Modeling the Evolution of Aspect Configurations using
Model Transformations

Uwe Zdun, Mark Strembeck
Institute of Information Systems, New Media Lab
Vienna University of Economics, Austria

{uwe.zdun|mark.strembeck}@wu-wien.ac.at

ABSTRACT

In this paper we introduce an approach to address the eonlofi
aspect configurations with model transformations. We usdaino
transformation diagrams (MTDs) to define valid behavioraidel
states of a system as well as valid transitions between thtases.
MTD transformations can be used to define evolutionary ceang
in the weaving process of an aspect-oriented system. Tev &tlpa
straightforward incorporation of aspects in UML models,exéend
UML2 activity diagrams with joinpoint start and end nodes this
paper, each model state in an MTD refers to an extended UM
activity diagram.

L2

1. INTRODUCTION

In recent years a number of approaches for UML-based model-
ing of aspects have been proposed. Some approaches ard-exten
ing the UML using a UML profile (see e.g. [6, 2]), others penfor
a meta-model extension, i.e. they extend the UML familiy af-I
guages with new language elements (see e.g. [10, 4]). Shdset
approaches focus on mapping the elements of aspect-atiente-
ronments (mainly the concepts are based on AspectJ [7]) th UM
modeling elements. That is, the focus is on representingcsin
UML models.

The effects of applying aspects — i.e. how a model evolves if a
aspect is woven — have only been marginally in focus of aspect
oriented modeling approaches so far. This concern, howiven-
portant to be considered for a number of situations:

e In the early stages of system design we need to trans-
late requirements into classes and aspects. In particular,
we require some approach to show the evolution from a

non-aspect-orineted model to an aspect-oriented model, as

well as the interactions between the aspect-oriented and
non-aspect-oriented parts of the system.

Often a number of different aspect configurations can be wo-

ven for one and the same system. That is, the aspects wo-

ven into the system can be changed either at compile-time,
load-time, or runtime — depending on the used aspect weaving
mechanism. For example, consider a logging aspect, which is
woven into the debugging environment only, but not into the
productive system. Here, the evolution options resultiogif

the weaving time for the aspect configurations and their cor-
responding effects should be modeled as well.

Often aspects have interdependencies or interactions @mon
each other, a concern which of course should be modeled.

To address these problems, this paper proposes an appach t
model the behavioral evolution of aspect configurationsfiveare
systems using model transformation diagrams. In other syoxe
use a model transformation to represent the aspect weatépg s
The model transformation diagrams are an extension to UNILIR.
particular, they model the aspect weaving dependenciemoidel
transformations between different UML Activity Diagramilere,
the Activity Diagrams show the behavior in the system wittfied
ent aspect configurations. To enable the modeling of aspéated
behavior in Activity Diagrams we introduce a simple extemnsto
Activity Diagrams for representing the start and end of thie
points of an aspect in the control flow.

2. THE APPROACH

In this section, we explain our model transformation diagsa
and our extension to Activity Diagrams for representing stert
and end of the joinpoints of aspects.

2.1 Model Transformation Diagrams

We have defined the Model Transformation Diagrams (MTD) as a
meta-model extension to the UML 2.0 standard (see FigtjeTb
define MTDs formally, we specify the new packalgedel Trans-
formations. The graphical notation of our model transformation
diagrams is similar to UML2 interaction overview diagrarhsw-
ever, the MTD semantics differ significantly. The UML2 irdetion
overview diagrams are a variant of activity diagrams anddles
the flow of control between different nodes (see [9]). In cast,
our MTDs are a variant of state machines. Model transfomnati
diagrams describe changes of specification of a softwarersys
These changes are modeled through transitions betweeretitf
diagrams. In this paper, we use only UML2 activity diagrams i
the MTDs, to model transformations of thehavioral model state.
(Please note that in our full meta-model definition, there aso
structural model states, but these are not used in this paper

The main transition type used in MTDs aransform transitions.
Transform transitions express that the source model staite tran-
sition is transformed to the target model state of the ttarsi A
transition from one behavioral model state to another mehat
the behavior of a certain system aspect is transformed,a&after
the transition, the system behavior conforms to the stadeiipd
by the transition’s target. For instance, the example tt@ans in
Figure 2 show two model transformations between two agtidit
agrams: one adds a condition between the two activities,tfaad
reverse transformations removes the condition. Figures@ abn-
tains informal explanations for our notations. A formal exehodel

'Due to the page limit we do not include the full formal defioiti

For instance, consider a persistence aspect is allowed to bejncluding OCL constraints of the meta-model extension hbrg

woven, but only if a storage device aspect is woven as well.

provide only the corresponding meta-model as an overview.

