MORSE: A Model-Aware Service Environment

Ta’id Holmes, Uwe Zdun, and Schahram Dustdar
Distributed Systems Group, Institute of Information Systems
Vienna University of Technology
Vienna, Austria
{tholmes, zdun, dustdar}@infosys.tuwien.ac.at

Abstract—In a number of scenarios, services generated
using a model-driven development (MDD) approach could
benefit from “reflective” access to the information in the
models from which they have been generated. Examples
are monitoring, auditing, reporting, and business intelligence
scenarios. Some of the information contained in the models
of a service can statically be generated into its source code.
In a distributed and changing environment this approach
is limited, however, due to the fact that models and their
relations evolve after the generation and deployment of
a service. For example, the current model of a service
might be different than the deployed version of the service.
Our approach to solve this issue is a Model-Aware Service
Environment (MORSE). It consists of a model repository
that manages MDD projects and artifacts, and model-aware
services that interact with the repository for performing
reflective queries on the models stored in the repository.
Thus, MORSE supports the dynamic, reflective lookup of
models in service-oriented systems.

Keywords-model-aware;
repository

service; SOA; model; MDD;

I. INTRODUCTION

Nowadays, there is a trend toward the use of precisely
specified models, for example, for model-driven devel-
opment (MDD) [1], [2]. Some reasons for using MDD
are: Instances of the models can be validated for specified
properties. Models can be defined and refined at different
abstraction levels. This makes the models suitable to be
used by various stakeholders, e.g., domain experts who
use high-level, graphical models and technical experts
who work with more low-level, textual models [3], [4].
Technical expertise can be captured in transformations,
e.g., when platform-independent models are transformed
to platform-specific models. This enhances portability and
simplifies adaptations. Recurring code can be generated,
easing the maintenance of a model-driven system.

Due to these benefits, many MDD approaches for
service-oriented architectures (SOA) have been proposed
(e.g., [5], [6], [7]). These approaches are model-driven
in the sense that the SOA is specified using models and
large parts or the whole source code of the SOA (including
for example Web service code, WSDL files, policy code,
business object implementations, and so on) is generated
from those models.

While the model-driven SOA approach is highly useful
in many cases, it has its limitations for scenarios that
require information from the models at runtime because
generation currently happens only at design time. Hence,

all information that is needed at runtime from the mod-
els must be foreseen by the developers and must be
statically generated into the source code. Many SOAs
require “reflective” model information for monitoring,
auditing, reporting, and business intelligence purposes.
The requirements for this kind of reflection on model
information can change quickly and are hard to foresee.
However, regenerating and redeploying major parts of
the SOA source code, because a certain model element’s
information is not exposed, is often not feasible in large
distributed architectures. In addition, developing new re-
flection functions for each single model element is costly.

Finally, model information that is generated into or
attached to a model-driven service is only up-to-date at
its generation time. This is problematic when the service
needs to reflect on information that was supplied after
its generation and deployment. This is particularly true
in a distributed and persistently evolving environment.
Statically generated services need to keep up with changes
such as additional model relations, e.g., new annotation
models or a new version of the model of a service.

Our approach to solve these issues, i.e., facilitate ser-
vices to dynamically reflect on models, is to create model-
aware services (and components) for the SOA and support
these with a model repository. We call such a SOA a
Model-Aware Service Environment (MORSE).

During the MDD process, each model of the SOA is
placed in the model repository. Each model and model
element gets a Universal Unique Identifier (UUID) [8]
assigned, with which the model or model element can
be uniquely identified. The UUIDs are generated into the
source code of the model-aware services (and compo-
nents). Hence, they are model-aware in the sense that
they can retrieve the models from which they have been
generated from the repository at runtime using a service.
In the same way, other components such as monitoring,
auditing, reporting, and business intelligence components,
or MDD tools such as a model-driven generator, can
retrieve these models.

The repository service interface is a generic interface,
and the UUIDs are generically added to generated code.
Hence, no changes of the generated SOA are necessary in
order to use a model element at runtime that has not been
used before. Also the model-aware services can access
evolved models and model relationships that occurred after
generation time of the model-aware service.

In the following sections we introduce MORSE, present
the design of the repository, and introduce some model-
aware services. We will describe how model-aware ser-
vices interact with the repository, how they can be created,
and what functionality they may expose to other services.

This paper is structured as follows: In the next section
we will give a broader motivation from the general MDD
perspective and explain how MORSE addresses the gen-
eral problems of traceability and collaboration in MDD
systems. We will then present our approach by describing
MORSE, the Model-Aware Service Environment, in Sec-
tion III, focusing on the more specific issues of supporting
model-aware services. Next, in Section IV we propose
the model repository for facilitating model-aware services
that we present in Section V. We will illustrate our work
with a case study in Section VI. Section VII compares our
approach to related work, and in Section VIII we conclude
and refer to future work.

