Experiences in enhancing existing BPM Tools
with BPEL Import and Export

Jan Mendling!, Kristian Bisgaard Lassen?, Uwe Zdun'

! Institute of Information Systems and New Media
Vienna University of Economics and Business Administration
Augasse 2-6, A-1090 Wien, Austria.
{jan.mendling|uwe.zdun}@wu-wien.ac.at
2 Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark.

k.b.lassen@daimi.au.dk

Abstract. The Business Process Execution Language for Web Services
(BPEL) has become a de-facto standard for executable process specifica-
tions. It 1s an expressive but also highly complex language. The language

is rather targeted towards describin, s at the implementation level

and is too low-level for describing processes as analysis models or de-
sign models. Also, since BPEL has no formal semantics it is difficult to
automate verification of properties, such as deadlock and liveness. Our
concept is to transform BPEL to and from other graph-based languages,
which are more suitable to support these goals. We discuss transforma-
tion strategies as a concept for the transformations, as well as a case
study in which we have applied these strategies in an industry project.

1 Introduction

The Business Process Execution Language for Web Services [1] (BPEL4AWS or
BPEL for short) has become a de-facto standard for executable process specifi-
cations. Although the BPEL 2.0 standard is not yet published by OASIS, there
are already several systems that support BPEL, including Oracle BPEL Pro-
cess Manager, IBM Websphere, or the open source system ActiveBPEL. For an
overview of currently available BPEL implementations see [8]. This broad in-
dustry acceptance forces other workflow and BPM system vendors to consider
BPEL support as well.

Basically, tool vendors have two options to approach this challenge: to pro-
vide a native BPEL implementation with a corresponding new modeling tool;
or, to enhance the existing modeling tool with BPEL import and export. The
import/export option might be preferable to vendors for several reasons. First,
it is much quicker, easier, and cheaper to be implemented than a native BPEL
component. Furthermore, the evolution of the vendor’s tool is decoupled from
potential modifications of the BPEL standard. Finally, the experiences that went
into the tool are a valuable asset for the vendor. Therefore, in the context of an

nnnnn

ssssssss

Fig. 1. Graph-based modeling with UML Activity Diagrams in MS Visio versus block-
based modeling with BPEL in Oracle BPEL Designer

existing industrial tool, it is often not an option to start yet another BPEL stan-
dard implementation from scratch. Rather it is desirable to enhance the existing
tool with BPEL import and export.

The trade-off of enhancing an existing tool with BPEL import and export is
that conceptual mappings have to be identified between the modeling language
of the BPM tool and BPEL. In particular, the mapping of control flow is a non-
trivial task, especially if the BPM tool uses a graph-based language. Such graph-
based languages like EPCs, UML Activity Diagrams, BPMN, or Workflow nets
are used by many BPM modeling tools because they are handy in the analysis
and design phase of a project. In the following, we will use the term graph-
based BPM tool to refer to them. On the other hand, processes can be modeled
in a block-oriented fashion, similar to process calculi. BPEL is in first place a
block-based language, as the control flow can be defined by nesting structures,
e.g. sequence, while, or flow structured activities. Yet, BPEL also includes graph-
based links that can be used within a flow block. Figure 1 illustrates graph-based
versus block-based modeling of processes.

The representational differences of control flow between graph-based BPM
tools and rather block-based BPEL is a major problem for the implementation
of BPEL import and export interfaces. In the following, we consider control
flow transformation strategies as defined in [9] to solve this problem. Section 2
presents available transformation strategies for importing and exporting BPEL
from graph-based BPM tools. In Section 3 we present our experiences of a case
study where we utilized the transformation strategies for the implementation
of an export interface for a commercial graph-based BPM tool. This tool uti-
lizes UML Activity Diagrams in its modeling component. After discussing some
related research in Section 4, we give a conclusion of the case study in Section 5.

2 Transformation Strategies for Graph-based BPM Tools

In this section we describe transformation strategies for importing from and ex-
porting to BPEL, respectively to and from a graph-based language such as EPCs,
BPMN, Workflow nets, and UML Activity Diagrams. Most of these languages
support the definition of sub-processes, and we will take advantage of that fact
in some transformation strategies. The idea of the strategies is to explicate map-
ping options between BPEL and graph-based languages and to provide formal
algorithms that can be adapted to the specifics of any graph-based language.
Formal definitions and algorithms for each strategy are available in [9].

