
ASKALON: A Tool Set for
Cluster and Grid Computing

�

Thomas Fahringer�� , Alexandru Jugravu�, Sabri Pllana�,
Radu Prodan�, Clovis Seragiotto Junior�, Hong-Linh Truong�
�
Institute for Computer Science, University of Innsbruck,

Technikerstr. 25/7, A-6020 Innsbruck, Austria
E-mail: Thomas.Fahringer@uibk.ac.at�
Institute for Software Science, University of Vienna,

Liechtensteinstr. 22, A-1090 Vienna, Austria
E-mail: �aj,pllana,radu,clovis,truong�@par.univie.ac.at

SUMMARY

Performance engineering of parallel and distributed applications is a complex task that iterates through
various phases, ranging from modeling and prediction, to performance measurement, experiment
management, data collection, and bottleneck analysis. There is no evidence so far that all of these phases
should/can be integrated in a single monolithic tool. Moreover, the emergence of computational Grids as a
common single wide-area platform for high-performance computing raises the idea to provide performance
tools and others as interacting Grid services that share resources, support interoperability among different
users and tools, and most important provide omni-present performance functionality over the Grid.

We have developed the ASKALON tool set [18] to support performance-oriented development of
parallel and distributed (Grid) applications. ASKALON com prises four tools, coherently integrated into
a Grid service-based distributed architecture. SCALEA is aperformance instrumentation, measurement,
and analysis tool of parallel and distributed applications. ZENTURIO is a general purpose experiment
management tool with advanced support for multi-experiment performance analysis and parameter studies.
AKSUM provides semi-automatic high-level performance bottleneck detection through a special-purpose
performance property specification language. The PerformanceProphet enables the user to model and
predict the performance of parallel applications at early development stages.

In this paper we describe the overall architecture of the ASKALON tool set and outline the basic
functionality of the four constituent tools. The structure of each tool is based on the composition and
sharing of remote Grid services, thus enabling tool interoperability. In addition, a common Data Repository
allows the tools to share common application performance and output data which has been derived by the
individual tools. A Service Repository is used to store common portable Grid service implementations. A
general-purpose Factory service is employed to create service instances on arbitrary remote Grid sites.
Discovering and dynamically binding to existing remote services is achieved through Registry services.
Visualization is supported by the ASKALON visualization diagrams in order to graphically display
performance and output data by querying the Data Repository.

We demonstrate the usefulness and effectiveness of ASKALONby applying the tools to a variety of real-
world applications.

�
This research is supported by the Austrian Science Fund as part of the Aurora Project under contract SFBF1104.	
Corresponding author

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 1

1. Introduction

Computational Grids have become an important asset aiming at enabling application developers to
aggregate resources scattered around the globe for large-scale scientific and engineering research.
However, developing applications that can effectively utilize the Grid still remains very difficult
due to the lack of high-level tools to support developers. Tothis date, many individual efforts have
been devoted to support performance-oriented developmentof parallel and distributed applications.
Porting existing software tools on the Grid poses additional challanges with respect to portability and
interoperability for concurrent use of shared resources. Portability and interoperability of software tools
on the Grid are critical issues which have not been thoroughly addressed by the scientific community.
We believe that this situation has been caused by the heterogeneous and often machine-dependent
nature of tools, complex operating system and compiler dependencies, as well as differences and
incompatibilities in tool functionality, interfaces, andother proprietary solutions.

Since 1995, the Globus project [23] is continuously developing middleware technology aimed
to support and ease the development of high-level Grid infrastructures and applications. Despite
its enormous success in the Grid research community, the Globus Toolkit Version 2 suffers from
substantial integration and deployment problems. The services provided are largely independent from
each other. The only clear connection among is the common Grid Security Infrastructure (GSI) [25].
Therefore, improvements made by the community to one service caused little or no contributions to
others, thus slowing down progress. Moreover, the implementation platform has been mostly based on
C, which limits the deployment and software reuse capabilities.

While language, software, system, and network neutrality have not been initially on the Globus
agenda, they have been successfully addressed over the past10 years by well known distributed object-
oriented component technologies such as the Java Remote Method Invocation (RMI [29]), the Common
Object Request Broker Architecture (CORBA [35]), Microsoft’s Distributed Component Object Model
(DCOM [8]), Enterprise Java Beans [45], Jini [17], Web services [56], or JavaSymphony [21].

In the year 2000, a consortium of companies comprising Microsoft, IBM, BEA Systems, and Intel
definedWeb services, a new set of XML [30] standards for programming Business-to-Business (B2B)
applications. Web services are nowadays being standardised by the W3C consortium [56]. They address
heterogeneous distributed computing by defining techniques for describing software components,
methods for accessing them, and discovery methods that enable the identification of relevant service
providers. A key advantage of Web services over previous distributed technology approaches is their
programming language, model, network, and system softwareneutrality.

Follwing the advantages offered by Web services, the Open Grid Services Architecture (OGSA) [24]
builds on the Web services technology mechanisms to uniformly expose Globus Grid services
semantics, to create, name, and discover transient Grid service instances, to provide location
transparency and multiple protocol bindings for service instances, and to support integration with
underlying native platform facilities. The Open Grid Services Infrastructure (OGSI) [54] is the
technical specification which defines extensions and specialisations to the Web services technology
to standardise and ease the development of Grid services as required by OGSA. The OGSA toolkit
implements the OGSI specification as an extension to Apache Axis [27].

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

2 THOMAS FAHRINGER ET AL.

In this paper we describe the ASKALON tool set for cluster andGrid computing [18].
ASKALON integrates four interoperable tools: SCALEA for instrumentation and performance
analysis, ZENTURIO for automatic experiment management, AKSUM for automatic bottleneck
analysis, and the PerformanceProphet for application modeling and performance prediction. The
tool-set has been designed as a distributed set of (OGSI-based) Grid services, exporting a platform
independent standard API. Platform dependent and proprietary services are pre-installed on specific
appropriate sites and can be remotely accessed through a portable interface. A UDDI-based service
repository is employed to store implementations of public portable Grid services. Each tool provides
its own graphical User Portal to be accessed by the user in a friendly and intuitive way. Remote services
are created by a general purposeFactoryservice using the information from the Service Repository.On
the other hand, the portals discover and bind to existing service instances by means of advanced lookup
operations invoked on theRegistryservice. Interoperability between tools is naturally achieved by
allowing multiple clients to connect and share the same service instances from the initial design phase.
Furthermore, a Data Repository with a standard schema definition, allows tools to share performance
and output data of the applications under evaluation.

The paper is organized as follows. The next section discusses related work. Section 3 presents an
overall Grid service-based architecture of the ASKALON tool-set. Sections 4 through 7 describe the
basic functionality of each tool in brief. Various experiments conducted by each individual tool on
several real world applications are reported in Section 8. Concluding remarks and a brief future work
outline are presented in Section 9.

2. Related Work

Early work at the Technical University of Munich developed THE TOOL-SET [57], consisting
of a mixture of performance analysis and debugging tools forparallel computing. Attempts to
accomodate these tools into a single coherent environment produced the On-line Moniotoring Interface
Specification (OMIS) [58]. In contrast to this effort, ASKALON focuses on performance analysis for
parallel and Grid applications, whose tools are integratedthrough a distributed Grid service-based
design.

Significant work on performance measurement and analysis has been done by Paradyn [38],
TAU [37], Pablo toolkit [44], and EXPERT [59]. SCALEA differs from these approaches by
providing a more flexible mechanism to control instrumentation for code regions and performance
metrics of interest. Although Paradyn enables dynamic insertion of probes into a running code,
Paradyn is currently limited to instrumentation of subroutines and functions, whereas SCALEA can
instrument – at compile-time only – arbitrary code regions including single statements. Paradyn
also supports experiment management [33] through a representation of the execution space of
performance experiments and techniques for quantitative comparison of several experiments. In
contrast to ZENTURIO, experiments (by varying problem and machine size parameters) have to be
set up manually.

