ASKALON: A Tool Set for
Cluster and Grid Computing

Thomas Fahringé¥, Alexandru Jugraviy Sabri Pllané,
Radu Prodah Clovis Seragiotto JuniérHong-Linh Truon§

fInstitute for Computer Science, University of Innsbruck,
Technikerstr. 25/7, A-6020 Innsbruck, Austria

E-mail: Thomas.Fahringer@uibk.ac.at

§|nstitute for Software Science, University of Vienna,
Liechtensteinstr. 22, A-1090 Vienna, Austria

E-mail: {aj,pllana,radu,clovis,truonp@par.univie.ac.at

SUMMARY

Performance engineering of parallel and distributed applcations is a complex task that iterates through
various phases, ranging from modeling and prediction, to pdormance measurement, experiment
management, data collection, and bottleneck analysis. Theis no evidence so far that all of these phases
should/can be integrated in a single monolithic tool. Morewer, the emergence of computational Grids as a
common single wide-area platform for high-performance comuting raises the idea to provide performance
tools and others as interacting Grid services that share remirces, support interoperability among different
users and tools, and most important provide omni-present pgormance functionality over the Grid.

We have developed the ASKALON tool set [18] to support perfomance-oriented development of
parallel and distributed (Grid) applications. ASKALON com prises four tools, coherently integrated into
a Grid service-based distributed architecture. SCALEA is aperformance instrumentation, measurement,
and analysis tool of parallel and distributed applications ZENTURIO is a general purpose experiment
management tool with advanced support for multi-experimemperformance analysis and parameter studies.
AKSUM provides semi-automatic high-level performance baotieneck detection through a special-purpose
performance property specification language. The PerformaceProphet enables the user to model and
predict the performance of parallel applications at early development stages.

In this paper we describe the overall architecture of the ASKALON tool set and outline the basic
functionality of the four constituent tools. The structure of each tool is based on the composition and
sharing of remote Grid services, thus enabling tool interoprability. In addition, a common Data Repository
allows the tools to share common application performance ahoutput data which has been derived by the
individual tools. A Service Repository is used to store comon portable Grid service implementations. A
general-purpose Factory service is employed to create seéce instances on arbitrary remote Grid sites.
Discovering and dynamically binding to existing remote serices is achieved through Registry services.
Visualization is supported by the ASKALON visualization diagrams in order to graphically display
performance and output data by querying the Data Repository

We demonstrate the usefulness and effectiveness of ASKALONY applying the tools to a variety of real-
world applications.

This research is supported by the Austrian Science Fundrasfithe Aurora Project under contract SFBF1104.
TCorresponding author

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 1

1. Introduction

Computational Grids have become an important asset aintiegabling application developers to
aggregate resources scattered around the globe for leafe-scientific and engineering research.
However, developing applications that can effectivelylizdi the Grid still remains very difficult
due to the lack of high-level tools to support developersthis date, many individual efforts have
been devoted to support performance-oriented developofguarallel and distributed applications.
Porting existing software tools on the Grid poses addilichallanges with respect to portability and
interoperability for concurrent use of shared resourcesability and interoperability of software tools
on the Grid are critical issues which have not been thorguathtiressed by the scientific community.
We believe that this situation has been caused by the heteeogs and often machine-dependent
nature of tools, complex operating system and compiler niépecies, as well as differences and
incompatibilities in tool functionality, interfaces, anther proprietary solutions.

Since 1995, the Globus project [23] is continuously devielgpmiddleware technology aimed
to support and ease the development of high-level Grid $tfuatures and applications. Despite
its enormous success in the Grid research community, theuSldoolkit Version 2 suffers from
substantial integration and deployment problems. Theses\provided are largely independent from
each other. The only clear connection among is the commah &curity Infrastructure (GSI) [25].
Therefore, improvements made by the community to one seacised little or no contributions to
others, thus slowing down progress. Moreover, the implaatiem platform has been mostly based on
C, which limits the deployment and software reuse capaslit

While language, software, system, and network neutralityehnot been initially on the Globus
agenda, they have been successfully addressed over tHpaesrs by well known distributed object-
oriented component technologies such as the Java Remdwe§et/ocation (RMI [29]), the Common
Object Request Broker Architecture (CORBA [35]), Micragobistributed Component Object Model
(DCOM [8]), Enterprise Java Beans [45], Jini [17], Web see& [56], or JavaSymphony [21].

In the year 2000, a consortium of companies comprising Miafty IBM, BEA Systems, and Intel
definedWeb servicesa new set of XML [30] standards for programming Busines8tsiness (B2B)
applications. Web services are nowadays being standdtoljsgbe W3C consortium [56]. They address
heterogeneous distributed computing by defining techmicfoe describing software components,
methods for accessing them, and discovery methods thateetibidentification of relevant service
providers. A key advantage of Web services over previousilliged technology approaches is their
programming language, model, network, and system softaeutality.

Follwing the advantages offered by Web services, the Op&hSarvices Architecture (OGSA) [24]
builds on the Web services technology mechanisms to unijoewrpose Globus Grid services
semantics, to create, name, and discover transient Gridceeimstances, to provide location
transparency and multiple protocol bindings for servicgtdances, and to support integration with
underlying native platform facilities. The Open Grid Sees Infrastructure (OGSI) [54] is the
technical specification which defines extensions and sliatians to the Web services technology
to standardise and ease the development of Grid serviceaxjagad by OGSA. The OGSA toolkit
implements the OGSI specification as an extension to Apacie[A7].

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

2 THOMAS FAHRINGER ET AL. %

In this paper we describe the ASKALON tool set for cluster aBdd computing [18].
ASKALON integrates four interoperable tools: SCALEA forstrumentation and performance
analysis, ZENTURIO for automatic experiment managememtSWM for automatic bottleneck
analysis, and the PerformanceProphet for application tmap@nd performance prediction. The
tool-set has been designed as a distributed set of (OG8Hp&id services, exporting a platform
independent standard API. Platform dependent and prapyiservices are pre-installed on specific
appropriate sites and can be remotely accessed throughableointerface. A UDDI-based service
repository is employed to store implementations of pubtit@ble Grid services. Each tool provides
its own graphical User Portal to be accessed by the useriaralfy and intuitive way. Remote services
are created by a general purpé&setoryservice using the information from the Service RepositOry.
the other hand, the portals discover and bind to existing@@mstances by means of advanced lookup
operations invoked on thRegistryservice. Interoperability between tools is naturally agkd by
allowing multiple clients to connect and share the sameaeinstances from the initial design phase.
Furthermore, a Data Repository with a standard schema tigfinallows tools to share performance
and output data of the applications under evaluation.