Package ModelTransformations

. . StateMachine
=) .
ModelTransformationStateMachine (from BehaviorStateMachines)
+stateMachine § 0..1
«enumeration» 1..% | +region
PsequStateKind . Region +container
(from BehaviorStateMachines) A 9 .
(from BehaviorStateMachines) 0.1
initial
deepHistory +container ¥ 0..1
shallowHistory
*om
jS:lkCtlon * | +subvertex +source * * | +transition
gm)rlclgomt Vertex 1 +outgoing Transition
exitlgoint (from BehaviorStateMachines) | +target * | (from BehaviorStateMachines)
terminate [f 1 +incoming
State 1 FinalState
PseudoState (from BehaviorStateMachines) (from BehaviorStateMachines)
(from BehaviorStateMachines)
kind: PseudoStateKind
+
ModelStateUse refersTo ModelState
0.1
* +argument
Action .
(from BasicActions) StructuralModelState BehavioralModelState
0.1 0.1 0.1
*_| +instance *_| +class * | +activity
InstanceSpecification Class Activity

(from Kernel)

(from Kernel)

(from FundamentalActivities)

Figure 1: Meta-model for Message Transformation Diagrams (1 TD)

MTD Identifier Token

MTD Name

Identifier Token for
activity diagrams

Diagram name

Diagram describing a valid
behavioral system state

r g

mtd MyExampleMTD

ad SystemBehaviorB)

o>

Activity
A

Activity
B

(@<

Ky
ad SystemBehaworB

«transform»

[condition
«transform»

A

-®

=/

]

‘ [condition2

1]

Activity

f

MTD state machine

MTD transform transitions
MTD state

Figure 2: Informal overview for the elements of MTDs

extensions for the MTDs can be found in [11].

by the aspect “AspectName” has ended. Optionally, JoiriStémt

In the first place, MTDs are a means to depict possible model Activities can have atagged value “pointcut” that indisatee name

transformations. The idea, presented in this paper, is plyahe
transform transitions in the MTDs to model aspect weavirlg-re
tionships. This way different behavioral model states shovdels
of the behavior of the system in different aspect configareti The
transform transitions then show the possible (“legal”) vieg steps
between these model states.

2.2 Extending Activity Diagrams with Join-
point Start and End Activities

In our approach, we model the behavior of aspects as pareof th
activity diagrams describing the system'’s behavior. Thatie show
scenarios of the aspect in action. However, it is necessaistin-
guish the aspect-oriented and non-aspect-oriented fdtts activ-
ity diagram. Moreover, in case more then one aspect is used, w
need to distinguish different the aspects modeled in thesszativ-
ity diagram.. Otherwise we would not be able to properly ntode
aspect interactions.

NODE TYPE | NOTATION | Explanation & Reference ‘

JoinpointStart is an Activity that can be used
in an Activity Diagram to indicate that the
aspect "AspectName" has intercepted the
control flow at this point. All subsequent steps
in the Activity Diagram until a JoinpointEnd
Activity with "AspectName" is reached are
handled by the aspect "AspectName".

AspectName

JoinpointStart

Optionally, a Joinpoint Start node can have a
tagged value "pointcut” that indicates the name
of a pointcut designating this joinpoint.

See Activity from FundamentalActivities.

JoinpointEnd is an Activity that can be used
in an Activity Diagram to indicate that the
interception of the control flow by the aspect
"AspectName" has ended.

JoinpointEnd

I AspectName]

See Activity from FundamentalActivities.

Figure 3: Definition of two Activities for start and end of joi n-
points in Activity Diagrams

ad Order Creation)

Receive
Order

Create
Order

Figure 4: Activity Diagram for order creation

Order Order

To address this problem, we introduce two new Activitieslds s
classes of the UML2 Activity meta-class (from Fundamentai
ities, see [9]). JoinpointStart is an Activity that can bedisn an
Activity Diagram to indicate that the aspect referred to‘¥iapect-
Name” has intercepted the control flow at this point. All stépan
Activity Diagram between a JoinpointStart and the corresiiag
JoinpointEnd Activity (referred to via the same “AspectNglinare
handled by the respective “AspectName” aspect. In additids
possible for another aspect to intercept the control floneitwieen.
In other words: JoinpointEnd is an Activity that can be usedn
Activity Diagram to indicate that the interception of thentl flow

of a pointcut designating this joinpoint. Figure 3 summesizhe
definitions.