The National Institute of Standards and Technology (NIST) developed a prototype for an automated
benchmarking tool-set [12] to reduce the manual effort in running and analysing the results of parallel
benchmarks. Unlike in ZENTURIO, experiment specification is restricted to pre-defined parameters
available through a special purpose graphical user interface.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 3

Figure 1. The ASKALON Tool Set Architecture.

The ZOO project [32] has been initiated to support scientificexperiment management based on a
desktop experiment management environment. Experiments are designed by using an object-oriented
data description language. Nimrod [1] and ILAB [60] are two Grid-based tools is a tool that manages
the execution of large scale parameter studies. Parameterization is specified by meand of a declarative
plan file in Nimrod and through a graphical interface in ILAB.However, ZOO, Nimrod, and ILAB
restrict parameter specification to input files only, in contrast to ZENTURIO, which allows parameter
specification within arbitrary application files.

The European working group APART [4] defined a specification language for performance
properties of parallel programs based on which JavaPSL, thelanguage for performance property
specification used in AKSUM, has been designed. Performanceproperties defined by APART also
inspired some of the predefined properties Aksum provides.

The POEMS [2] project introduced a graphical representation which captures the parallel structure,
communication, synchronization, and sequential behaviorof the application. No standards are used
to model parallel applications and we have not found any document that describes a graphical
representation of process topologies or computer architectures.

3. ASKALON Architecture

ASKALON has been designed as a set of distributed Grid services (see Figure 1). The services
are based on the OGSI-technology and expose a platform independent standard API, expressed in
the standard Web Services Description Language (WSDL) [11]. Platform dependent and proprietary

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

4 THOMAS FAHRINGER ET AL.

services are pre-installed on specific appropriate sites from where they can be remotely accessed
in a portable way, via the Simple Object Access Protocol (SOAP) [46] over HTTP. By isolating
platform dependencies on critical resources, extra flexibility in installing and managing the tools
is achieved. Each tool provides its own graphical User Portal to be accessed in a friendly and
intuitive way. The User Portals are light-weight clients, easy to be installed and managed by the
end-users. User Portals reside on the user’s local machine (e.g. a notebook) and provide gateways to
performance tools by dynamically creating and connecting to remote services. ASKALON services
can be persistent (e.g. Registry and Factory) or transient,as specified by OGSI. All services can
be accessed concurrently by multiple clients, which is an essential feature in a Grid environment
and enables tool interoperability. The Grid Security Infrastructure (GSI) [26] based on single sign-
on, credential delegation, and Web services security [5] through XML digital signature and XML
encryption is employed for authentication across ASKALON User Portals and Grid services.

Remote service instances are created by a general-purposeFactoryservice (see Section 3.2 using the
information from the Service Repository (see Section 3.1).At the same time, the portals discover and
bind to existing service instances using theRegistryservice, described in Section 3.3. Additionally,
the Data Repository(see Section 3.4) with a common standard schema definition, stores and shares
common performance and output data of the applications under evaluation. It thus provides an
additional mode of integration and interoperability amongtools. To increase reliability of the system
by avoiding single point of failures, multiple Registry, Service, and Data Repository instances are
replicated on multiple sites and run independently.

An OGSI-based asynchronous event framework enables Grid services to notify clients about
interesting system and application events. ASKALON services support both push and pull event
models, as specified by the Grid Monitoring Architecture (GMA) [50]. Push events are important
for capturing dynamic information about running applications and the overall Grid system on-the-fly
and avoids expensive continuous polling. Pull events are crucial for logging important information, for
instance in cases when tools like ZENTURIO run in off-line mode, with disconnected off-line users.

ASKALON classifies the Grid sites on which the services can run into two categories (see Figure 1):
(1) Compute sitesare Grid locations where end applications run and which hostservices intimately

related to the application execution. Such services include the Experiment Executor of ZENTURIO, in
charge of submitting and controlling jobs on the local sitesand the Overhead Analyzer of SCALEA,
which transforms raw performance data collected from the running applications into higher-level more
meaningful performance overheads.

(2) Service sitesare arbitrary Grid locations on which ASKALON services are pre-installed or
dynamically created by using the Factory service.

3.1. UDDI-based Service Repository

The Universal Description, Discovery, and Integration (UDDI) [55] is a specification of a centralized
registry for publishing persistent Web service instances.UDDI as a static repository (a database) is
obviously not appropriate for publishing transient Grid service instances according to the UDDI best
practices document [13]. At the same time, OGSI defines the FactoryportType, but omits to define
how the Factory accesses the implementation code of the service to be created.

Publishing service implementations in a Grid environment is crucial, as one cannot assume that a
service implementation is available at the site where it is supposed to execute. This assumption becomes

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 5

reasonable for deployment scenarios of portable Java code,which is the case of the ASKALON service
implementations. We therefore propose a slightly different usage of UDDI in a Grid environment,
which, instead of publishing dynamic transient Grid service instances, uses UDDI to publish static
persistent Grid service implementations.

Our Factory service downloads the required service implementation from the UDDI Registry (if
necessary) and deploys the service instance within its local hosting environment.

Technically speaking, the UDDI best practices requires that the interface part of the WSDL
document be published as a UDDItModel and the instance part as abusinessService element
(as URLs). ThebusinessService UDDI element is a descriptive container, which is used to
group related Web services. It contains one or morebindingTemplate elements, which contain
information for connecting and invoking a Web service. ThebindingTemplate contains a pointer
to atModel and anaccessPoint element, which is set to the SOAP address of the service (port).
In contrast, for Web services running in a Grid environment,we use thebusinessService element
to publish service implementation information. Therefore, we set theaccessPoint element of a
bindingTemplate with the URL to the JAR package that implements the service.

Registry and Factory are the only persistent services in ASKALON, for which one entry
corresponding to the service implementation and an arbitrary number of entries corresponding to
the available instances are published in the UDDI repository. The distinction between the two types
of entries is done through the syntax of theaccessPoint URL. The User Portal connects to all
available Registries at start-up time, while Factories have a standard URL derived from the host
name and a pre-defined port number (http://hostname:port/Factory/). Additionally, a
notification mechanism compliant with the newest UDDI Version 3 specification informs the portal
when new Registries are registered.

3.2. Factory

Each Grid site hosts by default one persistent Factory service. The Factory is a generic service that
creates and deploys (Java) Grid services of any type at run-time, implemented and packaged as
JAR files. The Factory searches the (UDDI) Service Repository for a service of a given type (as
businessService name). If such a service is found, the Factory creates a Grid service instance
on-the-fly through the following steps: (1) get the URL of theservice implementation (represented as
accessPoint element – see Section 3.1); (2) download the JAR package; (3)deploy the service in
the hosting environment in which the Factory resides; (4) initialize the service instance; (5) register
the instance with all Registries; (6) set a leasing time equal to the service termination time; (7) return
the URL to the WSDL file of the service instance. Clients use this URL to retrieve the WSDL file and
dynamically bind to the service through dynamic run-time generated proxies.

3.3. Registry

The Registry service is a persistent service which maintains an updated list of the URLs to the
WSDL files of the existing Grid service instances. It may reside anywhere in the system and there
can be an arbitrary number of Registries for registering Grid services. The User Portal discovers all
existing Registries from the Service Repository at start-up time. The Registry grantsleasesto registered
services, similar to the Jini [17] built-in leasing mechanism. If a service does not renew its lease before

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

6 THOMAS FAHRINGER ET AL.

the lease expires, the Registry deletes it from its service list. This is an efficient way to cope with
dynamic transient services and network failures. A leasingtime of 0 seconds explicitly unregisters
the service. An event mechanism informs clients about new services that registered with the Registry,
or when services did not renew their lease. Thereby, clientsare always provided with a dynamically
updated view of the environment.

We provide three methods for performing Registry lookup operations: (1)white pagesprovide
service discovery based on service URL; (2)yellow pagessupport service discovery based on service
type. (3)green pagesperform discovery based on service functionality expressed in WSDL (see [43]
for details).