The paper is organized as follows. The next section dissusdated work. Section 3 presents an
overall Grid service-based architecture of the ASKALONItset. Sections 4 through 7 describe the
basic functionality of each tool in brief. Various experint® conducted by each individual tool on
several real world applications are reported in Sectiondhalliding remarks and a brief future work
outline are presented in Section 9.

2. Related Work

Early work at the Technical University of Munich developediel ToOOL-SET [57], consisting
of a mixture of performance analysis and debugging toolsp@arallel computing. Attempts to
accomodate these tools into a single coherent environmedtiped the On-line Moniotoring Interface
Specification (OMIS) [58]. In contrast to this effort, ASKAIN focuses on performance analysis for
parallel and Grid applications, whose tools are integratedugh a distributed Grid service-based
design.

Significant work on performance measurement and analyssbean done by Paradyn [38],
TAU [37], Pablo toolkit [44], and EXPERT [59]. SCALEA differfrom these approaches by
providing a more flexible mechanism to control instrumeaotafor code regions and performance
metrics of interest. Although Paradyn enables dynamicriimse of probes into a running code,
Paradyn is currently limited to instrumentation of subioe$ and functions, whereas SCALEA can
instrument — at compile-time only — arbitrary code regionsluding single statements. Paradyn
also supports experiment management [33] through a repetsm of the execution space of
performance experiments and techniques for quantitatbraparison of several experiments. In
contrast to ZENTURIO, experiments (by varying problem arathine size parameters) have to be
set up manually.

The National Institute of Standards and Technology (NISNedoped a prototype for an automated
benchmarking tool-set [12] to reduce the manual effort iming and analysing the results of parallel
benchmarks. Unlike in ZENTURIO, experiment specificatismastricted to pre-defined parameters
available through a special purpose graphical user irderfa

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

H

ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING

Application

Compilation
Command

Execution
Command

Machine

SCALEA

| User Portal

ZENTURIO
User Portal

Registry b

4

/ SIS
“Jnstrumentor

A

Expenment
Generator

Perfo_{;yance
Estimator

Middleware

| aksum
User Portal

IIQ

“Performance
Property
Analyzer

© Search
Engine

ASKALON™ Service Sites
. Visualization]
Diagrams

P R@E‘HET

User Portal

4
h 4

¢ Overhead ™)
o Analyzer _J

Experiment
Executor

Compute Site

9

_Data
) Repository
Figure 1. The ASKALON Tool Set Architecture.

The ZOO project [32] has been initiated to support scienéfperiment management based on a
desktop experiment management environment. Experimeaesigned by using an object-oriented
data description language. Nimrod [1] and ILAB [60] are twad=based tools is a tool that manages
the execution of large scale parameter studies. Paraegieri is specified by meand of a declarative
plan file in Nimrod and through a graphical interface in ILABowever, ZOO, Nimrod, and ILAB
restrict parameter specification to input files only, in castto ZENTURIO, which allows parameter
specification within arbitrary application files.

The European working group APART [4] defined a specificatianglage for performance
properties of parallel programs based on which JavaPSL]atguage for performance property
specification used in AKSUM, has been designed. Performprmgerties defined by APART also
inspired some of the predefined properties Aksum provides.

The POEMS [2] project introduced a graphical representatibich captures the parallel structure,
communication, synchronization, and sequential behasidghe application. No standards are used
to model parallel applications and we have not found any dwt that describes a graphical
representation of process topologies or computer archies.

3. ASKALON Architecture

ASKALON has been designed as a set of distributed Grid sesvisee Figure 1). The services
are based on the OGSI-technology and expose a platform éndept standard API, expressed in
the standard Web Services Description Language (WSDL) Rlatform dependent and proprietary

Copyright(© 0000 John Wiley & Sons, Ltd.
Prepared usingpeauth.cls

Concurrency Computat.: Pract. Exp€000;00:0-0

4 THOMAS FAHRINGER ET AL. %

services are pre-installed on specific appropriate sites fivhere they can be remotely accessed
in a portable way, via the Simple Object Access Protocol (BDA6] over HTTP. By isolating
platform dependencies on critical resources, extra flityibin installing and managing the tools
is achieved. Each tool provides its own graphical User Paaee accessed in a friendly and
intuitive way. The User Portals are light-weight clientasg to be installed and managed by the
end-users. User Portals reside on the user’s local mackigeg notebook) and provide gateways to
performance tools by dynamically creating and connectingeimote services. ASKALON services
can be persistent (e.g. Registry and Factory) or transengpecified by OGSI. All services can
be accessed concurrently by multiple clients, which is aem®isal feature in a Grid environment
and enables tool interoperability. The Grid Security Iefracture (GSI) [26] based on single sign-
on, credential delegation, and Web services security [Bjufh XML digital signature and XML
encryption is employed for authentication across ASKALOSEUPortals and Grid services.

Remote service instances are created by a general-pUrpotssy service (see Section 3.2 using the
information from the Service Repository (see Section 3lthe same time, the portals discover and
bind to existing service instances using tRegistryservice, described in Section 3.3. Additionally,
the Data Repository(see Section 3.4) with a common standard schema definitiorgssand shares
common performance and output data of the applications ruadaluation. It thus provides an
additional mode of integration and interoperability amaoagls. To increase reliability of the system
by avoiding single point of failures, multiple Registry,ree, and Data Repository instances are
replicated on multiple sites and run independently.

An OGSil-based asynchronous event framework enables Gridces to notify clients about
interesting system and application events. ASKALON s&wisupport both push and pull event
models, as specified by the Grid Monitoring Architecture (&M50]. Push events are important
for capturing dynamic information about running applioag and the overall Grid system on-the-fly
and avoids expensive continuous polling. Pull events areiarfor logging important information, for
instance in cases when tools like ZENTURIO run in off-linedapwith disconnected off-line users.

ASKALON classifies the Grid sites on which the services caminto two categories (see Figure 1):

(1) Compute siteare Grid locations where end applications run and which s@stices intimately
related to the application execution. Such services irecthd Experiment Executor of ZENTURIO, in
charge of submitting and controlling jobs on the local sied the Overhead Analyzer of SCALEA,
which transforms raw performance data collected from thaing applications into higher-level more
meaningful performance overheads.

(2) Service sitesare arbitrary Grid locations on which ASKALON services are-mstalled or
dynamically created by using the Factory service.