II. MOTIVATION FROM THE MDD PERSPECTIVE

In the broader view of model-driven systems in gen-
eral, MORSE addresses two common problems in MDD
systems: traceability and collaboration. In this section, we
want to motivate both and explain briefly how the MORSE
approach helps to address them. We describe these two
common problems also to set the scope for this paper
and delineate which parts of the general two problems
are addressed by the model-aware services approach and
which are not.

A. Traceability in Model-driven Systems

A particular problem of model-driven systems is trace-
ability — asking the question: How do models and model
elements of different abstraction layers and/or code corre-
spond to each other? In particular, the traceability infor-
mation for models that are transformed into other models
or code can get lost in model-driven approaches. On the
one hand, a transformation rule describes how source
models are mapped to target models. On the other hand
a traceability link at a target model would allow for
identifying the source models. Traceability is essential
for meaningful feedback from the runtime to stakeholders
and for identifying and understanding the root cause,
e.g., in case of a failure or exception. This is because,
if we are able to trace the source model from which a
target (model or code) has been created (via generation or
transformation), it is possible to use the information in the
source model to analyze or debug the target.

MORSE helps to address this problem of traceability as
it manages MDD projects and artifacts and relates them to
UUIDs that are generated into target systems. Moreover,
MORSE facilitates such systems to exploit their traceability
links via UUIDs by querying and reflecting on models,
model elements, and model relationships.

B. Support for Collaboration in Model-driven Systems

Most current tool support for model-driven development
only focuses on the design time and comes with lim-
ited collaboration features, if any. Model-aware services,

however, rather assume a distributed environment, maybe
even distributed development. In order to facilitate various
services of a distributed environment, however, to concur-
rently work with MDD projects and artifacts we need to
support the management of projects and artifacts, with (1)
versioning capabilities while capturing and keeping track
of model relationships and (2) services for the information
retrieval and the management of these. For (3) facilitating
collaboration scenarios, we also need to (4) deal with
concurrency, e.g., provide locking mechanisms, raise the
awareness of the work of others, offer compare and merge
possibilities as well as support for resolving conflicts.

MORSE, as it is presented in this paper, addresses
the first two of these issues, versioning capabilities and
services for information retrieval and management, as
these features are also needed for the monitoring, auditing,
reporting, and business intelligence purposes addressed
by the model-aware services approach proposed in this
paper. For example, a monitoring component requires a
service for retrieving model information from the MORSE
repository, and it requires the models in the version of
the model instance that it monitors. Please note that the
collaboration features of MORSE could also be used for
other scenarios, such as supporting the MDD development
process for distributed MDD development.

ITI. MODEL-AWARE SERVICE ENVIRONMENT

For facilitating services to dynamically work with mod-
els in a SOA, we propose MORSE, the Model-Aware
Service Environment. MORSE consists of a model repos-
itory and model-aware services that interact with the
model repository using generic service-oriented interfaces.
Figure 1 gives an overview of the MORSE. From the repos-
itory model-aware services can be generated that interact
with the information retrieval interface. Also services with
traceability information that emit events to model-aware
services can be generated. In the following sections we
will discuss these services in more detail.

oke =S emit runtimBe events
informational int
operations A \ containing UUIDs

Model-Aware
Services

System that
integrates with
Model-Aware

-
-

) Services
1 retrieve models by UUID

A

generate & deploy

system with UUIDs A

A
generate & deploy system
with traceability information

MORSE
Repository

Figure 1. Overview of the Model-Aware Service Environment

Figure 2 gives an high-level overview of the model
repository architecture. Different Web service interfaces
allow for the administration and resource management of
MDD projects and artifacts and offer information retrieval
functionality (see end of the following section) to model-
aware services. The MORSE builder service can create

these model-aware services. Also it can weave UUIDs! of
MORSE objects into generated code. A deployment service
is used for deploying resulting services and processes on
runtime engines.

MORSE Repository

MDD Project :— Web Service !
Admin Client | Interfaces : Builder
|]
) - MDD Project || [, oxe LSevice
build, deploy project Administration || Deployment
Interface Service

|
|
! |
Modeling Tools | 1 access
| Resource |

Management -
access| Generic

Repository
Interface

create/modify models Interface

access

query models & projects

Retrieval

|
) . Interface
Runtime Client 'L access

Persistence
Backend

|

|

y |
Information |
t

|

|

Figure 2. Architecture of the MORSE Repository

Because all MDD projects and artifacts are managed
in a common model repository, model-aware services can
query these for any information on themselves and other
model-driven components. Although models and model
relations may evolve over time, using UUIDs, it is always
possible to retrieve a specific version of a MORSE object.
Derived versions, e.g., new versions of the model that were
created after deployment time, can easily be identified,
permitting a model-aware service to e.g., retrieve and work
with the latest version of a model.

MORSE can also be beneficial for MDD tools, e.g., in
a distributed, collaborative development environment [9]
while fostering service-orientation to support the MDD
design-time tooling. In this case, not the model-aware
services or components monitoring them would retrieve
and change the models, but the MDD tools such as
a model-driven generator. In this paper, we do not go
into more details about this use scenario, as we want to
concentrate on the case of using model-aware services at
runtime. However, the MORSE tools themselves use the
repository in this way. In Section V we will illustrate this
use of MORSE (see Figure 6).