3.4. Data Repository

All ASKALON tools share a common data repository for storinginformation about the parallel
and distributed applications under evaluation. The repository implementation is based on the
PostgreSQL [31] open-source relational database system. The database schema definition reflects a
layered design and has been jointly developed by all tool developers.

Any tool can optionally store relevant experimental data including application, source code, machine
information, and performance and output results into the repository. An interface with search and
filter capabilities for accessing repository and leveraging the performance data sharing and tool
integration [52] is provided. Tools exchange data via the data repository and also provide direct
interfaces to subscribe for specific performance metrics, or parameter study results. Data can also be
exported into XML format so that it can easily be transfered to and processed by other tools.

SCALEA stores mostly performance overheads, profiles and metrics in the the data repository.
ZENTURIO through the Experiment Executor adds informationabout experiment parameters (ZEN
variables) as well as output data required by parameter studies. AKSUM adds through its Property
Analyzer the ZENTURIO schema definition information about high-level performance properties
(inefficiency, scalability) and their severity. The PerformanceProphet can access information provided
by any ASKALON tool to guide its prediction effort. Moreover, predicted performance data can be
inserted into the data repository as well, which can be accessed by ZENTURIO and AKSUM instead
of invoking SCALEA for a real program run.

3.5. ASKALON Visualization Diagrams

In addition to the distributed Grid service-based design and the common Data Repository, ASKALON
provides a Java-based package consisting of a set of genericand customizable set of visualization
diagrams [20]. Available diagrams include linechart, barchart, piechart, surface, as well as a more
sophisticated hierarchical diagram for the simultaneous visualization of a maximum of seven
dimensions, which is used to graphically display Grid performance studies.

Besides visualizing static post-mortem information, all diagrams accept online data streams as
input for dynamic on-line visualization of parallel and distributed program behavior. The diagrams
are generic and fully customizable, which enables both userand Grid services to map application
parameters, output results, or performance metrics onto arbitrary visualization axis. All ASKALON
tools employ this diagram package for visualization.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 7

4. SCALEA

SCALEA [53] is a performance instrumentation, measurement, and analysis tool for parallel programs
that supports post-mortem performance analysis.

4.1. Instrumentation

The Instrumentation service provides support to instrument services and applications. We support
two approaches: source code and dynamic instrumentation. In the first approach, the SCALEA
Instrumentation System (SIS) supports automatic instrumentation of Fortran MPI, OpenMP, HPF, and
mixed OpenMP/MPI programs. The user is able to select (by directives or command-line options) code
regions and performance metrics of interest. Moreover, SISoffers an interface for other tools to traverse
and annotate the AST to specify code regions for which performance metrics should be obtained.
Based on pre-selected code regions and/or performance metrics, SIS automatically analyzes source
codes and inserts probes (instrumentation code) in the codewhich will collect all relevant performance
information during execution of the program on a target architecture.

The source code level approach, however, requires all the source files to be available. In addition,
instrumentation and measurement metrics can not be configured at runtime. To overcome these
problems, we are currently exploiting the dynamic instrumentation mechanism based on Dyninst [10].
In order to enable dynamic instrumentation, we implement amutator servicewhich contains Dyninst
API calls, the code that implements the runtime compiler andthe utility routines to manipulate the
application process. A mutator is responsible for controlling the instrumentation of an application
process on the machine where the process is running. We developed an XML-based instrumentation
request language (IRL) to allow users and services to specify code regions for which performance
metrics should be determined and to control the instrumentation process.

4.2. Overhead Analyzer

SCALEA provides a novel classification of performance overheads for parallel programs that includes
data movement, synchronization, control of parallelism, additional computation, loss of parallelism,
and unidentified overheads [53]. The Overhead Analyzer service is used to investigate performance
overheads of a parallel or distributed program based on the overhead classification.

The SIS measurement library supports profiling of parallel applications, collecting timing, counter
information, as well as hardware parameters via the PAPI library [9]. The Overhead Analyzer computes
performance overheads and stores them into the data repository.

4.3. Performance Analyzer

The Performance Analyzer service evaluates the raw performance data collected during program
execution and stores them into the data repository. All requested performance metrics are computed.
Several analyses (e.g.Load Imbalance Analysis, Inclusive/Exclusive Analysis, Metric Ratio Analysis,
Overhead Analysis, Summary Analysis) are provided.

While most performance tools investigate the performance for individual experiments one at a
time, SCALEA goes beyond this limitation by supporting alsoperformance analysis for multiple

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

8 THOMAS FAHRINGER ET AL.

Figure 2. SCALEA Multiple Experiments Analysis

experiments (e.g.Speedup/Improvement Analysis, Scalability Analysis, Multi-Region Analysis, Multi-
Set Experiment Analysis). The user can select several experiments, code regions andperformance
metrics of interest whose associated data are stored in the data repository (see Figure 2). The outcome
of every selected metric is then analyzed and visualized forall experiments. SCALEA supports the
following multi-experiment analyses:

� performance comparison for different sets of experiments: The overall execution of the
application across different sets of experiments can be analyzed; experiments in a set are grouped
based on their characteristics (e.g. problem sizes, communication libraries, platforms). .� overhead analysis for multi-experiments: Various sources of performance overheads across
experiments can be examined.� parallel speedup and efficiency at both program and code region level: Commonly, those
metrics are applied only at the level of the entire program. SCALEA, however, supports
examination of scalability at both program and code region level ranging from a single statement
to the entire program.

5. ZENTURIO

ZENTURIO [43] is a tool designed to specify and automatically conduct large sets of experiments in
the context of large scale performance and parameter studies on cluster and Grid architectures.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 9

5.1. ZEN Experiment Specification Language

Conventional parameter study tools [1, 60] restrict parameterization to input files only. In contrast,
ZENTURIO defines a directive-based language called ZEN [42]to annotate arbitrary application
files. ZEN directives are used to assign value sets to so called ZEN variables. A ZEN variable
can represent any problem, system, or machine parameter, including program variables, file names,
compiler options, target machines, machine sizes, scheduling strategies, data distributions, etc. The
value set represents the list of interesting values for the corresponding parameter. The advantage of the
directive-based approach over an external script [1] is theability to specify more detailed experiments
(e.g. associate local scopes to directives, restrict parametrization to specific local variables, evaluate
different scheduling alternatives for individual loops, etc.).

ZEN defines four kinds of ZEN directives, exemplified in Section 8.3 TheZEN substitute directive
(see Examples 8.1, 8.2) uses a pre-processor-based string replacement mechanism to substitute a
ZEN variable with one element from its value set. To complement some of the ZEN substitute
directive’s limitations, aZEN assignment directive(see Example 8.3) can be used to insert an
assignment statement in the code. By default, the cross product of the value sets of all ZEN variables
is computed. The number of possible value set combinations can be limited by means ofZEN
constraint directives(see Example 8.3). ZEN also supports the specification of performance metrics
for arbitrary code regions through theZEN performance behavior directives(see Example 8.2). A
file/application annotated with ZEN directives is called ZEN file/application. A ZEN transformation
system generates all ZEN file instances for a ZEN file, based onthe ZEN directives inserted. The
SCALEA instrumentation engine, which is based on a completeFortran90 OpenMP, MPI, and HPF
front-end and unparser, is used to instrument the application for performance metrics. The ZEN
performance behavior directives are translated to SCALEA SIS directives and compiler command-line
options.

5.2. Experiment Generator

Through the Registry service, the User Portal locates anExperiment Generatorservice to which it
transfers the entire application via GridFTP. Designing Experiment Generator as a separate service
has the advantage of isolating the platform dependencies ofthe Vienna Fortran Compiler (VFC) [6],
on which the SCALEA instrumentation engine is based. After experiments are generated, they are
automatically transferred to the target compute Grid sites(using GridFTP [3]) for execution. In case of
the Globus DUROC co-allocator [15], the experiments are copied to multiple destination sites, which
are read from the RSL (Resource Specification Language) description of the experiment.