3.1. UDDI-based Service Repository

The Universal Description, Discovery, and Integration IP[55] is a specification of a centralized
registry for publishing persistent Web service instant#3DI as a static repository (a database) is
obviously not appropriate for publishing transient Gridviee instances according to the UDDI best
practices document [13]. At the same time, OGSI defines thtoRgpor t Type, but omits to define
how the Factory accesses the implementation code of theesgovbe created.

Publishing service implementations in a Grid environmertriicial, as one cannot assume that a
service implementation is available at the site where itig®sed to execute. This assumption becomes

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 5

reasonable for deployment scenarios of portable Java eduet is the case of the ASKALON service

implementations. We therefore propose a slightly diffenesage of UDDI in a Grid environment,

which, instead of publishing dynamic transient Grid sesvicstances, uses UDDI to publish static
persistent Grid service implementations.

Our Factory service downloads the required service impteat®n from the UDDI Registry (if
necessary) and deploys the service instance within it$ kaxsting environment.

Technically speaking, the UDDI best practices requireg tha interface part of the WSDL
document be published as a UDDWbdel and the instance part adasi nessSer vi ce element
(as URLSs). Thebusi nessSer vi ce UDDI element is a descriptive container, which is used to
group related Web services. It contains one or mmradi ngTenpl at e elements, which contain
information for connecting and invoking a Web service. Bhedi ngTenpl at e contains a pointer
toat Model and araccessPoi nt element, which is set to the SOAP address of the serpicet().

In contrast, for Web services running in a Grid environmesetpse théusi nessSer vi ce element
to publish service implementation information. Therefowe set theaccessPoi nt element of a
bi ndi ngTenpl at e with the URL to the JAR package that implements the service.

Registry and Factory are the only persistent services in ASBN, for which one entry
corresponding to the service implementation and an arpitnamber of entries corresponding to
the available instances are published in the UDDI reposifbine distinction between the two types
of entries is done through the syntax of thecessPoi nt URL. The User Portal connects to all
available Registries at start-up time, while Factoriesehavstandard URL derived from the host
name and a pre-defined port numbkt {p: // host nane: port/ Fact ory/). Additionally, a
notification mechanism compliant with the newest UDDI VersB specification informs the portal
when new Registries are registered.

3.2. Factory

Each Grid site hosts by default one persistent Factory aerlihe Factory is a generic service that
creates and deploys (Java) Grid services of any type atimm-implemented and packaged as
JAR files. The Factory searches the (UDDI) Service Repgsitor a service of a given type (as
busi nessSer vi ce name). If such a service is found, the Factory creates a @ridce instance
on-the-fly through the following steps: (1) get the URL of 8&vice implementation (represented as
accessPoi nt element — see Section 3.1); (2) download the JAR packageefdpy the service in
the hosting environment in which the Factory resides; (#jaiize the service instance; (5) register
the instance with all Registries; (6) set a leasing time kguthe service termination time; (7) return
the URL to the WSDL file of the service instance. Clients use tRL to retrieve the WSDL file and
dynamically bind to the service through dynamic run-timeeyated proxies.

3.3. Registry

The Registry service is a persistent service which maistaim updated list of the URLs to the
WSDL files of the existing Grid service instances. It may desanywhere in the system and there
can be an arbitrary number of Registries for registeringl Gearvices. The User Portal discovers all
existing Registries from the Service Repository at startime. The Registry granteasedo registered
services, similar to the Jini [17] built-in leasing mechami If a service does not renew its lease before

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

6 THOMAS FAHRINGER ET AL. %

the lease expires, the Registry deletes it from its servéte This is an efficient way to cope with
dynamic transient services and network failures. A leasimg of 0 seconds explicitly unregisters
the service. An event mechanism informs clients about newices that registered with the Registry,
or when services did not renew their lease. Thereby, cliergsalways provided with a dynamically
updated view of the environment.

We provide three methods for performing Registry lookuprapens: (1)white pagesprovide
service discovery based on service URL; y2)low pagesupport service discovery based on service
type. (3)green pageperform discovery based on service functionality expreéas&VSDL (see [43]
for details).

3.4. Data Repository

All ASKALON tools share a common data repository for storiimformation about the parallel
and distributed applications under evaluation. The rdposiimplementation is based on the
PostgreSQL [31] open-source relational database systbmd@tabase schema definition reflects a
layered design and has been jointly developed by all toctidpers.

Any tool can optionally store relevant experimental datiiding application, source code, machine
information, and performance and output results into thposory. An interface with search and
filter capabilities for accessing repository and leverggihe performance data sharing and tool
integration [52] is provided. Tools exchange data via th&adapository and also provide direct
interfaces to subscribe for specific performance metricpaoameter study results. Data can also be
exported into XML format so that it can easily be transfeednd processed by other tools.

SCALEA stores mostly performance overheads, profiles antticeen the the data repository.
ZENTURIO through the Experiment Executor adds informatdsout experiment parameters (ZEN
variables) as well as output data required by parameterestudKSUM adds through its Property
Analyzer the ZENTURIO schema definition information aboighilevel performance properties
(inefficiency, scalability) and their severity. The PerfanceProphet can access information provided
by any ASKALON tool to guide its prediction effort. Moreoveredicted performance data can be
inserted into the data repository as well, which can be aeteby ZENTURIO and AKSUM instead
of invoking SCALEA for a real program run.

3.5. ASKALON Visualization Diagrams

In addition to the distributed Grid service-based desightae common Data Repository, ASKALON
provides a Java-based package consisting of a set of gaareticustomizable set of visualization
diagrams [20]. Available diagrams include linechart, bart, piechart, surface, as well as a more
sophisticated hierarchical diagram for the simultaneoissialization of a maximum of seven
dimensions, which is used to graphically display Grid perfance studies.

Besides visualizing static post-mortem information, aliglams accept online data streams as
input for dynamic on-line visualization of parallel and tdisuted program behavior. The diagrams
are generic and fully customizable, which enables both asdrGrid services to map application
parameters, output results, or performance metrics offtiitrany visualization axis. All ASKALON
tools employ this diagram package for visualization.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 7

4. SCALEA

SCALEA [53] is a performance instrumentation, measurepart analysis tool for parallel programs
that supports post-mortem performance analysis.