IV. MODEL REPOSITORY

The model repository is the main component of MORSE
and has been designed with the goal to abstract from
specific technologies. Thus, while concepts are taken from
e.g., the Unified Modeling Language [10] and also version
control systems, MORSE is particularly agnostic to specific
modeling frameworks or technologies.

1'Universal Unique Identifier (UUID) [8] is a standard for unique
identifiers in (distributed) software system development. UUIDs are
used in MORSE to uniquely identify models and model elements across
distributed components, such as the model-aware services, the model
repository, and other components using the MORSE services such as
monitors.

The MORSE repository manages objects (MObject)
such as projects (MProject) and artifacts (MArtifact)
as shown in Figure 3 and 4(a). Additional MORSE object
types (explained below) are shown in Figure 4(b). All
MObjects are identifiable by uuids and can be associated
with Dublin Core [11] metadata such as title, creator,
or date. Note that a UUID also uniquely identifies a
particular version of a MORSE object. By navigating
across the original or modified relations however,
previous and derived versions can be identified.

Artifacts are used to manage models and model el-
ements (for details see below), model transformations,
and MDD workflows. Besides the versioning of these,
the repository supports branching (MBranch) and tagging
(MTag) of projects. Note that artifacts can be shared by
multiple projects as they can be associated by different
tags and branches. They can be changed independently
and merged later on.

D MObject ®
; uuid: String dc
MProject |; state: int 1
1 0..1[revision: long DublinCore
project root A 0.1
MArtifact I_,* original | title: String
modified creator: String
data: byte[] subject: String
" description: String
artifacts tags publisher: String
L contributor: String
date: Date
* e
t tags type: String
palgl:ll 9 format: String

- source: String
ﬁ' MBranch | | MBuild | identifier: String
mainBranch Ianggage: Strmg
relation: String
coverage: String
| MSnapshot | | MRelease | rights: String
Figure 3. MORSE Objects and Projects

Typical MDD projects consist of models, transforma-
tions, and workflows. An example of a MDD development
framework that works with these artifacts is openArchitec-
tureWare (0AW) [12]. We have adopted these artifact types
and support them in MORSE as shown in Figure 4(a).

MAtrtifact
B MModel MModelElement
H MTransformation MModelRelation

M2MTransformation MinstanceRelation

M2TTransformation

—| MWorkflow

(a) MDD Artifacts

MinheritanceRelation

MAnnotationRelation

(b) additional MORSE Objects

Figure 4. MDD Artifacts and additional MORSE Objects

Besides the general management of MDD artifacts,
MORSE particularly realizes support for models. Mod-

src
MModel

model

inRelations |+ _*|outRelations
MModelRelation

* |elements
MModelElement

0..1destElement

0..1 srcElement

Model Element and Model Relations

Figure 5.

els typically contain model elements and have rela-
tionships to other models. By capturing and keeping
track of these, MORSE facilitates reflection on models,
model elements, and model relations. Figure 5 illustrates
MModel, MModelElement, and MModelRelat ion classes
that represent these concepts. All these classes derive
from MObject and are identifiable and versionable as
such. Moreover, MModels are MArtifacts and can use
the data attribute to save a serialized form of a model.
Examples of different relations are instance-of, inheri-
tance, and annotation relations as shown in Figure 4(b).
A model relation (MModelRelation) has a source (src)
and destination (dest) model, e.g., an annotated model
is the destination model of a MAnnotationRelation
and the annotation model depicts the corresponding source
model. Besides referring to the models, a model relation
may also specify actual model elements (srcElement and
destElement).

While it would be possible to further specify details,
e.g., of model elements, the presented concepts are suffi-
cient for our purposes, i.e., to make models and model-
elements identifiable and to capture dependencies between
different models as introduced though their relations. The
models that are stored and versionized within MModels
can be retrieved in their serialized form and can further
be processed by technology-specific tools, e.g., for intro-
spection, model transformation, or model checking.

For the presented classes and concepts, the model
repository exposes different services as indicated in Fig-
ure 2. Besides an administrative and resource management
interface, the repository particularly offers an information
retrieval interface to model-aware services. Some of its
operations are listed in Table I. A UUID of the specified
type is passed to the operation that usually returns MORSE
objects. Most operation names are derived from the role
or property names of a class. Besides these, there are
some operations that allow for additional queries, e.g.,
the operation getMObject.derived returns all derived
MORSE objects for the UUID of a MORSE object, i.e.,
the operation identifies all derived MORSE objects by
traversing the modified relations. Sometimes it suffices
to request the UUIDs instead of the objects. The last row
shows an operation name with an .uuid suffix that can
be appended for such a purpose. Besides these operations,
the information retrieval interface also allows clients to
pass complex queries to the persistence backend, e.g., for
retrieving all artifacts of a certain branch that have been

modified after a certain date. By permitting queries to be
passed to and executed at the persistence backend, multiple
interaction with the repository can be avoided, resulting in
higher performance.