One specific problem of the mapping between BPEL and graph-based lan-
guages is that a transformation is not always possible. Some strategies require
structural properties of the input format to be satisfied. Table 2 distinguishes
structured graphs and acyclic graphs. Essentially, a structured graph uses only
control flow patterns that can be mapped to BPEL structured activities. This
also includes a simple loop that can be mapped to a BPEL while. An acyclic
graph can include any kind of split and join conditions as long as there is no
cycle. This implies that an acyclic graph does not need to be structured. Such
graphs can always be mapped to a BPEL flow that permits only acyclic links.
Furthermore, a BPEL process is structured if it does not include any link ele-
ments. Table 2 summarizes for which input the different strategies are applicable.
In the following, we briefly describe transformation strategies for the import of
BPEL to a graph-based BPM tool (Section 2.2) and for the export of BPEL
from (Section 2.1).

Transformation Strategy|Structured|Acyclic| All Transformation Strategy|Structured| All
from Graph to BPEL Graph Graph |Graphs||from BPEL to Graph BPEL |BPEL
Element-Preservation - + - Flattening -+ +
Element-Minimization - —+ - Hierarchy-Preservation —+ -
Structure-Identification + - - Hierarchy-Maximization + +
Structure-Maximization + =+ -

Table 1. Transformation strategies and applicable models

2.1 Exporting BPEL from a Graph-based BPM Tool

Transformation strategies in this section can be divided into two categories:
Either they preserve the graph-based modeling paradigm by mapping to a BPEL
flow (Element-Preservation, Element-Minimization) or they map to structured
activities whenever possible (Structure-Identification, Structure-Maximization).
The general idea of each strategy is illustrated in Figure 2.

Element-Preservation This strategy maps all process graph elements to a flow
construct and arcs to links. It is a prerequisite of this strategy that the pro-
cess graph is acyclic. This is because a BPEL flow is not allowed to have cycles

Graph Element- Element- Structure- Structure-
Preservation Minimization Identification Maximization
flow | | flow | | flow | | flow |

link

assign

assign
Ltarget

— link — link
assign
assign

sequence

— link — link

— link — link

— empty — assign

(assign) (assign)
l l

assign
(assign H assign) assign
target target source
source source assign
— ign assig
— assign target
— assign source

source

Fig. 2. Illustration of Transformation Strategies for Export

defined with links [1]. Routing elements of the graph-based language such as de-
cision nodes and synchronization points are mapped to BPEL empty activities
with respective join conditions and links carrying the appropriate split condi-
tions (see Figure 2). The advantage of the Element-Preservation strategy is that
it is simple to implement and the resulting BPEL will be very similar to the
original process graph since there is a one-to-one correspondence between nodes
and activities. As a drawback, the resulting BPEL control flow includes more
elements than actually needed: joins and splits are translated to separate empty
activities in BPEL although split and join conditions could also be annotated
to other activities. Furthermore, the resulting BPEL might be more difficult to
read than structured activities, such as sequences. If the BPEL code is used in a
scenario where readability is important, then it should be applied only for small
process graphs since all elements of the process graph are mapped to one flow
construct.

Element-Minimization This strategy simplifies the generated BPEL code of the
Element-Preservation strategy. The general idea is to remove the empty activ-
ities that have been generated from connectors and instead represent splitting
behavior by transition conditions of links and joining behavior by join conditions
of subsequent activities. As a prerequisite the process graph needs to be acyclic
in order to make dead path elimination of BPEL work. The advantage of the
resulting BPEL process is that it follows the semantics of the flow construct
more closely than the Element-Preservation strategy, since it removes empty ac-
tivities generated from joins and splits (see Figure 2). As a drawback, it is less
intuitive to identify correspondences between the process graph and the gener-
ated BPEL specification. This strategy should be used in scenarios where the
resulting BPEL code needs to have as few nodes as possible. This might be the
case when runtime performance of the BPEL process matters. In contrast to the
Element-Preservation strategy, the amount of nodes is decreased since all empty
activities translated from connector nodes are skipped.

Structure-Identification The general idea of this transformation strategy is to
identify structured activities in the process graph and apply structural reduction
rules as defined in [9]. As a prerequisite the process graph needs to be structured
according to a definition also described in [9]. The advantage of this strategy is
that all control flow is translated into structured activities (see Figure 2). With
regard to the readability of the resulting code, this is the most suitable strategy
since it reveals the structured components of the process graph. As a drawback
the relation to the original process graph might not be intuitive to identify. This
transformation strategy is appropriate in a scenario when the BPEL should be
edited by a BPEL modeling tool such as Oracle BPEL designer that displays
the process as a nesting of structured activities.