4.1. Instrumentation

The Instrumentation service provides support to instrunsenvices and applications. We support
two approaches: source code and dynamic instrumentatiomhd first approach, the SCALEA
Instrumentation System (SIS) supports automatic instniation of Fortran MPI, OpenMP, HPF, and
mixed OpenMP/MPI programs. The user is able to select (lgctiires or command-line options) code
regions and performance metrics of interest. Moreoverp8Ess an interface for other tools to traverse
and annotate the AST to specify code regions for which perémice metrics should be obtained.
Based on pre-selected code regions and/or performances)eitS automatically analyzes source
codes and inserts probes (instrumentation code) in thewhbibé will collect all relevant performance
information during execution of the program on a target éecture.

The source code level approach, however, requires all theesdiles to be available. In addition,
instrumentation and measurement metrics can not be coafigar runtime. To overcome these
problems, we are currently exploiting the dynamic instrataon mechanism based on Dyninst [10].
In order to enable dynamic instrumentation, we implememiugator servicavhich contains Dyninst
API calls, the code that implements the runtime compiler gnedutility routines to manipulate the
application process. A mutator is responsible for coritiglithe instrumentation of an application
process on the machine where the process is running. Weogeekbn XML-based instrumentation
request language (IRL) to allow users and services to gpeoifle regions for which performance
metrics should be determined and to control the instruntientarocess.

4.2. Overhead Analyzer

SCALEA provides a novel classification of performance oeads for parallel programs that includes
data movement, synchronization, control of parallelisdditional computation, loss of parallelism,
and unidentified overheads [53]. The Overhead Analyzericiig used to investigate performance
overheads of a parallel or distributed program based onwbghead classification.

The SIS measurement library supports profiling of parajpgligations, collecting timing, counter
information, as well as hardware parameters via the PARINH9]. The Overhead Analyzer computes
performance overheads and stores them into the data reposit

4.3. Performance Analyzer

The Performance Analyzer service evaluates the raw pedioce data collected during program
execution and stores them into the data repository. All estpd performance metrics are computed.
Several analyses (e.goad Imbalance Analysis, Inclusive/Exclusive AnalysistirM Ratio Analysis,
Overhead Analysis, Summary Analysise provided.

While most performance tools investigate the performamcerfdividual experiments one at a
time, SCALEA goes beyond this limitation by supporting afgerformance analysis for multiple

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

8 THOMAS FAHRINGER ET AL. %

—|SCALEA: Performance Metricd - | |
rmance Metrics

= SCALEA: Multip/e experiment Selection

Select lication List of selected experiments Performas —
LAPWD - 1MNxP4,P4,72 allclock time |~
T 2NxP4,P4,72 ystem time =

3MNP4,P4,72 (LT 1=
v"”":;l'm umm‘l'l anarp 72 A [
ooy Experiment. 5MxAR,P,72 | [eerea || clase |
ANIPP4,72 = — GNP, P47 3 v
R iy aao | TR L []SCALEA Multiple Experiments £ -| J
GNX4P.P4,72) Al Execution Time
1N PA_F - single Metric
1Mo pa,_2 Remove | -
2Nx4P_P4_2 Multiple regionsdor a versiony
Ahoet Pe.2 = Speedup/ Improvement
SR - g P
{l
| selea | close Ovemena
=] SCALEA: Multipls Regions Selection Sets of Experiments
__ Avallable Regions_ : Selected Kegions
CR_OTHERSEQIFFT_REANZB8%:801] : CR_A[CA_COULOME_INTERSTITIAL POTENTIAL:S3
CR_OTHERSEQ[FFT_REANI:BB1:883] Add CRPILAPWE Z1277]
CR_AICAL_CP_INSIDE_SPHERES:678:772] 'ﬂ —‘[
CR_AJCAL_COULOME_RMT:635:668) i _Aanan |
CR_AICA_COULOMB_INTERSTITIAL_POTENTIALS3 | Remove
CR_AJCA_MULTIPOLMENTS: 256:506) T

i : Selent | Close

Figure 2. SCALEA Multiple Experiments Analysis

experiments (e.gSpeedup/Improvement Analysis, Scalability AnalysisfiNRdgion Analysis, Multi-
Set Experiment AnalygisThe user can select several experiments, code regionpeaioimance
metrics of interest whose associated data are stored irathaebpository (see Figure 2). The outcome
of every selected metric is then analyzed and visualizealffoexperiments. SCALEA supports the
following multi-experiment analyses:

e performance comparison for different sets of experiments The overall execution of the
application across different sets of experiments can blyzed; experiments in a set are grouped
based on their characteristics (e.g. problem sizes, conwuation libraries, platforms). .

e overhead analysis for multi-experiments Various sources of performance overheads across
experiments can be examined.

e parallel speedup and efficiency at both program and code regn levet Commonly, those
metrics are applied only at the level of the entire progra@ABEA, however, supports
examination of scalability at both program and code reggorliranging from a single statement
to the entire program.

5. ZENTURIO

ZENTURIO [43] is a tool designed to specify and automaticathnduct large sets of experiments in
the context of large scale performance and parameter stadieluster and Grid architectures.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 9

5.1. ZEN Experiment Specification Language

Conventional parameter study tools [1, 60] restrict patenmation to input files only. In contrast,
ZENTURIO defines a directive-based language called ZEN [d2hnnotate arbitrary application
files. ZEN directives are used to assign value sets to sodcZllEN variables A ZEN variable
can represent any problem, system, or machine parametirding program variables, file names,
compiler options, target machines, machine sizes, scimegsirategies, data distributions, etc. The
value set represents the list of interesting values for éineesponding parameter. The advantage of the
directive-based approach over an external script [1] isatikty to specify more detailed experiments
(e.g. associate local scopes to directives, restrict patr@ation to specific local variables, evaluate
different scheduling alternatives for individual loopt.g

ZEN defines four kinds of ZEN directives, exemplified in SewtB8.3 TheZEN substitute directive
(see Examples 8.1, 8.2) uses a pre-processor-based stptagement mechanism to substitute a
ZEN variable with one element from its value set. To completr@me of the ZEN substitute
directive’s limitations, aZEN assignment directivésee Example 8.3) can be used to insert an
assignment statement in the code. By default, the crossiptad the value sets of all ZEN variables
is computed. The number of possible value set combinatiamsbe limited by means ofEN
constraint directivegsee Example 8.3). ZEN also supports the specification dbpaance metrics
for arbitrary code regions through tEEN performance behavior directivésee Example 8.2). A
file/application annotated with ZEN directives is calledNZEle/application. A ZEN transformation
system generates all ZEN file instances for a ZEN file, basetherZEN directives inserted. The
SCALEA instrumentation engine, which is based on a comgtertran90 OpenMP, MPI, and HPF
front-end and unparser, is used to instrument the appicdtr performance metrics. The ZEN
performance behavior directives are translated to SCALEAd#ectives and compiler command-line
options.