Table T
INFORMATION RETRIEVAL OPERATIONS

Return Type Operation Name
MObject getMObject

MObject getMObject.root
MObject getMObject.original
MObject[] getMObject.modified
MObject[] getMObject.derived
DublinCore getMObject.dc
MMainBranch getMProject.mainBranch
MProject getMTag.project
MBranch getMTag.parent
MArtifact[] getMTag.artifacts
MTag[] getMBranch.tags

MTag[] getMArtifact.tags

byte[] getMArtifact.data
MArtifact getMArtifact.latest
MModelRelation[] | getMModel.inRelations
MModelRelation[] | getMModel.outRelations
MModelElement[] | getMModel.elements
MModel getMModelElement.model
MModel getMModelRelation.src
MModel getMModelRelation.dest
UUID[] getMTag.artifacts.uuid

V. MODEL-AWARE SERVICES

Services can interact with the MORSE repository at
runtime and can profit from its reflective functionalities.
We call services that interact with MORSE model-aware.
Below we illustrate how they can interact with the repos-
itory and what information they may expose. Also we
will show how model-aware services can be used by other
services and how they can be created.

A. Interaction with the Repository

Model-driven, model-aware services can retrieve the
MORSE objects from which they have been generated.
This is achieved by embedding the UUIDs of the objects
into the services, such as the UUID of the build as
well as UUIDs of corresponding models, model elements,
or transformations. At runtime, the service can access
these UUIDs and retrieve the MORSE objects from the
repository. The model-aware service typically reflects on
the information and applies some logic for its further
execution or uses the information for performing model-
transformations.

Figure 6 illustrates a sequence diagram of a model-
aware service. After a project and MDD artifacts have
been created and checked into the repository, a build for
the project is initiated by a client. The builder service
retrieves the artifacts and generates a model-aware service,
weaving corresponding UUIDs into the code for traceabil-
ity. Afterward, it is deployed to a Web service framework.
Next, a client invokes the service and causes it to interact
with the repository. For the models it has been generated
from, it needs e.g., to discover and consider new model
relations such as new annotations. Therefore it passes the

embedded UUIDs of its models to the information retrieval
interface of the model repository and requests for the
model relations (getMModel.inRelations). These are
then retrieved and evaluated. Relevant model relations are
identified and the related models are requested. Finally,
the models are processed and a response is issued to the
client.

Please note that the MORSE builder in Figure 6 uses
the MORSE repository to obtain the models of the model-
aware services in order to generate code for them. This
sequence diagram hence illustrates how an MDD tool (in
this case the generator of MORSE) can make use of the
MORSE architecture in the same way as other components
querying models, such as monitoring components.

IDE : MORSERepository MORSE Builder || WSFramework : Awe:fgg::/ice Client :
Client : ModelRepository : CodeGenerator RuntimeEngine || 7o e, ... || WebService
: WebService
: | i | b
create project Service E
"""""" UUIDs are | The needs to
design assigned for generator reflect on
MDD artifacts MDD artifacts | is created the models |
< that are and it has been
checkin associated | invoked by generated |
MDD artifacts| [{ with the the from. E.g.,
—d7 | project. [repository. to discover l
create build - | // new model I A client
run build J relations. invokes
The AN N - For its | the
I ?egnsrat?r: retrieve artifacts embedded I model-
fetches the (L P4 p—— UUID(s) it
artifacts Generates e () § aware
Weave . performs Web
| from the model-aware |)
" MORSE ; lookups. service.
repository " service v 0y
| for runnin objects UUIDs create instance | \
g h \
| L buii. into the code | deloy | [T T o
for traceability. \ invoke'y
| 1dentify | look up MORSE object(s)
relevant T T
] [.
| mod_el | reflect on
relations. models
| | look up MORSE object(s) | [€—
-
| e — T)
relevant, || | ______------77y Works - process
| related B | with the models
| models are | models. <
requested. respond

Figure 6. Sequence Diagram of a Model-Aware Service

B. Informational Operations

We have seen how model-aware services can interact
with the repository, e.g., after invocation. Besides this,
model-aware services may also offer information on them
to other services (see A in Figure 1), i.e., disclose the
MORSE objects they have been created from or are re-
lated to. For such model-aware services, we propose the
operations displayed in Table II. The parameter passed
to the operations specifies the type of the MORSE object
in question, such as MBuild, MProject, or MModel.
As a result, the service returns MORSE objects of the
respective type. For example, in order to retrieve the
models from which the model-aware service has been
generated the getMObject operation is called with the
parameter MModel. With the proposed operations it is
possible to interrogate a model-aware service for its build,
originating project, and MDD artifacts.