5.3. Experiment Executor

TheExperiment Executoris a generic service responsible for compiling, executing,and managing the
execution of experiments onto the local Grid site. If no Experiment Executor exists on the execution
site (arbitrary site in case of DUROC), it is created by the Factory service. The Experiment Executor
interacts at the back-end with a batch job scheduler, which in the current implementation can be
Condor [36], LoadLeveler, LSF, PBS, and Sun Grid Engine for cluster, and GRAM [14] or DUROC
for Grid computing.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

10 THOMAS FAHRINGER ET AL.

After each experiment has completed, the application output results and performance data are
stored into the ASKALON Data Repository (see Section 3.4). High-level performance overheads are
computed by the Overhead Analyzer service of SCALEA. AnApplication Data Visualizerportlet of the
User Portal, developed on top of the ASKALON visualization package (see Section 3.5), automatically
generates visualization diagrams that display the variation of performance and output data across
multiple sets of experiments.

6. AKSUM

AKSUM is a flexible tool for semiautomatic multi-experimentperformance analysis of parallel and
distributed applications [19]. Through its User Portal, the user inputs hypotheses that should be
tested, machine and problem sizes for which performance analysis should be done (application input
parameters), files that compound the application, and possibly conditions to stop the analysis process.
The User Portal displays, while the search process is going on, which hypotheses were evaluated to
true for the machine and problem sizes tested.

In AKSUM, hypotheses are called performance properties; each performance property is an
algorithm specifying a negative performance behavior thatmay be found in a program. The
specification may be very simple (for example, reflecting directly some measurement made by
SCALEA), but it can also characterize a very complex property, like replicated code or the inefficiency
of a set of experiments. Users can use the set of properties AKSUM provides and also write, in Java,
their own properties and add them to AKSUM in order to extend it. Any new property must be a class
defining the following three methods:

� boolean holds(): returns true if the property (class) instance holds (that means, the ”negative
performance behavior” is present).� float getSeverity(): returns a value between 0 and 1 indicating how severe a property instance is
(the closer to 1, the more severe the property instance is).� float getConfidence(): returns a value between 0 and 1 that indicates the degree of confidence in
the correctness of the value returned byholds.

Aksum comes with a library, called JavaPSL [22], to help withthe specification of performance
properties, as it allows easy access to the performance data(timing information, overheads and
hardware counters) that SCALEA provides.

6.1. Services: Search Engine, Instrumentation Engine and Performance Property Analyzer

The user-supplied input data is provided to theSearch Engine, which is in the center of AKSUM and
controls the entire search process. By issuing requests to theInstrumentation Engine, the Search Engine
determines the performance information to be collected forapplication code regions and problem and
machine sizes. The Instrumentation Engine of AKSUM invokesthe SCALEA Instrumentation service
for the actual code instrumentation, that is, it is a layer that enables the Search Engine to access
and traverse application files in a machine independent way,to instrument them, and transparently
to modify makefiles, scripts, and the compilation command line in order to link the instrumented
application with the instrumentation library provided by SCALEA.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 11

The instrumented code is submitted to ZENTURIO’s Experiment Generator service, which change
the execution parameters according to the input parametersprovided by the user and transfer the
files to the appropriate Grid sites where the ZENTURIO’s Experiment Executor service will compile
and execute the experiments, as well as transfer performance data to the Data Repository after each
experiment has been executed.

The Search Engine evaluates the performance data in the DataRepository by invoking the
Performance Property Analyzerservice, which determines all critical performance properties (that is,
property instance whose value returned by the methodgetSeverityis greater than a certain threshold).
A cycle consisting of consecutive phases of application execution and property evaluation is continued
until all experiments are done or some system or user-definedcondition stops the search process. Under
the User Portal, every performance property that has been determined to be critical is dynamically
displayed (together with the source code) to the user duringthe search process and stored in the
ASKALON Data Repository.

The way performance property instances are ordered and grouped, and which information should be
displayed, may be also configured by describing the ”fields” that should compose each record (property
instance) in the output. Possible fields for an output recordare the code region where a property instance
has been found, the experiment associated to the property instance, the number of nodes, processes or
threads used in the experiment, the property name, and any ofthe application input parameters.

7. PerformanceProphet

The PerformanceProphet is a set of performance modeling andprediction services, which supports
prediction of the performance behavior of distributed and parallel applications on cluster architectures.
At present, the PerformanceProphet does not support prediction for the Grid.

The central idea is to support the application developer by providing performance analysis results at
early stages of the application development. For instance,the user can evaluate various parallelization
strategies at modeling time before the application is developed, by building a high level model of the
application and evaluating its performance. PerformanceProphet consists of two main components:
(i) the user portalTeuta, which supports the application model development based onthe Unified
Modeling Language (UML) [39], and (ii) thePerformance Estimatorservice, which supports the
performance evaluation of an application model, based on a hybrid approach which combines analytical
modeling with discrete event simulation.

Figure 3 shows a scenario of usage of PerformanceProphet forperformance modeling and prediction
of distributed and parallel applications:

1. The user constructs the model of the application by combining UML building blocks (such as
OpenMP ParallelDo, see Figure 3) annotated with performance and control flow information
by usingTeuta. The application model is transformed to an intermediate form that is used as
input for thePerformance Estimator, and is stored into the ASKALON Data Repository (see
Section 3.4).

2. ThePerformance Estimatorreads the model from the ASKALON Data Repository and evaluates
the performance of the application for the user-selected target computer architecture. The
obtained performance prediction data is stored into the ASKALON Data Repository. Other tools

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

12 THOMAS FAHRINGER ET AL.

ASKALON

Data Repository

Teuta

Model Building

Performance

Estimator

Simulation

ASKALON

Diagrams

Visualisation

Building Blocks

Computer

Architectures

pd

«paralleldo»
*

Figure 3. Performance modeling and prediction with PerformanceProphet

(for instance AKSUM and ZENTURIO) can obtain the performance prediction data either via
ASKALON Data Repository or directly fromPerformance Estimatorservice by subscribing for
specific performance metrics and overheads.

3. If the user is not satisfied with the result, then he may modify the model of the application
and/or select another target computer architecture. This cyclic process of model adaptation and
performance prediction may continue until acceptable performance results are obtained.

7.1. UML Extension for the Domain of Performance-Oriented Computing

We have determined that by using only the core UML, some important shared memory and message
passing concepts can not be modeled at all or results in complex diagrams [40]. In order to overcome
this issue we have developed an extension of UML for the domain of performance-oriented computing.
In [41] we describe a set of UML building blocks that model some of the most important constructs of
message passing and shared memory parallel paradigms, which can be used to develop models for large
and complex parallel and distributed applications. These building blocks have been largely motivated
by the OpenMP and MPI standards. In order to provide tool support for the UML extension for the
domain of performance-oriented computing we have developed Teuta. The requirements that guided
the design of Teuta are extensibility and platform-independence.

It is difficult to foresee all the types of the building blocksthat the user might want to use to model
his application. Therefore, we have included a basic set of building blocks, which are described in
[41], and made it easy to extend the tool with the new buildingblocks. The extensibility requirement
led us to the use of XML for several tasks, such as the definition of the modeling elements and the
configuration of the tool.

Because the application developers may work on various platforms, the tool should be able to run
on various platforms as well. The requirement for platform independence led us to the use of the Java
programming language for the implementation of Teuta basedon the Model-View-Controller (MVC)
paradigm [34]. MVC is a paradigm that enforces the separation between the user interface and the rest
of the application.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 13

7.2. Hybrid Model Building and Simulation

Hybrid simulation models, which combine analytical modeling techniques with discrete event
simulation, present an efficient alternative to simulation-only models [48]. Here we briefly describe
our approach of hybrid application model building. A distributed and parallel application consists of
two classes of building blocks:

1. Building blocks which involve oneprocessing unit(a process or thread), for instance the
execution of a sequence of computational operations.