5.2. Experiment Generator

Through the Registry service, the User Portal locate&gmeriment Generatoservice to which it
transfers the entire application via GridFTP. Designingp&rikment Generator as a separate service
has the advantage of isolating the platform dependenciteedfienna Fortran Compiler (VFC) [6],
on which the SCALEA instrumentation engine is based. Aftggegiments are generated, they are
automatically transferred to the target compute Grid gites1g GridFTP [3]) for execution. In case of
the Globus DUROC co-allocator [15], the experiments ardezbfp multiple destination sites, which
are read from the RSL (Resource Specification Languagejigésn of the experiment.

5.3. Experiment Executor

The Experiment Executds a generic service responsible for compiling, executamgl, managing the
execution of experiments onto the local Grid site. If no Eipent Executor exists on the execution
site (arbitrary site in case of DUROC), it is created by thet&y service. The Experiment Executor
interacts at the back-end with a batch job scheduler, whicthé current implementation can be
Condor [36], LoadLeveler, LSF, PBS, and Sun Grid Engine foster, and GRAM [14] or DUROC
for Grid computing.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

10 THOMAS FAHRINGER ET AL. %

After each experiment has completed, the application dutpsults and performance data are
stored into the ASKALON Data Repository (see Section 3.4yhHevel performance overheads are
computed by the Overhead Analyzer service of SCALEA Ajaplication Data Visualizeportlet of the
User Portal, developed on top of the ASKALON visualizati@tkage (see Section 3.5), automatically
generates visualization diagrams that display the vanatif performance and output data across
multiple sets of experiments.

6. AKSUM

AKSUM is a flexible tool for semiautomatic multi-experimgueerformance analysis of parallel and
distributed applications [19]. Through its User Portak thser inputs hypotheses that should be
tested, machine and problem sizes for which performandgsisahould be done (application input
parameters), files that compound the application, and Iplgssbnditions to stop the analysis process.
The User Portal displays, while the search process is gaingvhich hypotheses were evaluated to
true for the machine and problem sizes tested.

In AKSUM, hypotheses are called performance propertiesh gaerformance property is an
algorithm specifying a negative performance behavior tmay be found in a program. The
specification may be very simple (for example, reflectingeclly some measurement made by
SCALEA), but it can also characterize a very complex propékie replicated code or the inefficiency
of a set of experiments. Users can use the set of properti€&MKprovides and also write, in Java,
their own properties and add them to AKSUM in order to exténdry new property must be a class
defining the following three methods:

e boolean holds(:)returns true if the property (class) instance holds (theamns, the "negative
performance behavior” is present).

o float getSeverity(: yeturns a value between 0 and 1 indicating how severe a gyapstance is
(the closer to 1, the more severe the property instance is).

¢ float getConfidence(Jeturns a value between 0 and 1 that indicates the degrem@ifience in
the correctness of the value returnechimjds.

Aksum comes with a library, called JavaPSL [22], to help vifib specification of performance
properties, as it allows easy access to the performance (tiatimg information, overheads and
hardware counters) that SCALEA provides.

6.1. Services: Search Engine, Instrumentation Engine andd?formance Property Analyzer

The user-supplied input data is provided to Search Engingwhich is in the center of AKSUM and
controls the entire search process. By issuing requedis bodtrumentation Enginghe Search Engine
determines the performance information to be collecte@dpmiication code regions and problem and
machine sizes. The Instrumentation Engine of AKSUM invakesSCALEA Instrumentation service
for the actual code instrumentation, that is, it is a layext thnables the Search Engine to access
and traverse application files in a machine independent teaipistrument them, and transparently
to modify makefiles, scripts, and the compilation commane lin order to link the instrumented
application with the instrumentation library provided b@ ALEA.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 11

The instrumented code is submitted to ZENTURIO’s Experitnt&enerator service, which change
the execution parameters according to the input parampteksded by the user and transfer the
files to the appropriate Grid sites where the ZENTURIO’s Expent Executor service will compile
and execute the experiments, as well as transfer perfomrdata to the Data Repository after each
experiment has been executed.

The Search Engine evaluates the performance data in the Regpasitory by invoking the
Performance Property Analyzeervice, which determines all critical performance praipsr(that is,
property instance whose value returned by the meted8everitys greater than a certain threshold).
A cycle consisting of consecutive phases of applicatiorwetien and property evaluation is continued
until all experiments are done or some system or user-degimrdition stops the search process. Under
the User Portal, every performance property that has beemmdieed to be critical is dynamically
displayed (together with the source code) to the user duthirgsearch process and stored in the
ASKALON Data Repository.

The way performance property instances are ordered anggtdoand which information should be
displayed, may be also configured by describing the "fieldat should compose each record (property
instance) in the output. Possible fields for an output reacedhe code region where a property instance
has been found, the experiment associated to the propstanice, the number of nodes, processes or
threads used in the experiment, the property name, and ghg application input parameters.

7. PerformanceProphet

The PerformanceProphet is a set of performance modelingpeatiction services, which supports
prediction of the performance behavior of distributed aadhfiel applications on cluster architectures.
At present, the PerformanceProphet does not support picedfor the Grid.

The central idea is to support the application developerbyiding performance analysis results at
early stages of the application development. For instaheajser can evaluate various parallelization
strategies at modeling time before the application is dmed, by building a high level model of the
application and evaluating its performance. Performara@i®t consists of two main components:
(i) the user portalTeuta which supports the application model development basetherUnified
Modeling Language (UML) [39], and (ii) th@erformance Estimatoservice, which supports the
performance evaluation of an application model, based ghadapproach which combines analytical
modeling with discrete event simulation.

Figure 3 shows a scenario of usage of PerformanceProphmiflmrmance modeling and prediction
of distributed and parallel applications:

1. The user constructs the model of the application by comyitML building blocks (such as
OpenMP ParallelDo, see Figure 3) annotated with performamel control flow information
by usingTeuta The application model is transformed to an intermediatenfthat is used as
input for thePerformance Estimatorand is stored into the ASKALON Data Repository (see
Section 3.4).