C. Integrating with Model-Aware Services

A service or process may integrate with and use model-
aware services (see also B in Figure 1). A Model-aware
service can support model-driven systems in the sense that

Table II
MODEL-AWARE SERVICE OPERATIONS

Return Type | Operation Parameter
MObject([] getMObject type of MObject
UUID[] getMObject.uuid | type of MObject

it can lookup and work with the MDD artifacts they have
been generated from. During runtime, it receives events
from these systems that contain MORSE identifiers and
queries the model repository. For this kind of model-aware
services, i.e., services that lookup MORSE objects for
events they receive, we propose the operations displayed
in Table III.

Table 11T
RECEIVE LOOKUP EVENT OPERATION
Return Type | Operation Parameters
void receiveMObject.uuid | UUIDI[]
MObject getMObject UUID

As an example let us consider processes with BPEL
as a target technology for a process-driven SOA. Such
processes can be generated from platform-independent,
conceptual models [13]. The model repository manages
the respective MDD projects and artifacts. In general,
processes and process engines do not interact with the
model repository or model-aware services. However, they
can integrate with model-aware services in the sense that
the latter receive events from the engine that hold the
UUIDs of MORSE objects. Thus, these UUIDs have to
be supplied as traceability information to the process.

For example, BPEL extensions provide a standard way
to realize this. Listing 1 shows an excerpt of a BPEL pro-
cess?> with a BPEL extension for mapping code elements
of the BPEL process to MORSE object identifiers. The
traceability element, that indicates the UUID of the
build as an attribute, is a sequence of rows that maps
BPEL elements to the uuids of corresponding MORSE
objects. The XML Path Query Language (XPath) [14]
is chosen as the default query language for selecting
the XML elements of the BPEL code. For extensibility,
an optional queryLanguage attribute, that has the same
semantics as in BPEL (cf. Section 8.2 of [15]), can specify
an alternative query language or XPath version.
<process name="DeploymentProcess”>

<extensions >

<extension mustUnderstand="yes”

namespace="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”

>

</extensions >

<import importType="http://www.w3.0org/2001/XMLSchema”

namespace="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”

location="http://xml.vitalab.tuwien.ac.at/ns/morse/traceability.xsd”
>

<morse:traceability

build="56810150—5bd8 —4e8e —9ec5 —0b8a205946b" >

<row query="/process[1]”

queryLanguage="urn:oasis:names:tc:wsbpel:2.0:sublang:xpath1.0” >
<uuid>c6d2a636—747d—4c1b—8b7a—b32f59f0ac8c < /uuid >
<uuid>e4963cf9—f4d3 —4f72—abeS —f3a4e226¢30 </uuid >

<uuid>808ffa5d—d03e—465f—b931—0adald3b29d3 </uuid >
<uuid>5bad0ed1 —3039—47c1 —ba69—6¢7a0362907a < /uuid >

2For simplicity reasons most XML namespaces have been omitted.

</row>

<row query="/process|1]/sequence[l]/receive[1]”>
<uuid>d923339a—ef5d—455c—9fa7—8be23df55891 < /uuid >

</row>

<row query="/process[1]/sequence[l]/receive[l]/@variable[1]”>
<uuid>b52e218c—988e—418b—ad92—87aa533b1387 </uuid>

</row>

</morse:traceability >

<sequence>
<l=— . M=—>
</sequence>
</process>
Listing 1. BPEL Process with an Extension for MORSE Traceability

Note that this traceability information can annotate any
XML based target code and can often be supplied as
an inline extension® and does not have to be defined in
a separate file. As a consequence, our approach is not
limited to BPEL but can directly be applied to other XML
and Web service based technologies and standards.

The traceability information can also be applied to
programming languages such as Java or C#, e.g., as
annotations to classes, interfaces, methods, and parame-
ters. These annotations can be added to the source code
(cf. [16]) or can be realized exogenously in an annotation
file that decorates annotated classes.

In our BPEL example, during generation time, the
MORSE builder weaves UUIDs of the MORSE objects into
BPEL code (see A in Figure 1). At deployment time, the
BPEL engine needs to support the BPEL extension, i.e.,
for the namespace that is used for the MORSE traceability
extension, there is an implementation at the BPEL engine
in place. At runtime, this extension submits events that
contain the identifiers of e.g., the process or process
activities, an event type, and optional further properties.
Some events of interest are process instantiation and ter-
mination and pre-events and post-events for the execution
of activities. Finally, the events are received by model-
aware services that look-up the MORSE objects for e.g.,
monitoring, auditing, reporting, or business intelligence
scenarios.

D. Creating Model-Aware Services

The MORSE builder supports the generation of the
presented types of model-aware services, i.e., it creates
WSDL* interfaces and Java implementations, as follows:

o For any build of a MDD project, a dedicated, stan-
dalone model-aware Web service can be generated
that provides information on the build, the project,
and its artifacts. For the endpoint of such a Web ser-
vice we propose a Uniform Resource Identifier [18]
that ends with /MBuild as a naming convention.

o For generating model-aware services, templates can
be reused in projects for extending the interface with
the desired operations, for embedding the UUIDs to
the service, and for generating the service requester
implementation for interacting with the repository.