2. Building blocks which involve multiple processing units, for instance collective communication
operations, barriers, semaphores, and so on. This type of building blocks impose synchronization
among the processing units.

We use analytic modeling techniques to model the execution time of the first type of building blocks
by parameterized cost functions. On the other hand, for the modeling of performance behavior of the
second type of building blocks we use simulation.

Usually, the cost functions for building blocks are provided by the application developer.
Alternatively, the ASKALON tool set may be utilized to develop the cost functions. The first step
is to instrument the parts of the application code that correspond to building blocks of interest by
using SCALEA Instrumentation Service (see Section 4). Thenthe set of tests to be executed is defined
by using ZEN Experiment Specification Language (see Section5). The set of tests is defined by
the application input parameters and the parameters of computer architecture by using Experiment
Generator service of ZENTURIO. Then PerformanceProphet utilizes the Experiment Executor service
of ZENTURIO to perform all the defined experiments, and storethe performance data into the
ASKALON Data Repository. PerformanceProphet makes use of the collected performance data to
generate the cost functions based on regression statistical method.

8. Experiments

In this section, we present numerous experiments to demonstrate the usefulness and effectiveness of
the ASKALON tool set for a variety of real world applications.

8.1. Overhead Analysis with SCALEA

We illustrate SCALEA by applying it to a mixed OpenMP/MPI Fortran program that solves the 2d
Stommel model [49] of an ocean circulation using a five-pointstencil and Jacobi iteration.

By using SCALEA we examine the performance overheads for a single experiment of a given
program by providing two modes for this analysis. Firstly, the Region-to-Overheadmode (see the
“Region-to-Overhead” window in Fig. 4) allows us to select any code region instance in the dynamic
code region call graph (DRG) [53] for which all detected performance overheads are displayed.
Secondly, theOverhead-to-Regionmode (see the “Overhead-to-Region” window in Fig. 4) enables
us to select the performance overhead of interest, based on which SCALEA displays the corresponding
code region(s) in which this overhead occurs. This selection can be limited to a specific code region

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

14 THOMAS FAHRINGER ET AL.

Figure 4. Region-To-Overhead and Overhead-To-Region DRG View.

instance, thread or process. For both modes the source code of a region is shown if the code region
instance is selected in the DRG by a mouse click.

8.2. Multiple-Experiment Analysis with SCALEA

In this section we demonstrate a multi-experiment analysiswith SCALEA applied to LAPW0 [7], a
material science program that calculates the effective potential of the Kohn-Sham eigen-value problem.
LAPW0 has been implemented as a Fortran90 MPI code.

We useMulti-Set Experiment Analysisto study the performance of LAPW0 for two problem sizes
and six machine sizes with two different network configurations as shown in Fig. 5. Based on this
study, we observed that changing the communication networkfrom Fast-Ethernet by Myrinet did not
actually improve the performance.

SCALEA provides aPerformance Overhead Summaryto examine various sources of performance
overheads across experiments. For example, the overhead summary for LAPW0 with problem size
of 36 atoms displayed in Fig. 6 uncovers a small amount of datamovement overhead but a large of
overhead for loss of parallelism and unidentified overhead.As a result, instead of focusing our effort
on analyzing code regions that are sources of data movement (e.g. send/receive), we study code regions
that possibly cause loss of parallelism overhead.

In order to support studying the performance behavior of selected code regions, SCALEA
provides a Multiple Region Analysis. For instance, the left-window of Fig. 7 visualizes
the execution times for the most computational intensive code regions in LAPW0. The
right-window of Fig. 7 displays the program’s speedup/improvement behavior. The execu-
tion times of code regions including CALCP INSIDE SPHERES, CALCOULOMB RMT,

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 15

Figure 5. Execution time of LAPW0 with 36 and 72 atoms.CH P4, GM means that MPICH has been used for
CH P4 (for Fast-Ethernet 100Mbps) and Myrinet, respectively.

Figure 6. Performance overheads for LAPW0.

CA COULOMB INTERSTITIAL POTENTIAL, CA MULTIPOLMENTS remain almost constant
although the number of processors is increased from 12 to 16 and 20 to 24. In addition, code regions
FFT REAN0, FFTREAN3, and FFTREAN4 are executed sequentially. These code regions should
therefore be subject of parallelization in order to gain performance.

8.3. Performance and Parameter Studies of Backward PricingApplication with ZENTURIO

The backward pricing kernel [16] is a parallel implementation of the backward induction algorithm
which computes the price of an interest rate dependent financial product, such as a variable coupon
bond. It is based on the Hull and White trinomial interest rate tree which models future developments of
interest rates. We have performed a performance and a parameter study for this code using ZENTURIO.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

16 THOMAS FAHRINGER ET AL.

Figure 7. Execution time of computationally intensive coderegions (left window) and program’s
speedup/improvement (right window).1Nx4P,P4, 36means 1 SMP node with 4 processors using MPICH CHP4

and the problem size is 36 atoms.

8.3.1. Performance Study

Backward pricing has been encoded as an HPF+ application which uses HPF+ directives to distribute
the data onto the SMP nodes. The application is compiled intoa mixed OpenMP/MPI program by
the SCALEA instrumentation engine built on top of the HPF+ Vienna Fortran Compiler (VFC). Intra-
node parallelization is achieved through OpenMP directives. Communication among SMP nodes is
realized through MPI calls. We scheduled the experiments onthe SMP cluster using GRAM. We
annotated the RSL script to vary the machine size from 1 to 10 SMP nodes (see Example 8.1). The ZEN
variablecount=4 is set with the number of SMP nodes. Based on thecountRSL parameter, GRAM
allocates the corresponding number of SMP nodes and uses an available local MPI implementation,
which must be defined by the user default shell environment. In the current experiment, we have set
our environment for MPICH using thep4 device over Fast Ethernet. TheMPI MAX CLUSTER SIZE
environment variable ensures that thempirun script starts only one MPI process per SMP node.
The intra-node parallelization is achieved by means of OpenMP. We vary from 1 to 4 the number
of threads to be forked by an OpenMPPARALLEL loop through a ZEN substitute directive. (see
Example 8.2). The overall execution time, together with the(MPI) communication and the control
of parallelism (HPF+ inspector/executor) overheads have been measured through a ZEN performance
behavior directive (see Example 8.2).

Example 8.1 (Globus RSL script)
+(&
(resourceManagerContact="gescher/jobmanager-pbs")

(*ZEN$ SUBSTITUTE count\=4 = {count={1:10}}*)
(count=4)
(jobtype=mpi)
(environment=(MPI_MAX_CLUSTER_SIZE 1))
(directory="/home/radu/APPS/HANS")
(executable="bw_halo_sis"))

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 17

Example 8.2 (Source file)
!ZEN$ CR CR_A PMETRIC WTIME, ODATA, OCTRP
. . .
!ZEN$ SUBSTITUTE NUM_THREADS\(4\) = { NUM_THREADS({1:4}) }
!$OMP PARALLEL NUM_THREADS(4)
...
!$OMP END PARALLEL

Two ZEN directives have been inserted into two files to produce 40 experiments automatically
conducted by ZENTURIO. Figure 8(a) shows a good scalabilityof this code. Backward pricing
is a computational intensive application, which highly benefits from the inter-node MPI and intra-
node OpenMP parallelization. The overall wallclock time ofthe application significantly improves by
increasing the number of nodes and OpenMP threads per SMP node. Figure 8(b) shows a very high
ratio between the application total execution user time (one full bar) and the HPF and MPI overheads
measured, which explains the good parallel behavior. This ratio decreases for a high number of SMP
nodes, for which the overheads significantly degrade the overall performance.