2. ThePerformance Estimataeads the model from the ASKALON Data Repository and evakiat
the performance of the application for the user-selectegetacomputer architecture. The
obtained performance prediction data is stored into the AISBN Data Repository. Other tools

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

12 THOMAS FAHRINGER ET AL. %

Performance
Estimator
Simulation

ASKALON
Data Repository

o Teuta Computer
>BUl|dl“Q B|°°ks>_> Model Building < (Architectures<

_______ ¢
1
H
|
o> ! ASKALON
R | Diagrams

Visualisation

Figure 3. Performance modeling and prediction with PerforaeProphet

(for instance AKSUM and ZENTURIO) can obtain the performaipeediction data either via
ASKALON Data Repository or directly frorRerformance Estimataservice by subscribing for
specific performance metrics and overheads.

3. If the user is not satisfied with the result, then he may fyaitie model of the application
and/or select another target computer architecture. Maicgprocess of model adaptation and
performance prediction may continue until acceptablegraréince results are obtained.

7.1. UML Extension for the Domain of Performance-Oriented @mputing

We have determined that by using only the core UML, some itapdishared memory and message
passing concepts can not be modeled at all or results in @ndhgrams [40]. In order to overcome
this issue we have developed an extension of UML for the dowfgperformance-oriented computing.
In [41] we describe a set of UML building blocks that model soof the most important constructs of
message passing and shared memory parallel paradigms, earide used to develop models for large
and complex parallel and distributed applications. Theslkging blocks have been largely motivated
by the OpenMP and MPI standards. In order to provide tool studpr the UML extension for the
domain of performance-oriented computing we have develdjpeita. The requirements that guided
the design of Teuta are extensibility and platform-indefeste.

It is difficult to foresee all the types of the building blodkst the user might want to use to model
his application. Therefore, we have included a basic setudfling blocks, which are described in
[41], and made it easy to extend the tool with the new buildilegks. The extensibility requirement
led us to the use of XML for several tasks, such as the defmiifothe modeling elements and the
configuration of the tool.

Because the application developers may work on varioufopias, the tool should be able to run
on various platforms as well. The requirement for platfontlépendence led us to the use of the Java
programming language for the implementation of Teuta baseithe Model-View-Controller (MVC)
paradigm [34]. MVC is a paradigm that enforces the separdteiween the user interface and the rest
of the application.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 13

7.2. Hybrid Model Building and Simulation

Hybrid simulation models, which combine analytical modglitechniques with discrete event
simulation, present an efficient alternative to simulatboty models [48]. Here we briefly describe
our approach of hybrid application model building. A distried and parallel application consists of
two classes of building blocks:

1. Building blocks which involve ongrocessing unit(a process or thread), for instance the
execution of a sequence of computational operations.

2. Building blocks which involve multiple processing unifisr instance collective communication
operations, barriers, semaphores, and so on. This typéldirtgiblocks impose synchronization
among the processing units.

We use analytic modeling techniques to model the executiomaf the first type of building blocks
by parameterized cost functions. On the other hand, for théeting of performance behavior of the
second type of building blocks we use simulation.

Usually, the cost functions for building blocks are proddby the application developer.
Alternatively, the ASKALON tool set may be utilized to dewplthe cost functions. The first step
is to instrument the parts of the application code that epwed to building blocks of interest by
using SCALEA Instrumentation Service (see Section 4). Ttherset of tests to be executed is defined
by using ZEN Experiment Specification Language (see Se&)omhe set of tests is defined by
the application input parameters and the parameters of gmnprchitecture by using Experiment
Generator service of ZENTURIO. Then PerformanceProplietag the Experiment Executor service
of ZENTURIO to perform all the defined experiments, and stthve performance data into the
ASKALON Data Repository. PerformanceProphet makes usé@fcollected performance data to
generate the cost functions based on regression stdtisthod.

8. Experiments

In this section, we present numerous experiments to demade@she usefulness and effectiveness of
the ASKALON tool set for a variety of real world applications

8.1. Overhead Analysis with SCALEA

We illustrate SCALEA by applying it to a mixed OpenMP/MPI Ean program that solves the 2d
Stommel model [49] of an ocean circulation using a five-pstancil and Jacobi iteration.

By using SCALEA we examine the performance overheads fomglesiexperiment of a given
program by providing two modes for this analysis. Firsthg Region-to-Overheadhode (see the
“Region-to-Overhead” window in Fig. 4) allows us to selegy&ode region instance in the dynamic
code region call graph (DRG) [53] for which all detected periance overheads are displayed.
Secondly, theDverhead-to-Regiomode (see the “Overhead-to-Region” window in Fig. 4) enable
us to select the performance overhead of interest, basethich ®CALEA displays the corresponding
code region(s) in which this overhead occurs. This seleatan be limited to a specific code region

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

14 THOMAS FAHRINGER ET AL. %

= SCALEA; Reglon-To-Overhead [E]
File Data Wiew
G OVHErIC can fee Tdid) T
@ [Experiment
@ Cgsra13 *| 18188 OR CR_P, CR_MFISTARTUF, CR_MPICOL,CR_MPIOTHER
@ A Process0
@ [Thread 0 do the rogi init stuff
©- (=] Region 1(CR_P[STOMMEL] EAE e
S 2l mi D A GITEs MBI ARLM WADE R nimnn D -
Pl = SCALEA: Quarhead-To-Region =
& 0 Thread 3 File Data iew
@ [gsrd12 @ [Process 0 | f ! rec from right A
o O gsrdt5 @ ClThrezdn call MPI_RECY{psif,j2+1),nurm_x MPI_DOUBLE_PRECISIOH
& [gsr411 @ [(send = 13789170 A, ‘1UU'ESW‘?MM'Z‘iug‘mm'em
9 T Region 1CRPISTOMMELsen= 157961700 [l gy gy 0 P
@ [Detail overhead: Ident=0914874.5 [y Region 37(CR_MPISEMD[MPI_SEMD])(send = 326339.0) call MPLSENDIpsIC 2, num_xMPl_DOUBLE PRECISION,
@ O data movernent=5816860.0 [y Region 26(CR_MPISENDIMPI_SENDD(send = 223757.0) 100,ROW_COMM,mpi_er
[senc=1379817.0 [} Region 45(CR_MPISEMD[MPI_SEMD](send = 404538.0)) ! write= 4" s rryid psit, 2)
[Recv=4438812.0 [} Region 46(CR_MPISENDIMPI_SEND](send = 425283.0) elze lwe are onan odd col processor
D Collective=131.0 @ [(recy = 4426812.07) I rec frorn night
@ 7 Synchronisation=1282260.0 o o (col =121 03 call MPI_RECY{psif,j2+1),nurm_x MPI_DOUBLE_PRECISIO
[} Barrie=642494.0 © [(barmier = 542494.03 ‘ Wm;ﬁzﬁﬁ%f&!?]Z‘f:“f‘mp'*em
[other=630765.0 ©- 27 (other sync =638766.0;) | sendto right e
@ 3 Control of, Par=1723580.0 ©-[7 (forkfjoin = 466625.0) call MPI_SEND(pSic 2, num ¥ MFI_DOUBLE PRECISION,
[Forkjoin=488625.0 @[(nitfinal = 1224955.0) 100,RON_COMM,mni_err)
[Mpi initinal=1234955.0 ©-[£7 (extra mpi= 562181.0) L write (s " royld psit,/2)
@[3 (unpar = 493993.5) |1 sendto len
@ T Thread 1 call MPLSEND{psit. 1), num_x MPI_DOUBLE_PRECISICH {2
P [T (bamier = 4102685.0;) 100,ROWY._COMM, mpi_er)
D Region 31(CR_OMPBA[DO_JACOBI)(barrier= 2554084.0) ! write™)" sl rryvid,psiC i1y
| | rec from left =i