3Supposed that such extensibility is provided with an any element in
the XML schema.

4Web Services Description Language [17]

For services and processes that rely on model-aware
services, UUIDs need to be supplied for services or pro-
cesses as well. During generation time, the MORSE builder
creates a traceability mapping that can be embedded into
XML documents as demonstrated. Although we have
shown an integration with model-aware services using
model-driven BPEL processes, this approach can similarly
be applied to different technologies and frameworks, e.g.,
message interceptors for Web services.

VI. CASE-STUDY

In order to demonstrate the applicability of the presented
approach, we explain a case study. In this case study a
European telecommunication company offers rich multi-
media services to customers. Particularly, the company’s
customer can subscribe to content such as video or audio
streams and files, i.e., the customer can, e.g., download
tracks from music albums and watch movies.

In this context, licensing information on the content
constitutes a crucial issue: (under which conditions) is
the customer allowed to access a resource? Often, e.g.,
broadcasting content can only be obtained if a user exe-
cutes the request to access such content within the country
of the broadcasting company. Other possible restrictions
are the contract and status of the customer. Similarly,
payment depends on various factors such as the price
of the requested content, the conditions of the customers
contract and/or of effective special offers.

The telecommunication company decided to apply
MDD technologies for its services. Therefore, it designed
and uses various models, e.g., for licensing and payment
information. When the company modifies its business
models for multimedia content, e.g., introduces a special
offer, or if it changes the licensing information, it creates
or modifies models accordingly. For enabling runtime ser-
vices to dynamically work with these models, the company
employs MORSE, i.e., models are stored within the model
repository and the SOA contains model-aware services that
interact with the repository. As a result, the company is
able to address the following issues:

o The current price for the content as well as effective
conditions such as originating from valid special
offers or the customers contract conditions are con-
sidered for calculating the price. A special offer can
simply be introduced as a new model-relation, i.e., the
service does not have to be modified or redeployed.

o Access is granted as specified in the effective licens-
ing model.

o For analyzing customer services the corresponding
processes are monitored and related to their originat-
ing models.

A ConsumeMultimediaProcess is initiated when
the user wants to download some multimedia content.
This process invokes an AccountingService and a
LicensingController service and returns detailed in-
formation on payment and licensing to the user for
acceptance. Both services retrieve the model instances
from the repository and apply an algorithm. If necessary,

also the algorithms can be stored as models and can
dynamically be retrieved and executed by the services.
We will demonstrate such a model-aware service in more
detail by focusing on the payment service.

Besides this orchestration, the process also notifies a
monitor by transmitting the UUID of the model from
which it has been generated. From the process models
BPEL code is generated with a BPEL extension that noti-
fies the monitor at invocation, as explained in Section V-C.
A monitor collects this information from various processes
and process versions and correlates them for generating
statistical reports (containing e.g., process versions, num-
ber & time of invocations, and duration).

After the AccountingService is invoked, it calculates
a price with the effective payment and content models
according to the conditions of the contract and of effective
special offers. The models are retrieved from the MORSE
repository (see also Figure 6). Figure 7 shows models that
are processed by Algorithm 1 for calculating the price.
Besides customer, content, and purchase information, the
models store conditions of a contract and optionally of
special offers. For calculating the price, first the effective
conditions are determined by applying present special
offers. If the flatrate condition is valid, the customer will
not be charged for the download. Similarly, a customer
may download a content that he already retrieved within
the last day for free. Otherwise, he will be charged the
price of the content by considering a discount if he exceeds
his free download volume.

1 : Purch: >
onsur

H T mer (| Downl

Content1 : Content

title = ,Eine kleine Nachtmusik*

artist = ,Wolfgang A. Mozart*

interpreter = ,Wiener Philharmoniker*
year = 2008

‘ price = 0.96 €

firstname = ,Hector* date = 2009-07-25
lastname = ,Bonheur* || price = 0.48 €
title = ,Dr."

C1: Contract
validNotBefore = 2008-09-10 11:12:13 GMT
validNotAfter = 2010-09-10 11:12:13 GMT

StandardCC : ContractConditions

diti
conditions discountFactor = 1.00

flatrate = false
freeDownloadVolume = 100 MB

‘ V subContracts
C2 : SpecialOffer

validNotBefore = 2008-09-10 11:12:13 GMT
validNotAfter = 2009-09-10 11:12:13 GMT

conditions 2 : Contr: ondition:

discountFactor = 0.50

Figure 7. Payment Model Instances

After the ConsumeMultimediaProcess determined
the licensing conditions and calculated the price, the
customer is informed and can decide to accept the terms
for eventually purchasing the multimedia content. In case
access is denied as caused by some licensing condition,
the user can be provided with detailed information for
understanding the reason. Similarly, he can retrace the
payment information by reflecting on the models.