8.3.2. Parameter Study

We performed a large parameter study for the Backward pricing code by varying four input parameters:
(1) the coupon bond (ZEN variablecoupon from 0.01 to 0.1 with increment 0.001); (2) the number of
time steps, over which the price is computed (ZEN variablenr steps from 5 to 60 with increment 5);
(3) the coupon bond’s end time (ZEN variablebond%end), which must be equal to the number of time
steps; (4) the length of one time step (ZEN variabledelta t from 1/12 to 1 with increment 1/12).
The application has been encoded such that it reads its inputparameters from different input data files.
ZEN assignment directives are inserted in the source code immediately after the correspondingread
statements (see Example 8.3). Thus, the originalread statement is made redundant. A constraint
directive guarantees that the coupon bond’s end time is identical with the number of time steps. We
examined the effects of these input parameters on the total price output result.

Example 8.3 (Source file – pkernbw.f90)
read(10,*) nr_steps
!ZEN$ ASSIGN nr_steps = { 5:60:5 }
...
read(10,*) delta_t
!ZEN$ ASSIGN delta_t = { 0.08, 0.17, 0.25, 0.33, 0.42, 0.5, 0.58, 0.67, 0.75, 0.83,

0.92, 1 }
...
read(10,*) bond%end
!ZEN$ ASSIGN bond\%end = { 5:60:5 }
!ZEN$ CONSTRAINT VALUE nr_steps == bond\%end
...
read(10,*) bond%coupon
!ZEN$ ASSIGN bond\%coupon = { 0.01:0.1:0.001 }

Example 8.4 (Globus RSL Script)
+ (&
(*ZEN$ SUBSTITUTE Josie = { Anatevka, Gescher/jobmanager-pbs, Josie }*)
(*ZEN$ CONSTRAINT INDEX Josie == pkernbw.f90:bond\%coupon / 4;

(resourceManagerContact="Josie")
(count=4)
(jobtype=mpi)
(executable="pkernbw"))

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

18 THOMAS FAHRINGER ET AL.

(a) Wallclock time for different number of nodes and
OpenMP threads per SMP node.

(b) Contribution of MPI and HPF overheads to the
overall execution time (4 threads per SMP node).

(c) Total price for length of time step
(delta t) = 1.0.

(d) Total price for coupon = 0.05.

Figure 8. Visualization Diagrams for Backward Pricing.

Five ZEN directives were inserted into one single source file, which specifies a total of 1481
experiments to be automatically generated and conducted byZENTURIO. In order to speed-up
the completion of this rather large parameter study suite, we annotate the Globus RSL script with
three Grid sites on which to schedule the experiments using DUROC: Anatevka, Gescher, and
Josie (see Example 8.4). The experiments with�
����
��
� � � ��� are scheduled on Anatevka,
experiments with� ��� � �
����
��
� � � ��� are scheduled on Gescher, while experiments with
�
����
��
� � � ��� are scheduled on Josie. This is expressed by the global indexconstraint directive
illustrated in Example 8.4. By splitting the parameter study onto three Grid sites, we reduced the
completion time of the whole suite by more than 50%.

One single Experiment Executor service which runs on the Gescher front-end node has been used to
conduct all experiments. Experiments on Anatevka and Josiehave been conducted through a Globus

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 19

GSI proxy delegation. Upon the completion of each experiment, the standard output which reflects the
total price is stored into a single data repository on a separate Grid site.

From the wide variety of visualization diagrams automatically generated during this study, two
samples are depicted in Figure 8, which help scientists understand the effect of various inputs on the
total price output parameter. A total number of 1481 experiments have been automatically generated.
The output of each completed experiment containing the total price has been stored into the data
repository. Two sample diagrams that enable the scientiststo study the evolution of the total price
as a function of the input parameters annotated are depictedin Figure 8.

8.4. Performance Analysis for 3D-Particle-In-Cell with AKSUM

The 3D-Particle-In-Cell [28] is an application written in Fortran90 and MPI simulating the ultrashort
laser-plasma interaction in a three dimensional geometry.It can presently run with seven different
problem sizes (1, 4, 9, 12, 16, 25 and 36 CPUs).

AKSUM’s analysis (Figure 9(a)) shows that the propertiesInefficiencyandMessagePassingOver-
headare critical in this code. Initially, AKSUM shows the properties ordered by the value of the most
severe instance, and the instances of each property organized in a tree manner, with each level showing
also the minimum, average, and maximum severity of the property instances under it. Figure 9(a) shows
instances ofInefficiencyorganized by number of processes and right below by code regions. RK4119,
MAIN 12, etc. are names AKSUM gave to code regions that were instrumented in the application,
while the quadruple before the name is the position (first andlast line and column) of the code region.
The message ”caused by children” indicates that an instanceof the same property is present in a child
code region with the same or a very close severity value; thisfact (most probably) means that the
problem is entirely caused by the child code region, and therefore only its children would need to be
optimized.

Figure 9(b) shows the instances ofInefficiencyproperty plotted in a chart with the help of the
ASKALON Visualization Diagrams (described in Section 3.5). The fact that some lines superpose
others reflects, again, that instances ofInefficiencyare present in parent and in child code regions with
very close severity values. The chart shows also that the code becomes more inefficient for larger
machine sizes, which shows that it does not scale well.

As mentioned in Section 6, properties can be organized in several ways. Figure 9(c) shows how a new
organization (first level: code region, second level: property name, third level: number of processes)
can be used to find where the most time-consuming MPI call is.

8.5. Modeling and Simulation of a Distributed Scientific Application with PerformanceProphet

The objective of this case study is to examine whether the tool support described in this paper is
sufficient to build and evaluate a performance model for a real-world application.

The application for our study LAPW0, which is a part of the WIEN2k package [47], was developed
at Institute of Physical and Theoretical Chemistry, ViennaUniversity of Technology. The Linearized
Augmented Plane Wave (LAPW) method is among the most accurate methods for performing
electronic structure calculations for crystals. The code of LAPW0 application is written by using
FORTRAN90 and MPI.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

20 THOMAS FAHRINGER ET AL.

(a) Properties found

(b) Instances of Inneficiency plotted with one of the
ASKALON Visualization Diagrams

(c) Most time-consuming MPI call (MPIRECV,
selected line)

Figure 9. Performance Analysis for 3D-Particle-In-Cell with AKSUM

The LAPW0 application consists of 100 file modules (a module is a file containing source code). The
modeling procedure aims to identify the more relevant (fromperformance point of view) code regions.
We call these code regions building blocks. A building blockcan be a sequence of computation steps,
communication operations or input/output operations. In order to assess the execution time of the code
regions of LAPW0 application of interest, we have instrumented these code regions and measured their
corresponding execution times by using SCALEA [51].

LAPW0 uses two types of MPI collective communication primitives,broadcastandallreduce. The
first one uses a simple binary tree algorithm for implementing the broadcast, whereas the second one is

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 21

(a) The high level UML model

0

100

200

300

400

500

600

N1p4
 N2p8
 N4p16
 N8p32

Configuration

E
x

e
c

u
ti

o
n

 T
im

e
 [

s
e

c
.]

Simulation(64)

Measurement(64)

Simulation(32)

Measurement(32)

NAT=64

NAT=32

(b) Simulation and measurement results

Figure 10. Modeling and simulation of LAPW0 application with PerformanceProphet

implemented by sending all processes contributions to the root process, and broadcasting from the root
the reduced data. Point-to-point MPI communication primitivesreceiveandsendare used for ordering
of the output of LAPW0.

Figure 10(a) depicts the model of LAPW0, which is developed with Teuta. Due to the size of the
LAPW0 model, we can see only a fragment of the UML activity diagram within the drawing space of
Teuta. On the right hand side of Figure 10(a), is shown how the modelof LAPW0 is enriched with cost
functions by usingTeuta Code Editor. A cost function models the execution time of a code region.

In order to evaluate the model of LAPW0, the high-level UML graphical representation of LAPW0
is transformed into the textual representation.Teutaautomatically generates the corresponding C++
representation, which is used as input for thePerformance Estimator. The Performance Estimator
incorporates a parametrised simulator for cluster architectures. ThePerformance Estimatorevaluates
the performance behavior of LAPW0 application on the user-selected cluster architecture.

