the discovered primitives and design elements vocabulary, we have used UML2.0 for
creating pattern-specific profiles. As compared with the earlier versions, UML2.0 has come up
with many improvements for expressing architectural elements. However, we still find UML as
a weak option in modeling many aspects of architectural patterns e.g. weak connector support.
As a solution to this problem, the extension mechanisms of the UML offers an effective way
for describing new properties of modeling elements. Moreover, the application of the profiles to
the primitives allows us to maintain the integrity of the UML metamodel. By defining primitive-
specific profiles, we privilege a user to apply selective profiles in the model.

As future work, we would like to advance in the automation of our approach by developing a
tool, which supports modeling pattern variability, documentation, analyzing the quality attributes,
source code generation, etc. We believe that we can discover more primitives in different archi-
tectural views in near future, which will provide a better re-usability support to architects for
systematically expressing architectural patterns.
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Appendix

For the architectural primitives presented in this work, following we provide the OCL constraints
used to express the semantics of architectural primitives precisely in a system design.

9.1 Virtual Callback

We use the following OCL constraints to define the semantics of callback primitive:

inv: self.baseConnector.end.role.oclAsType (
Core::Property) .class—>forAll (
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cl,c2:Core::Component | cl <> c2 implies
cl.oclAsType (Core: :Component) .connects (c2))

9.2 Delegation Adaptor

To capture the semantics of Adaptor properly in UML, we use the following OCL constraints:
AdaptorPort is typed by IAdaptor as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll (
i:Core::Interface |
IAdaptor.baseInterface->exists (J | j=1i))

AdaptorPort is typed by [Adaptee as a required interface
inv: self.basePort.required->size() = 1
and self.basePort.required->forAll (
i:Core::Interface |
IAdaptee.baselInterface->exists (J | j=1i))

AdapteePort is typed by IAdaptee as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll (
i:Core::Interface |
IAdaptee.baselInterface->exists (J | j=1i))

AdapteePort is typed by IAdaptor as a required interface

inv: self.basePort.required->size() = 1
and self.basePort.required->forAll (
i:Core::Interface |
IAdaptor.baselInterface->exists (j | j=1i))

Adaptor component attaches the AdaptorPort.
inv: self.baseComponent.ownedPort.name = ’AdaptorPort’

9.3 Passive Element

To capture the semantics of Passive Element properly in UML, we use the following OCL con-
straints:
PassivePort provides the [Passive interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll (
i:Core::Interface |
IPush.baselInterface->exists (j | Jj=i))

PElement attaches the PassivePort
inv: self.baseComponent.ownedPort.name = ’PassivePort’
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To capture the semantics of Interceder primitive properly in UML, we use the following OCL

code:
A IncdrPort is typed by IRIncdr as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll (
i:Core::Interface |
IRIncdr.baselInterface->exists (J

A IncdrPort is typed by IFIncdr as a provided interface
inv: self.basePort.provided->size() = 1
and self.basePort.provided->forAll (
i:Core::Interface |
IFIncdr.baselInterface->exists (J

An Interceder component owns IncdrPort
inv: self.baseComponent.ownedPort.name

| J=1))

| J=1))

= ’"IncdrPort’