Structure-Mazimization The general idea of this strategy is to apply the reduc-
tion rules of the Structure-Identification strategy as often as possible to identify
a maximum of structure (see Figure 2). The remaining annotated process graph
is then translated following the element-preservation or Element-Minimization
strategy. The advantage of this strategy is that it can be applied for arbitrary
unstructured process graphs as long as its loops can be reduced via the reduction
rules defined in [9]. Still this strategy is also not able to translate arbitrary cy-
cles, i.e. cycles with multiple entrance and/or multiple exit points. A drawback
of this strategy is that both the Structure-Identification strategy and at least the
Element-Preservation strategy need to be implemented. This strategy could be
used in scenarios where models have to be edited by a BPEL modeling tool such
as Oracle BPEL designer that uses structured activities as the primary modeling
paradigm.

2.2 Importing BPEL into a Graph-based BPM Tool

Transformation strategies for importing BPEL can be divided into two cate-
gories: Either the BPEL structure is transformed into a graph with no hierarchy
(Flattening Strategy), or a graph where the BPEL structure is preserved as much
as possible (Hierarchy-Preservation, Hierarchy-Maximization). The general idea
of each strategy is illustrated in Figure 3.

Flattening The general idea of this strategy is to map BPEL structured activi-
ties to respective process graph fragments. The nested BPEL control flow then
becomes a flat process graph without hierarchy (see Figure 3). For this strategy,
there are no prerequisites, both structured and unstructured BPEL control flow
can be transformed according to this strategy. The advantage of flattening is
that the behavior of the whole BPEL process is mapped to one process graph.
Yet, as a drawback the descriptive semantics of structured activities get lost.
Such a transformation strategy is useful in a scenario where a BPEL process has
to be visually communicated to business analysts.

Hierarchy-Preservation This strategy maps each BPEL structured activity to a
sub-process in a hierarchy of nested graph-based processes (see Figure 3). The

BPEL Process Flattening Hierarchy-Preservation Hierarchy-Maximization
;
assign $

assign $ $
f;‘a‘rget (as]ign) (asjign) (as]ign) (as]jg”) (as]ign) (asIgn)
] GG |(= |G | G G

assign

Fig. 3. [llustration of Transformation Strategies for Import

nesting of structured activities is preserved as nodes with sub-process relations.
The algorithm can be defined in a top-down way similar to the Flattening strat-
egy. Changes have to be defined for the transformation of structured activities as
each is mapped to a new process graph. A prerequisite of this strategy is that the
BPEL code is structured: links across the border of structured activities cannot
the expressed by the subprocess relation. The advantage of this strategy is that
the descriptive semantics of structured activities is preserved. Furthermore, such
a transformation can correctly map the BPEL semantics of Terminate activities
that are nested in Scopes. As a drawback, the model hierarchy has to be nav-
igated in order to understand the whole process. This strategy might be useful
in a scenario where process graphs are formally verified and then mapped back
to BPEL structured activities.

Hierarchy-Mazimization One disadvantage of the Hierarchy-Preservation strat-
egy is that it is bound to structured BPEL. The Hierarchy-Maximization strat-
egy aims at preserving as much hierarchy as possible, and it is applicable to
any (structured or unstructured) BPEL control flow. This strategy maps BPEL
structured activities to sub-processes if there are no links nested that cross the
border of the activity (see Figure 3). Accordingly, this strategy does not have any
prerequisites regarding the BPEL code structure. The advantage of Hierarchy-
Maximization is that as much structure as possible is preserved. Yet, the transfor-
mation logic of both previous strategies, Flattening and Hierarchy-Preservation,
needs need to be implemented to realize Hierarchy-Maximization.

3 Case Study

In an industry project, we designed a BPEL export filter for a workflow de-
signer that uses a graph-based notation based on UML activity diagrams includ-
ing product-specific extensions. In essence, we followed the element-preservation
strategy and deviated in order to capture specifics of the UML Activity Dia-
gram variant of the workflow designer. These deviations related to start and end