Figure 4. Region-To-Overhead and Overhead-To-Region DR@.V

instance, thread or process. For both modes the source €@deegion is shown if the code region
instance is selected in the DRG by a mouse click.

8.2. Multiple-Experiment Analysis with SCALEA

In this section we demonstrate a multi-experiment anakygtis SCALEA applied to LAPWO [7], a
material science program that calculates the effectiveniat of the Kohn-Sham eigen-value problem.
LAPWO has been implemented as a Fortran90 MPI code.

We useMulti-Set Experiment Analysts study the performance of LAPWO for two problem sizes
and six machine sizes with two different network configumasi as shown in Fig. 5. Based on this
study, we observed that changing the communication netivork Fast-Ethernet by Myrinet did not
actually improve the performance.

SCALEA provides a&Performance Overhead Summaoyexamine various sources of performance
overheads across experiments. For example, the overheaday for LAPWO with problem size
of 36 atoms displayed in Fig. 6 uncovers a small amount of det@ement overhead but a large of
overhead for loss of parallelism and unidentified overh@ada result, instead of focusing our effort
on analyzing code regions that are sources of data movemgnsénd/receive), we study code regions
that possibly cause loss of parallelism overhead.

In order to support studying the performance behavior otéctell code regions, SCALEA
provides a Multiple Region Analysis For instance, the left-window of Fig. 7 visualizes
the execution times for the most computational intensivalecaegions in LAPWO. The
right-window of Fig. 7 displays the program’'s speedup/ioy@ment behavior. The execu-
tion times of code regions including CACP.INSIDE_.SPHERES, CALCOULOMB_RMT,

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 15

= SCALES: Multiple Sets of Expariments &nalysls =]
Wallclock time(s) CH_P4, 36 Atoms
—4— GM, 36 Atoms
599.4 —a— CH_P4,72 Atoms
—— GM, 72 Atoms
539.4
4795
1196
350.6
200.7
239.7
1798
o8 \\i—.\‘_.
59.9
Processors
1 8 12 1% 20 24

Figure 5. Execution time of LAPWO with 36 and 72 atori$d_P4, GM means that MPICH has been used for
CH_P4 (for Fast-Ethernet 100Mbps) and Myrinet, respectively.

= SCALEA: Overhead Table |-]=
Experiments [1MxdPP436 | 2MxdPP436 | 3Mx4PP436 | 4Mx4PP436 | ENx4PF436 | EMx4P P4 36
Drata moverment 0.804 0.833 1.562 2.426 1.809 2749
Synchronization 0 o o o o o
Contral of parallelism 2.895 3.939 4743 5.270 5814 6.519
Loss of Parallelism 12.544 14.682 15.358 18,722 15.921 16.065
Additional Overhead] 0 0 0 0 0
Total identified overhead 16.443 19.555 32.662 33.418 33,644 35.333
Total unidentified overhead 14.958 33.078 19.382 26.75 74.891 26.911
Total overhead 31.402 42.633 42.045 50.168 40,534 52.245
| Total execution tirme(s) 137.704 95734 77.479 76744 60.705 £9.062

Figure 6. Performance overheads for LAPWO.

CA_COULOMB_INTERSTITIAL_POTENTIAL, CAMULTIPOLMENTS remain almost constant
although the number of processors is increased from 12 tond@@ to 24. In addition, code regions
FFT_REANO, FFT.REANS3, and FFTREAN4 are executed sequentially. These code regions should
therefore be subject of parallelization in order to gairf@@nance.

8.3. Performance and Parameter Studies of Backward Pricind\pplication with ZENTURIO

The backward pricing kernel [16] is a parallel implemematof the backward induction algorithm
which computes the price of an interest rate dependent fialagmoduct, such as a variable coupon
bond. Itis based on the Hull and White trinomial interest te¢e which models future developments of
interest rates. We have performed a performance and a pemastaly for this code using ZENTURIO.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

16 THOMAS FAHRINGER ET AL. %

— SCALEA: Multiple Region Analysis) = SCALEA: Speedup/Improvement =]
Wallclock time(s) —s— CR_OTHERSEQ[FFT_REAN3] Speedupimprovement Speedupimprovement
" CR_OTHERSEQ[FFT_REANO]
281 — s CR_A[CAL_CP_INSIDE_SPHERES] 19
263 — 3¢ CR_A[CAL_COULOMB_RMT] 17

— — 4 CR_A[CA_COULOMB_INTERSTITIAL_POTENTIALL | ;4
105 — 4 CR_AICA_MULTIPOLMENTS] 3

} — H#— CR_OTHERSEGIFFT_REAN4] 1'1
16.8 .

14.0 x* x* x* ey 0.9
11.2 0.7
84 05
56 03

2.8 K H H H » " 0.1

Experiments Expariments

ANxAP,P4,36
2NxAP,P4,36
INXAP,P4,36
ANX4P,P4,36
5NX4P,P4,36
6NxX4P,P4,36
1Nx4P,P4.36
2NX4P,P4,36
INKAP,P4,36
AN4P,P4,36
SNX4P,P4,36
GNX4P,P4,36

Figure 7. Execution time of computationally intensive codegions (left window) and program’s
speedup/improvement (right window)Nx4P,P4, 36neans 1 SMP node with 4 processors using MPICHRZH
and the problem size is 36 atoms.