3. EXAMPLE: ORDER HANDLING

In this section, we consider an example from the early stafes
designing an order handling system. In a first step, we desgim-
ple activity for order creation according to the followinigost sce-
nario description: when an order is received, an order ¢lrjeeds
to be created and then the order object is filled with valuelsis T
simple control flow is shown in the activity diagram “Orderecr
ation” in Figure 4.

ad Order Creation & Order Check)

. Receive
Order

Order @

[order rejected]

i

Order Check
[order accepted]
G et) ®

Create Fill
Order 1 i Order @
Order Order

Figure 5: Activity Diagram for combining order creation wit h
order checking

A

Next, we design other fundamental activities of order hisggl
During the ongoing design work, we realize that in some custo
systems which should be used with the order handling system,
check is required, whether the order can be accepted or rfus T
check is not only relevant for order creation, but it musbdls per-
formed before an order is changed or re-submitted. Thus é0Ord
Check” is a cross-cutting concern in our system and shoulddm
eled as an aspect. To do so, we need to intercept the control flo
between the Receive Order and Create Order activities. |&imi
we need to extend other activity diagrams that have joirtpdie-
longing to this aspect. The pointcuts for the correspondiggect
can be derived in later design stages by looking at all oecuwes
of the aspect’s joinpoints and by defining proper (crosshugit des-
ignations for these points in the control flow. The woven asj®
shown in the Activity Diagram “Order Creation & Order Chedk”
Figure 5.

A second aspect that cross-cuts many order handling aesvg
“Order Persistence”. This aspect needs to intercept theadtow
after the order isfilled in, and must call the Make Persistetivity.
The woven aspect is shown in the Activity Diagram “Order Gima
& Order Persistence” in Figure 6.

For this aspect we need to consider one special case, thdélugh.
the aspect “Order Check” is configured, all rejected ordeosiki be
logged in the persistence store. That is, the two aspectsdrain-

ad Order Creation & Order Persistence)

Receive

Create
Order

Order

Figure 6: Activity Diagram for combining order creation wit h
persistence

terdependency among each other. Because both aspectsiarabp
extensions, we need to model this interaction in a separetigity
Diagram “Order Creation & Order Check & Order Persistenge” i
Figure 7. Here, we can see that the “Order Persistence” aigpec
cross-cutting the activities in this diagram. If the aspeaised, a
rejected order log entry object is created, and the Makeifters
Activity is called.

Finally, we need to model the possible weaving-time aspest e
lutions for this system. We use an MTD to show the possiblewwea
ing configurations for the two optional aspects describexvabThe
diagram in Figure 8 shows that in any case the basic “Ordef Cre
ation” diagram is the starting point for weaving. The aspeeaver
can either weave order persistence, order checking, or pecas
If one of the two aspects is chosen, the other aspect cannafitio
be woven as well. In this case, the behavioral state of thisys
is transformed to the Activity Diagram “Order Creation & @rd
Check & Order Persistence”, so that the aspect interacsionad-
eled as well.

Please note that in this example we have shown the aspect weav
ing process independently of the concrete weaving time. dpur
proach is capable to model aspect weaving at compile-tiosa-I
time, or runtime. Though, the MTD needs to be changed slightl
if runtime weaving is supported. Runtime weaving would mean
that we could turn off the aspects again. That is, we wouldint
duce backward transformations between the model statesr(tiie
“mrefs” in the figure) to model runtime weaving properly.

4. RELATED WORK

Aldawud et al. [1] present a number of steps they apply to mode
aspect-oriented systems. In particular, they model thestgstem
structure via class diagrams. System behavior, includsmgeets
and crosscutting, is modeled with UML statecharts. Theiraach,
however, is not able to depict evolutionary changes ragyliiom
(static or dynamic) weaving of aspects which is one of thenmai
benefits of MTDs.

Gray et al. [3] describe an elaborated approach to supppecis
oriented domain modeling which has partially similar ohijees
to our approach. For each modeling domain they define domain-

ad Order Creation & Order Check & Order Persistence)

Receive Order Persistence
Order

Rejected
Order Check

Order
[order rejected]

Make
Persistent

Log Entry

Order Persistence

[order accepted]

Order Check

Figure 7: Activity Diagram for combining order creation wit h
persistence and order checking

specific weavers which operate on the abstraction layer afatso
(not source code). To specify these weavers they definedtbead

ded constraint language (ECL) as an extension to the OMGbbje
constraint language (OCL). The ECL is used to specify t@nsf
mations between models and to specify strategies that dieiwe

a concern is applied in a certain model context. ECL operates
XML files which are used to store the corresponding models and
Gray et al. implemented a tool to generate C++ source code fro
ECL specifications.

Barros and Gomes [2] use UML2 activity diagrams to model
crosscutting in aspect-oriented development. They defineva
composition operation they call “activity addition” via &ML pro-
file. Activity additions are used for weaving a crosscuttaamcern
in a model. In particular, they define two stereotypes to ncarkain
nodes in activity diagrams that define the so called interfamdes
which are then used to merge two or more activity diagramd, an
the so called subtraction nodes which define what nodes odwmel t
removed from a given activity diagram.

Jezequel et al. [5] represent crosscutting behavior usorg ¢
tract and aspect models in UML. They model contracts usind-UM
stereotypes, and represents aspects using parameteoiziobca-
tions equipped with transformation rules expressed with.@@n-
straints. OCL is used in the transformations for navigaimsgances
of the UML meta-model.