Figure 10(b) shows the simulation and measurement results for two problem sizes and four machine
sizes. The problem size is determined by the parameter NAT, which represents the number of atoms
in a unit of the material. The machine size is determined by the number of nodes of the cluster
architecture. Each node of the cluster has four CPU‘s. One process of the LAPW0 application is
mapped to one CPU of the cluster architecture. The performance model is validated by comparing

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

22 THOMAS FAHRINGER ET AL.

the simulation results with the measurement results. We consider that this performance model provides
the performance prediction results with the accuracy whichwould be sufficient to compare various
designs of the LAPW0 application.

9. Conclusions

The development of the ASKALON tool set has been driven by theneed of scientists and engineers to
perform performance analysis, experiment management, parameter studies, modeling, and prediction
of parallel and distributed applications for cluster and Grid infrastructures. ASKALON supports these
functionalities through the provision of four sophisticated tools: SCALEA for instrumentation and
performance analysis, ZENTURIO for experiment management, performance and parameter studies,
AKSUM for automatic bottleneck detection and performance interpretation, and PerformanceProphet
for performance modeling and prediction. Each tool can be accessed and manipulated via advanced
User Portals. ASKALON has been designed as a distributed Grid service-based architecture and
implemented on top of the OGSI technology and Globus toolkit. Designing each tool as a composition
of remote Grid service provides a series of advantages: (1) isolates platform dependencies on specific
critical sites under a well-defined portable API; (2) enables light-weight clients, easy to be installed
and managed by users on local sites (e.g. on notebooks); (3) allows the interaction of multiple tools
by accessing resources concurrently through common sharedservices. The ASKALON tools exchange
information through a common Data Repository or interoperate through the underlying Grid services.
A generic visualization package that supports a wide variety of portable diagrams in both post-mortem
and on-line modes is employed by the User Portals of all tools.

Currently, we are working on a more coherent integration andinteroperability of all tools to reflect
the continuously evolving Globus, OGSI, and Web service-based Grid specifications. In addition,
each tool will be extended with new functionality. SCALEA will be enhanced with more advanced
Grid application monitoring and analysis. ZENTURIO will beextended with a generic application
optimization framework for Grid application scheduling, in particular for large workflows. Application
prediction information crucial for good scheduling will beprovided by PerformanceProphet through
the Data Repository. AKSUM is currently being enhanced for automatic performance analysis
of Java applications based on the JavaSymphony [21] programming model for the Grid. The
PerformanceProphet technology will combine software engineering with performance modeling and
analysis.

REFERENCES

1. D. Abramson, R. Sosic, R. Giddy, and B. Hall. Nimrod: A toolfor performing parameterised simulations using distributed
workstations high performance parametric modeling with nimrod/G: Killer application for the global grid? InProceedings
of the 4th IEEE Symposium on High Performance Distributed Computing (HPDC-95), pages 520–528, Virginia, August
1995. IEEE Computer Society Press.

2. V. Adve, R. Bagrodia, J. Browne, E. Deelman, A. Dube, E. Houstis, J. Rice, R. Sakellariou, D. Sundaram-Stukel, P. Teller,
and M. Vernon. POEMS: End-to-End Performance Design of Large Parallel Adaptive Computational Systems.IEEE
Transactions on Software Engineering, 26:1027–1048, November 2000.

3. Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster, Carl Kesselman, Sam Meder, Veronika Nefedova,
Darcy Quesnel, and Steven Tuecke. Data management and transfer in high-performance computational grid environments.
Parallel Computing, 28(5):749–771, May 2002.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 23

4. APART – IST Working Group on Automatic Performance Analysis: Real Tools, Aug 2001 until July 2004.
5. Bob Atkinson, Giovanni Della-Libera, Satoshi Hada, Maryann Hondo, Phillip Hallam-Baker, Johannes Klein, Brian

LaMacchia, Paul Leach, John Manferdelli, Hiroshi Maruyama, Anthony Nadalin, Nataraj Nagaratnam, Hemma
Prafullchandra, John Shewchuk, and Dan Simon. Web ServicesSecurity (WS-Security). Specification, Microsoft
Corporation, April 2002.

6. S. Benkner. VFC: The Vienna Fortran Compiler.Scientific Programming, IOS Press, The Netherlands, 7(1):67–81, 1999.
7. P. Blaha, K. Schwarz, and J. Luitz. WIEN97, Full-potential, linearized augmented plane wave package for calculating

crystal properties. Institute of Technical Electrochemistry, Vienna University of Technology, Vienna, Austria, ISBN 3-
9501031-0-4, 1999.

8. Nat Brown and Charlie Kindel.Distributed Component Object Model protocol: DCOM/1.0. Microsoft Corporation and
Redmond, WA, January 1998.

9. S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci.A Scalable Cross-Platform Infrastructure for Application
Performance Tuning Using Hardware Counters. InProceeding SC’2000, November 2000.

10. Bryan Buck and Jeffrey K. Hollingsworth. An API for Runtime Code Patching.The International Journal of High
Performance Computing Applications, 14(4):317–329, Winter 2000.

11. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana. Web Services Description Language
(WSDL), March 2001. http://www.w3.org/TR/wsdl.

12. Michel Courson, Alan Mink, Guillaume Marcais, and Benjamin Traverse. An automated benchmarking toolset. InHPCN
Europe, pages 497–506, 2000.

13. Francisco Curbera, David Ehnebuske, and Dan Rogers. Using WSDL in a UDDI Registry 1.07. UDDI best practice,
UDDI Organisation, May 2002. http://www.uddi.org/pubs/wsdlbestpractices-V1.07-Open-20020521.pdf.

14. Karl Czajkowski, Ian Foster, Nick Karonis, Stuart Martin, Warren Smith, and Steven Tuecke. A Resource Management
Architecture for Metacomputing Systems. In Dror G. Feitelson and Larry Rudolph, editors,Job Scheduling Strategies for
Parallel Processing, pages 62–82. Springer Verlag, 1998. Lect. Notes Comput. Sci. vol. 1459.

15. Karl Czajkowski, Ian Foster, and Carl Kesselman. Co-allocation services for computational grids. InProc. 8th IEEE
Symp. on High Performance Distributed Computing. IEEE Computer Society Press, 1999.

16. E. Dockner and H. Moritsch. Pricing Constant Maturity Floaters with Embeeded Options Using Monte Carlo Simulation.
Technical Report AuR99-04, AURORA Technical Reports, University of Vienna, January 1999.

17. W. K. Edwards. Core Jini.IEEE Micro, 19(5):10–10, September/October 1999.
18. T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seragiotto, and H.-L. Truong. ASKALON - A Programming

Environment and Tool Set for Cluster and Grid Computing. www.par.univie.ac.at/project/askalon, Institute for Software
Science, University of Vienna.

19. T. Fahringer and C. Seragiotto. Automatic search for performance problems in parallel and distributed programs by using
multi-experiment analysis. InInternational Conference On High Performance Computing (HiPC 2002), Bangalore, India,
December 2002. Springer Verlag.

20. Thomas Fahringer. ASKALON Visualization Diagrams. http://www.par.univie.ac.at/project/askalon/visualization/index.html.
21. Thomas Fahringer and Alexandru Jugravu. JavaSymphony:New Directives to Control and Synchronize Locality,

Parallelism, and Load Balancing for Cluster and GRID-Computing. In ACM Java Grande - ISCOPE 2002 Conference,
Seattle, November 2002. ACM.

22. Thomas Fahringer and Clovis Seragiotto. Modeling and Detecting Performance Problems for Distributed and Parallel
Programs with JavaPSL. InProceeding SC’2001, Denver, USA, November 2001.

23. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.The International Journal of Supercomputer
Applications and High Performance Computing, 11(2):115–128, Summer 1997.