UML Activity Diagram Structure of generated
in Workflow Designer BPEL Export

flow

— link

—| sequence

step node — target
1. assign 1. assign .
step actions —— assign

2. assign 2. assign — assign

—| sequence

— target

—assign
— assign
L— empty

Fig. 4. Illustration of Mixed Strategy used for the BPM Tool

events, split elements, and a two-level modeling concept. Models built by the
workflow designer have exactly one start node and end nodes with implicit ter-
mination semantics. As they do not need to be represented in the flow element,
we decided not to transform them to BPEL. Accordingly, also arcs connected
with start and end nodes are not mapped to BPEL links. The workflow designer
offers two split elements that have semantics comparable to an XOR split; these
are switch nodes (two alternatives) and decision nodes (multiple alternatives).
We decided to map both of these elements to a BPEL switch that includes empty
elements for each alternative that serves as a source for a link to the subsequent
activity. This design has been chosen instead of a mapping to empty activities
in order to easier distinguish different types of splits when the exported BPEL
is re-imported. Furthermore, the workflow designer offers a two-level modeling
approach: step nodes similar to process graph functions have to be specified by
a sequence of one or multiple step actions. Step nodes are part of the UML
model, step actions have no visual representation. As a consequence, we map
step nodes to BPEL sequences that nest further BPEL activities corresponding
to the semantics of the step actions (see Figure 4).

The mapping of many proprietary concepts of the workflow designer turned
out to be a problem. These proprietary concepts include sub-workflow elements,
step actions, and properties of the indiviual visiual elements:

— Regarding the sub-workflow concept, we decided to map each sub-workflow
to a BPEL scope and a nested invoke. This allows us to define the input
parameters of the sub-workflow as local variables in the scope and represent
the invocation of the sub-process via a BPEL invoke. For a more appropriate
mapping, the upcoming BPEL-SPE extension will be very helpful [7]. U: say
why and how it is helpful

— Step actions are defined in an abstract class, which is customized by a number
of different possible step actions, such as defining a (local) variable, inline
Java code, or mail sending. To map these steps, we first defined a generic
mapping operation to BPEL in the abstract step action class which is used

when no special class overrides the operation. In this case, a BPEL invoke is
written to the output, containing the name of the step as a partner link. We
also defined mappings for a number of concrete step actions. For instance, in
the step action for invoking a form-based input, the partner link is set to the
application receiving the form-based input. The inline Java code step action
is transformed to a BPELJ snippet [3]. The variable setting step action is
mapped to a BPEL assign activity.

— All visual elements of the workflow designer can have additional properties.
Some of those, such as time-out conditions and escalations, might even have
an influence on the control flow. We defined a special XML namespace for
these properties and included them as attributes in the respective BPEL
activity. Finally, we had to map step actions contained in the step nodes to
BPEL basic activities.

In conclusion, the transformation strategies have helped us to find a sys-
tematic, initial approach and process for the transformation of the workflow
designer’s notation to BPEL. They are also useful for explaining the overall
design decisions.

The case study also shows that the transformation strategies can be mixed.
The strategies define ideal, prototypical mappings, but in a complex product
like the workflow designer in our case study it is necessary to identify the most
suitable transformation strategy for the different parts of the mapping.

In addition, in a real-world industry product, there are proprietary exten-
sions, such as step actions or properties in our case, and model elements with
further semantics, such as sub-workflows, which are not addressed by the trans-
formation strategies. These require further deviations from the general strategies.

4 Related Work

There have been several works on transformations between BPEL and graph-
based process modeling languages. We highlight only some of them and refer to
[9] for a more comprehensive overview.

The export of BPEL from a graph-based BPM tool can be related to work
dedicated to model-driven development of executable BPEL process definitions.
In [4] a BPM-specific profile of UML is used to generate BPEL code. From the
paper the transformation strategy is not clear was missing ... is it correct?clear,
but the figures suggest that the author uses an Element-Preservation strategy
and maps sequences to BPEL sequences.

A conceptual mapping from EPCs to BPEL is presented in [13]. The authors
choose a transformation based on the Element-Preservation strategy for the
reason that it is easy to implement.

The BPMN specification [12] comes along with a proposal for a mapping to
BPEL. As BPMN is a graph-based BPM language, the strategies of Section 2.1
can be applied. The subsection 6.17 of BPMN spec presents a mapping that is
close to the Structure-Identification strategy. Yet, the mapping is given rather

in prose, a precise algorithm and a definition of required structural properties is
missing.

Ouyang et al. [10] show a translation from Standard Process Models (SPMs)
[5] to BPEL. They generate what they call Event-Condition-Action (EAC) rules
for each activity in the SPM that describes what event must occur under what
condition for an activity to become active. Each EAC is translated into BPEL as
an event handler resulting in the entire BPEL process being a sequence of event
handlers that invoke each other. To improve their result they only make EACs
for what they call Clusterable Activity Blocks (CABs), parts of an SPM that
among other things do not contain AND-splits and AND-joins. This improves
the readability of the resulting BPEL since nodes that are local in CABs are
local in the BPEL.