VII. RELATED WORK

ModelBus [19] is a model-based tool integration frame-
work that, like the MORSE repository, aims to support
MDD. It addresses the heterogeneity and distribution
of model tools and realizes transparent model update.
Designed as an open environment, ModelBus focuses
on integrating functionality such as model verification,

Algorithm 1: Payment Algorithm

Input: r € Content, ¢ € Contract
Output: price € Price

1 begin

2 cc «—— c.conditions;

3 for special € c.subContracts—forAll(sc|isValid(sc)) do

4 L applyConditions(special.conditions, cc);

5 if cc.flatrate then

6 L return 0;

7 if 0 # c.purchases—forAll(p|p.date+24h>now() A p.content=r) then

8 L return 0;

9 if getTotalDownloadVolume(c) < c.conditions.freeDowloadVolume
then

10 | return 0;

11 else

12 L return r.price * cc.discountFactor;

13 end

transformation, or testing into a service bus. The MORSE
repository, with another focus, comes with explicit support
for the management of MDD projects. Workflows, that
cover processes of MDD, have to be defined on top
of ModelBus. In contrast, MORSE focuses on runtime
services and processes and their integration and interaction
with the repository.

ModelCVS [20] aims at model-based tool integration.
ModelCVS and the MORSE repository unlike ModelBus
have a centralized information management in common.
Instead of aiming at reconciling a multitude of modeling
tools’ languages and the integration of arbitrary (legacy)
tools, MORSE concentrates on some selective concepts
such as relations between models.

Odyssey-VCS 2 [21] is an EMF based model repository
after initially relying on the NetBeans Metadata Reposi-
tory [22]. In contrast to this and most model reposito-
ries, the MORSE repository abstracts from technologies,
focuses on MDD projects, and targets at integration with
services. Apart from the model repository, MORSE with
its model-aware services establishes a service-oriented
approach that has not yet been presented at large.

In contrast to the mentioned model repositories and
model-based tool integration frameworks, Moogle [23],
a model search engine, realizes an inverse approach of
indexing and potentially managing models. It allows for
complex queries and can help finding relevant models for
MDD projects during design time. As such it is not (yet)
suited for our purposes that target runtime systems.

VIII. SUMMARY

We have presented MORSE, the Model-Aware Service
Environment, for facilitating services to dynamically re-
flect on models. For this purpose we have proposed a
model repository that manages MDD projects and supports
the identification of and reflection on models, model
elements, and model relationships. Moreover, we have
presented model-aware services that interact with the
model repository for dynamic information retrieval on
models and MDD projects. Also, we have demonstrated
how services and processes can integrate with model-

aware services, i.e., how traceability information is intro-
duced and transmitted. Finally, we have showcased our
contributions with a case study.

While in this work we focused on model-aware services
and their combination with other services, e.g., for moni-
toring purposes, the presented services of the model repos-
itory are not only of interest for the runtime but also for
design time components. With appropriate tool-support,
the MORSE repository constitutes a common space for
developers in a distributed environment for storing and
managing MDD projects and models that can be consulted
by the runtime, i.e., model-aware services. This use of
MORSE was demonstrated when we illustrated the internal
architecture of MORSE in Section V (see Figure 6).

ACKNOWLEDGMENTS

This work was supported by the European Union FP7
project COMPAS, grant no. 215175.

REFERENCES

[1] MDA Guide Version 1.0.1, http://www.omg.org/cgi-bin/
doc?omg/03-06-01, June 2003, [accessed in July 2009].

[2] M. Volter and T. Stahl, Model-Driven Software Devel-
opment: Technology, Engineering, Management. —Wiley,
2006.

[3] M. Mernik, J. Heering, and A. M. Sloane, “When and
how to develop domain-specific languages,” ACM Comput.
Surv., vol. 37, no. 4, pp. 316-344, 2005.

[4] E. Oberortner, U. Zdun, and S. Dustdar, “Domain-specific
languages for service-oriented architectures: An explorative
study,” in ServiceWave, ser. Lecture Notes in Computer
Science, P. Mihonen, K. Pohl, and T. Priol, Eds., vol. 5377.
Springer, 2008, pp. 159-170.

[5] S. Stein, S. Kiihne, J. Drawehn, S. Feja, and W. Rotzoll,
“Evaluation of OrViA framework for model-driven SOA
implementations: An industrial case study,” in BPM, ser.
Lecture Notes in Computer Science, M. Dumas, M. Re-
ichert, and M.-C. Shan, Eds., vol. 5240. Springer, 2008,
pp- 310-325.

[6] A. Bercovici, F. Fournier, and A. J. Wecker, “From business
architecture to SOA realization using MDD,” in ECMDA-
FA, ser. Lecture Notes in Computer Science, 1. Schiefer-
decker and A. Hartman, Eds., vol. 5095. Springer, 2008,
pp. 381-392.

[7]1 P. Mayer, A. Schroeder, and N. Koch, “MDD4SOA: Model-
driven service orchestration,” in EDOC. IEEE Computer
Society, 2008, pp. 203-212.