24. I. Foster, C. Kesselman, J. Nick, and S. Tuecke.The Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration. The Globus Project and The Global Grid Forum, November 2002.
http://www.globus.org/research/papers/OGSA.pdf.

25. Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security architecture for computational grids. In
Proceedings of the 5th ACM Conference on Computer and Communications Security (CCS-98), pages 83–92, New York,
November 3–5 1998. ACM Press.

26. Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security architecture for computational grids. In
Proceedings of the 5th ACM Conference on Computer and Communications Security (CCS-98), pages 83–92, New York,
November 3–5 1998. ACM Press.

27. Apache Software Foundation. Apache Axis. http://ws.apache.org/axis.
28. M. Geissler. Interaction of High Intensity Ultrashort Laser Pulses withPlasmas. PhD thesis, Vienna University of

Technology, 2001.
29. William Grosso.Java RMI. O’Reilly & Associates, Inc., 981 Chestnut Street, Newton,MA 02164, USA, 2002. Designing

and building distributed applications.
30. Elliotte Rusty Harold.XML: EXtensible Markup Language. IDG Books, San Mateo, CA, USA, 1998.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

24 THOMAS FAHRINGER ET AL.

31. Rolf Herzog. PostgreSQL — the Linux of databases.Linux Journal, 46:??–??, February 1998.
32. Yannis E. Ioannidis, Miron Livny, S. Gupta, and Nagavamsi Ponnekanti. ZOO: A desktop experiment management

environment. In T. M. Vijayaraman, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, editors,VLDB’96,
Proceedings of 22th International Conference on Very LargeData Bases, pages 274–285, Mumbai (Bombay), India, 3–
6 September 1996. Morgan Kaufmann.

33. Karen L. Karavanic and Barton P. Miller. Experiment management support for performance tuning. In ACM, editor,
Proceedings of the SC’97 Conference, San Jose, California, USA, November 1997. ACM Press and IEEE Computer Society
Press.

34. G. Krasner and S. Pope. A cookbook for using the Model-View-Controller interface paradigm.Journal of Object-Oriented
Programming, 1(3):26–49, 1988.

35. David S. Linthicum. CORBA 2.0?Open Computing, 12(2), February 1995.
36. M. J. Litzkow, M. Livny, and M. W. Mutka. Condor : A hunter of idle workstations. In8th International Conference on

Distributed Computing Systems, pages 104–111, Washington, D.C., USA, June 1988. IEEE Computer Society Press.
37. Allen Malony and Sameer Shende. Performance technologyfor complex parallel and distributed systems. InIn G. Kotsis

and P. Kacsuk (Eds.), Third International Austrian/Hungarian Workshop on Distributed and Parallel Systems (DAPSYS
2000), pages 37–46. Kluwer Academic Publishers, Sept. 2000.

38. B. Miller, M. Callaghan, J. Cargille, J. Hollingsworth,R. Irvin, K. Karavanic, K. Kunchithapadam, and T. Newhall. The
paradyn parallel performance measurement tool.IEEE Computer, 1995.

39. OMG. Unified Modeling Language Specification. http://www.omg.org, March 2003.
40. S. Pllana and T. Fahringer. On Customizing the UML for Modeling Performance-Oriented Applications. In��UML��

2002, ”Model Engineering, Concepts and Tools”, LNCS 2460, Dresden, Germany. Springer-Verlag, October 2002.
41. S. Pllana and T. Fahringer. UML Based Modeling of Performance Oriented Parallel and Distributed Applications. In

Proceedings of the 2002 Winter Simulation Conference, San Diego, California, USA, December 2002. IEEE.
42. Radu Prodan and Thomas Fahringer. ZEN: A Directive-based Language for Automatic Experiment Management of

Parallel and Distributed Programs. InProceedings of the 31st International Conference on Parallel Processing (ICPP-
02), Vancouver, Canada, August 2002. IEEE Computer Society Press.

43. Radu Prodan and Thomas Fahringer. ZENTURIO: A Grid Middleware-based Tool for Experiment Management of Parallel
and Distributed Applications.Journal of Parallel and Distributed Computing, 2003. To appear in Special Issue on
Middleware.

44. D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. Shields, B. W. Schwartz, and L. F. Tavera. Scalable Performance
Analysis: The Pablo Performance Analysis Environment. InProc. Scalable Parallel Libraries Conf., pages 104–113. IEEE
Computer Society, 1993.

45. Bill Roth. An introduction to Enterprise Java Beans technology. Java Report: The Source for Java Development, 3,
October 1998.

46. A. Ryman. Simple Object Access Protocol (SOAP) and Web Services. In Proceedings of the 23rd International
Conference on Software Engeneering (ICSE-01), pages 689–689, Los Alamitos, California, May12–19 2001. IEEE
Computer Society.

47. K. Schwarz, P. Blaha, and G. Madsen. Electronic structure calculations of solids using the WIEN2k package for material
sciences.Computer Physics Communications, 147:71–76, 2002.

48. H. Schwetman. Hybrid Simulation Models of Computer Systems. Communications of the ACM, 21(9):718–723, 1978.
49. H.M. Stommel. The western intensification of wind-driven ocean currents.Transactions American Geophysical Union,

29:202–206, 1948.
50. Brian Tierney, Ruth Aydt, Dan Gunter, Warren Smith, Valerie Taylor, Rich Wolski, and Martin Swany.A Grid Monitoring

Architecture. The Global Grid Forum, January 2002. http://www-didc.lbl.gov/GGF-PERF/GMA-WG/papers/GWD-GP-
16-2.pdf+.

51. Hong-Linh Truong and Thomas Fahringer. SCALEA: A Performance Analysis Tool for Distributed and Parallel Program.
In 8th International Europar Conference(EuroPar 2002), Lecture Notes in Computer Science, Paderborn, Germany,
August 2002. Springer-Verlag.

52. Hong-Linh Truong and Thomas Fahringer. On Utilizing Experiment Data Repository for Performance Analysis of Parallel
Applications. In9th International Europar Conference(EuroPar 2003), Lecture Notes in Computer Science, Klagenfurt,
Austria, August 2003. Springer-Verlag.

53. Hong-Linh Truong and Thomas Fahringer. SCALEA: A Performance Analysis Tool for Parallel Programs.Concurrency
and Computation: Practice and Experience, 15(11-12):1001–1025, 2003.

54. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman.Grid Service Specification. The Globus Project
and The Global Grid Forum, February 2002. http://www.globus.org/research/papers/gsspec.pdf.

55. UDDI: Universal Description, Discovery and Integration. http://www.uddi.org.
56. W3C. Web Services Activity. http://www.w3.org/2002/ws/.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 25

57. R. Wismüller and T. Ludwig. THE TOOL-SET – An Integrated Tool Environment for PVM. In H. Lidell, A. Colbrook,
B. Hertzberger, and P. Sloot, editors,Proc. High-Performance Computing and Networking, volume 1067 ofLecture Notes
in Computer Science, pages 1029–1030, Brussels, Belgium, April 1996. Springer-Verlag.

58. R. Wismüller, J. Trinitis, and T. Ludwig. OCM — A Monitoring System for Interoperable Tools. InProc. 2nd
SIGMETRICS Symposium on Parallel and Distributed Tools SPDT’98, Welches, OR, USA, August 1998. ACM Press.

59. Felix Wolf and Bernd Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Applications. InProceedings of
the Eleventh Euromicro Conference on Parallel, Distributed and Network-based Processing (PDP-11), pages 13–22. IEEE
Computer Society Press, February 2003.

60. M. Yarrow, K. M. McCann, R. Biswas, and R. F. Van der Wijngaart. Ilab: An advanced user interface approach for complex
parameter study process specification on the information power grid. InProceedings of Grid 2000: International Workshop
on Grid Computing, Bangalore, India, December 2000. ACM Press and IEEE Computer Society Press.

Copyright c

0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper.0000;00:0–0
Prepared usingcpeauth.cls