In [11] a Workflow-net-based modeling approach for BPEL including a respec-
tive transformation is presented. Similar to the Structure-Identification strategy,
Workflow nets are reduced by matching components that are equivalent to BPEL
structured activities such as switch and pick. The Structure-Identification strat-
egy has been chosen in order to generate readable BPEL template code and not
executable BPEL processes.

5 Conclusion

In this paper, we discussed import and export interfaces as a simple option
for BPM tool vendors to provide BPEL support. We identified transformation
strategies between graph-based BPM tools and BPEL as helpful predefined so-
lutions to the problem of mapping control flow in this context. In a case study
we applied transformation strategies in the implementation of an export inter-
face of a commercial BPM tool that utilized UML Activity Diagrams for process
modeling. The transformation strategies have helped us to find a systematic,
initial approach for the export. Yet, several specifics of the tool required devia-
tions and extensions to the strategies. Some of them are already considered as
extensions to the new BPEL Version 2.0 [2]. While we could already utilize the
BPEL-J specification for inline Java code, the envisioned BPEL-SPE extension
would have been very helpful to map sub-processes. Maybe some of the activity
properties like escalation would be considered in the future BPEL4People exten-
sion [6]. These extensions have the potential to facilitate a more straight-forward
mapping and a simpler interchange of process definitions via BPEL.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Specification, BEA Systems,
IBM Corp., Microsoft Corp., SAP AG, Siebel Systems, 2003.

2. Assaf Arkin, Sid Askary, Ben Bloch, Francisco Curbera, Yaron Goland, Neelakan-
tan Kartha, Canyang Kevin Liu, Satish Thatte, Prasad Yendluri, and Alex Yiu.

10

10.

11.

12.
13.

Web services business process execution language version 2.0. wsbpel-specification-
draft-01, OASIS, September 2005.

Michael Blow, Yaron Goland, Matthias Kloppmann, Frank Leymann, Gerhard
Pfau, Dieter Roller, and Michael Rowley. BPELJ: BPEL for Java. Whitepaper,
BEA and IBM, 2004.

Tracy Gardner. UML Modelling of Automated Business Processes with a Map-
ping to BPEL4AWS. In Proceedings of the First European Workshop on Object
Orientation and Web Services at ECOOP 2003, 2003.

Bartek Kiepuszewski, Arthur H. M. ter Hofstede, and Wil M. P. van der Aalst.
Fundamentals of control flow in workflows. Acta Inf., 39(3):143-209, 2003.
Matthias Kloppmann, Dieter Konig, Frank Leymann, Gerhard Pfau, Alan Rick-
ayzen, Claus von Riegen, Patrick Schmidt, and Ivana Trickovic. WS-BPEL Exten-
sion for People BPEL4People. Joint white paper, IBM and SAP, July 2005.
Matthias Kloppmann, Dieter Konig, Frank Leymann, Gerhard Pfau, Alan Rick-
ayzen, Claus von Riegen, Patrick Schmidt, and Ivana Trickovic. WS-BPEL Exten-
sion for Sub-processes BPEL-SPE. Joint white paper, IBM and SAP, 2005.

. Dieter Konig. WS-BPEL Standards Roadmap. Invited Talk at the

3rd GI-Workshop XML4BPM 2006, http://wi.wu-wien.ac.at/ mendling/
XML4BPM2006/WS-BPEL%20Standards.pdf, February 2006.

J. Mendling, K. Lassen, and U. Zdun. Transformation strategies between block-
oriented and graph-oriented process modelling languages. Technical Report JM-
2005-10-10, WU Vienna, http://wi.wu-wien.ac.at/home/mendling/publications/
TRO5-Strategy.pdf, October 2005.

C. Ouyang, M. Dumas, S. Breutel, and A. H.M. ter Hofstede. Translating Standard
Process Models to BPEL. In Proceedings of the 18th International Conference on
Advanced Information Systems Engineering (CAiSE), LNCS, 2006.

Wil M.P. van der Aalst, Jens Baek Jgrgensen, and Kristian Bisgaard Lassen. Let’s
Go All the Way: From Requirements via Colored Workflow Nets to a BPEL Imple-
mentation of a New Bank System. In R. Meersman and Z.Tari, editors, Proceedings
of CooplS/DOA/ODBASE 2005, Cyprus, LNCS 3760, pages 22-39, 2005.

S. A. White. Business Process Modeling Notation. Specification, BPMI.org, 2004.
J. Ziemann and J. Mendling. EPC-Based Modelling of BPEL Processes: a Prag-
matic Transformation Approach. In Proceedings of MITIP 2005, Italy, 2005.