[8] International Telecommunication Union, ISO/IEC 9834-8
Information technology — Open Systems Interconnection —
Procedures for the operation of OSI Registration Author-
ities: Generation and registration of Universally Unique
Identifiers (UUIDs) and their use as ASN.1 object identifier
components, http://www.itn.int/ITU-T/studygroups/com17/
01d/X.667-E.pdf, September 2004, [accessed in July 2009].

[9] G. Booch and A. W. Brown, “Collaborative development
environments,” Advances in Computers, vol. 59, pp. 1 — 27,
2003.

(10]

(11]

(12]

(13]

(14]

[15]

(16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

ISO, ISO/IEC 19501:2005 Information technology -
Open Distributed Processing — Unified Modeling Lan-
guage (UML), v1.4.2, http://www.omg.org/cgi-bin/doc?
formal/05-04-01, April 2005, [accessed in July 2009].

J. Kunze and T. Baker, “The Dublin Core Metadata Ele-
ment Set,” http://www.ietf.org/rfc/rfc5013.txt, The Internet
Engineering Task Force, Request for Comments, August
2007, [accessed in July 2009].

openArchitectureWare.org, “openArchitectureWare,” http:
/lopenarchitectureware.org, openArchitectureWare.org, [ac-
cessed in July 2009].

H. Tran, U. Zdun, and S. Dustdar, “View-based and model-
driven approach for reducing the development complexity
in process-driven SOA,” in Intl. Working Conf. on Business
Process and Services Computing (BPSC’07), ser. Lecture
Notes in Informatics, vol. 116, sep 2007, pp. 105-124.

A. Berglund, S. Boag, D. Chamberlin, M. F. Ferndndez,
M. Kay, J. Robie, and J. Siméon, “XML path language
(XPath) 2.0,” http://www.w3.org/TR/xpath20/, W3C, W3C
Recommendation, January 2007, [accessed in July 2009].

“Web service business process execution language ver-
sion 2.0,” http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.
0.html, OASIS Web Services Business Process Execution
Language (WSBPEL) TC, OASIS Standard, January 2007,
[accessed in July 2009].

A. Buckley, “A metadata facility for the Java™ pro-
gramming language,” http://www.jcp.org/en/jsr/detail ?id=
175, Sun Microsystems, Inc., Java Specification Requests,
September 2004, [accessed in July 2009].

“Web services description language (WSDL) version 1.1,”
http://www.w3.org/TR/wsdl, W3C, W3C Note, March
2001, [accessed in July 2009].

T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform
resource identifier (URI): Generic syntax,” http://www.ietf.
org/rfc/rfc3986.txt, The Internet Engineering Task Force,
Request for Comments, January 2005.

P. Sriplakich, X. Blanc, and M.-P. Gervais, “Supporting
transparent model update in distributed case tool integra-
tion,” in SAC, H. Haddad, Ed. ACM, 2006, pp. 1759-1766.

G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Rets-
chitzegger, and W. Schwinger, “Towards a semantic in-
frastructure supporting model-based tool integration,” in
GaMMa ’06: Proceedings of the 2006 international work-
shop on Global integrated model management. New York,
NY, USA: ACM, 2006, pp. 43-46.

L. Murta, C. Corréa, a. G. P. Jo and C. Werner, “Towards
Odyssey-VCS 2: Improvements over a UML-based version
control system,” in CVSM ’08: Proceedings of the 2008
international workshop on Comparison and versioning of
software models. New York, NY, USA: ACM, 2008, pp.
25-30.

M. Matula, “NetBeans metadata repository,” http://mdr.
netbeans.org, NetBeans Community, [accessed in July
2009].

D. Lucrédio, R. P. de Mattos Fortes, and J. Whittle,
“MOOGLE: A model search engine,” in MoDELS, ser.
Lecture Notes in Computer Science, K. Czarnecki, I. Ober,
J.-M. Bruel, A. Uhl, and M. Volter, Eds., vol. 5301.
Springer, 2008, pp. 296-310.

http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.omg.org/cgi-bin/doc?omg/03-06-01
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf
http://www.itu.int/ITU-T/studygroups/com17/oid/X.667-E.pdf
http://www.omg.org/cgi-bin/doc?formal/05-04-01
http://www.omg.org/cgi-bin/doc?formal/05-04-01
http://www.ietf.org/rfc/rfc5013.txt
http://openarchitectureware.org
http://openarchitectureware.org
http://www.w3.org/TR/xpath20/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.jcp.org/en/jsr/detail?id=175
http://www.jcp.org/en/jsr/detail?id=175
http://www.w3.org/TR/wsdl
http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt
http://mdr.netbeans.org
http://mdr.netbeans.org

	I Introduction
	II Motivation from the MDD Perspective
	II-A Traceability in Model-driven Systems
	II-B Support for Collaboration in Model-driven Systems

	III Model-Aware Service Environment
	IV Model Repository
	V Model-Aware Services
	V-A Interaction with the Repository
	V-B Informational Operations
	V-C Integrating with Model-Aware Services
	V-D Creating Model-Aware Services

	VI Case-Study
	VII Related Work
	VIII Summary
	References