Han et al. [4] present an approach to support modeling of étdpe
language features to narrow the gap between implemensdtased
on AspectJ and the corresponding models. Mahoney and Hfad [
describe a way to use statecharts and virtual finite statéhimes
to model platform specific behavior as crosscutting corgefney
especially plan to evaluate the effectiveness of their @ggr in a

mtd Order Creation with Aspects)

«transform»

\L [weave order persistence]

mref J

Order Creation &
Order Persistence

[no more aspects]

[weave order check]

«transform»

mref J

Order Creation

mref J

Order Creation &
Order Check &
Order Persistence

[no more aspects] :.>

«transform»

[weave order check]
[no aspects]

mref J

Order Creation &
Order Check

«transform»

[weave order persistence]

[no more aspects]

Figure 8: MTD for order creation with its aspects

model driven development context. Tkatchenko and Kiczglep

present an approach to model crosscutting concerns. Thepax
the UML with a joint point model, advice and inter-type deala
tions, and role bindings. Moreover, they provide a weav@rtcess

the corresponding extensions.

5. CONCLUSION

In this paper, we briefly presented an approach to model the ev

lution of aspect configurations via model transformatiotrs par-

ticular, we defined model transformation diagrams (MTDs}has
UML2 extension. In essence, MTDs are state machines whieh ar
applied to model the evolution of software systems. Eacte $ta

an MTD refers to a model that defines a valid structural or fzeha
ioral specification of the corresponding system. Transgibetween

those states describe valid transformations between tinoskels.

In this paper, however, we focused on the specification ofbeh

ioral system facets to model the evolution of aspect corditjms.

Therefore, we additionally introduced Joinpoint start amdl ac-
tivities that allow for a clear separation of the aspeceniéd and

non-aspect-oriented parts of a system specification, alsasehe
modeling of crosscutting aspects. In our future work, wd piib-

vide tool support for MTDs both on the modeling level and seur

code level. In addition to behavioral states, we also usettral

model states in MTDs to model the evolution of structuraleasp

models.

6. REFERENCES
[1] O. Aldawud, A. Bader, and T. Elrad. Weaving with

Statecharts. IfProc. of the Workshop on Aspect Oriented
Modeling with UML, April 2002.

[2] J. Barros and L. Gomes. Towards the Support for
Crosscutting Concerns in Activity Diagrams: a Graphical
Approach. InProc. of the AOSD Modeling with UML
Workshop, October 2003.

[3] J. Gray, T. Bapty, S. Neema, D. Schmidt, A. Gokhale, and

B. Natarajan. An Approach for Supporting Aspect-Oriented

Domain Modeling. IrProc. of the 2nd International
Conference on Generative Programming and Component
Engineering (GPCE),, September 2003.

[4] Y. Han, G. Kniesel, and A. Cremers. Towards Visual Aspect

by a Meta Model and Modeling Notation. Rroc. of the

(5]

(6]

(7]

(8]

9]

[10]

[11]

International Workshop on Aspect-Oriented Modeling, March
2005.

J. Jezequel, N. Plouzeau, T. Weis, and K. Geihs. From
contracts to aspects in uml designs. In O. Aldawud, G. Booch,
S. Clarke, T. Elrad, W. Harrison, M. Kande, and

A. Strohmeier, editorsispect-Oriented Modeling with UML,
Enschede, The Netherlands, April 2002.
http://Igwww.epfl.ch/workshops/aosd-uml/index.html.

M. M. Kande, J. Kienzle, and A. Strohmeier. From AOP to
UML — A Bottom-Up Approach. IrProc. of the Workshop on
Aspect Oriented Modeling with UML, April 2002.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Pamd
W. G. Griswold. Getting started with AspectJ.
Communications of the ACM, 44(10):59-65, Oct 2001.

M. Mahoney and T. Elrad. Modeling Platform Specific
Attributes of a System as Crosscutting Concerns using
Aspect-Oriented Statecharts and Virtual Finite State
Machines . InProc. of the International Wbrkshop on
Aspect-Oriented Modeling, March 2005.

The Object Management Group. Unified Modeling Language:
Superstructure.
http://www.omg.org/technology/documents/formal/urtrh,
August 2005. Version 2.0, formal/05-07-04, Object
Management Group.

M. Tkatchenko and G. Kiczales. Uniform Support for
Modeling Crosscutting Structure. FProc. of the International
Workshop on Aspect-Oriented Modeling, March 2005.

U. Zdun and M. Strembeck. Modeling composition in
dynamic programming environments with model
transformations. Iith International Symposium on Software
Composition, Vienna, Austria, March 2006. LCNS,
Springer-Verlag.