8.3.1. Performance Study

Backward pricing has been encoded as an HPF+ applicatiachwisies HPF+ directives to distribute
the data onto the SMP nodes. The application is compileddnaixed OpenMP/MPI program by
the SCALEA instrumentation engine built on top of the HPFenfia Fortran Compiler (VFC). Intra-
node parallelization is achieved through OpenMP direstiv@mmunication among SMP nodes is
realized through MPI calls. We scheduled the experimentthenSMP cluster using GRAM. We
annotated the RSL script to vary the machine size from 1 tdlP Bodes (see Example 8.1). The ZEN
variablecount =4 is set with the number of SMP nodes. Based orcthent RSL parameter, GRAM
allocates the corresponding number of SMP nodes and uses#abée local MPI implementation,
which must be defined by the user default shell environmerthé current experiment, we have set
our environment for MPICH using the4 device over Fast Ethernet. TMPI _.MAX_CLUSTER_SI ZE
environment variable ensures that timei r un script starts only one MPI process per SMP node.
The intra-node parallelization is achieved by means of @fferWe vary from 1 to 4 the number
of threads to be forked by an OpenMFARALLEL loop through a ZEN substitute directive. (see
Example 8.2). The overall execution time, together with 1) communication and the control
of parallelism (HPF+ inspector/executor) overheads haanblmeasured through a ZEN performance
behavior directive (see Example 8.2).
Example 8.1 (Globus RSL script)
+(&

(resour ceManager Cont act =" gescher/j obmanager - pbs")
(*ZEN$ SUBSTI TUTE count\=4 = {count={1:10}}*)

(count =4)

(j obt ype=npi)

(envi ronnent =(MPI _MAX_CLUSTER _SI ZE 1))

(directory="/hone/ radu/ APPS/ HANS")
(execut abl e="bw_hal o_si s"))

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 17

Example 8.2 (Source file)
I ZEN$ CR CR_A PMETRI C WII ME, QODATA, OCTRP

| ZENS SUBSTI TUTE NUM THREADS\ (4\) = { NUM THREADS({1:4}) }
! $OMP PARALLEL NUM THREADS(4)

1 $OWP END PARALLEL

Two ZEN directives have been inserted into two files to predd® experiments automatically
conducted by ZENTURIO. Figure 8(a) shows a good scalabditythis code. Backward pricing
is a computational intensive application, which highly éf#s from the inter-node MPI and intra-
node OpenMP parallelization. The overall wallclock timelod application significantly improves by
increasing the number of nodes and OpenMP threads per SM& Riglire 8(b) shows a very high
ratio between the application total execution user time (oifi bar) and the HPF and MPI overheads
measured, which explains the good parallel behavior. Tatie decreases for a high number of SMP
nodes, for which the overheads significantly degrade theatiy@erformance.

8.3.2. Parameter Study

We performed a large parameter study for the Backward gricide by varying four input parameters:
(1) the coupon bond (ZEN variabt®upon from 0.01 to 0.1 with increment 0.001); (2) the number of
time steps, over which the price is computed (ZEN variallest eps from 5 to 60 with increment 5);
(3) the coupon bond’s end time (ZEN variablend%end), which must be equal to the number of time
steps; (4) the length of one time step (ZEN variathég t a_t from 1/12 to 1 with increment 1/12).
The application has been encoded such that it reads its figpaineters from different input data files.
ZEN assignment directives are inserted in the source codedrately after the correspondingad
statements (see Example 8.3). Thus, the origiredd statement is made redundant. A constraint
directive guarantees that the coupon bond’s end time igimwith the number of time steps. We
examined the effects of these input parameters on the tatal putput result.

Example 8.3 (Source file — pkernbw.f90)
read(10,*) nr_steps
I ZEN$ ASSIGN nr_steps = { 5:60:5 }

read(10,*) delta t
I ZEN$ ASSIGN delta t = { 0.08, 0.17, 0.25, 0.33, 0.42, 0.5, 0.58, 0.67, 0.75, 0.83,
0.92, 1}

read(10, *) bond%end
! ZEN$ ASSI GN bond\ %end = { 5:60:5 }
| ZEN$ CONSTRAI NT VALUE nr_steps == bond\ %end

'ré;ad(lo,*) bond%oupon
I ZEN$ ASSI GN bond\ %eoupon = { 0.01:0.1:0.001 }

Example 8.4 (Globus RSL Script)
+ (&
(*ZEN$ SUBSTI TUTE Josie = { Anatevka, Gescher/jobnanager-pbs, Josie }*)
(*ZEN$ CONSTRAI NT | NDEX Josi e == pkernbw. f 90: bond\ %¢oupon / 4;
(resour ceManager Cont act =" Josi e")
(count =4)
(j obt ype=npi)
(execut abl e="pkernbw"))

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

18 THOMAS FAHRINGER ET AL.

Diagram (c) i Vsl agram (c)

File Opfions View File Opfions View

2 Data movement Region 1

Gontrol of Parallglism Region 1

® Point to Paint Communication Region 1
_ | Overhead of Extra MPI Gode Region 1

= & & E A EE

@ _|Inspector Region 1
W M Executor Region 1
_ | Additional Gverhead Region 1
@ = Optimal Time + Unidentified Overhead Region 1

Wallclock Time (microsec.)

no_procs no_procs

(a) Wallclock time for different number of nodes and (b) Contribution of MPI and HPF overheads to the
OpenMP threads per SMP node. overall execution time (4 threads per SMP node).

12.756E3|
11.33E3 |
9.9043E3|
| 8.4785E3)
+ 7.0528E3
5.627E3
4.2012E3
27754E3 s,amaEai
1.3497E3| 6.4191E3

Total Price
Total Price

(c) Total price for length of time step (d) Total price for coupon = 0.05.
(deltat)=1.0.

Figure 8. Visualization Diagrams for Backward Pricing.

Five ZEN directives were inserted into one single source fithich specifies a total of 1481
experiments to be automatically generated and conductedBEdyTURIO. In order to speed-up
the completion of this rather large parameter study suigeamwnotate the Globus RSL script with
three Grid sites on which to schedule the experiments usibR@C: Anatevka, Gescher, and
Josie (see Example 8.4). The experiments withd%coupon < 0.03 are scheduled on Anatevka,
experiments with0.04 < bond%coupon < 0.07 are scheduled on Gescher, while experiments with
bond%coupon > 0.08 are scheduled on Josie. This is expressed by the global auifestraint directive
illustrated in Example 8.4. By splitting the parameter gtudhto three Grid sites, we reduced the
completion time of the whole suite by more than 50%.

One single Experiment Executor service which runs on thekBasront-end node has been used to
conduct all experiments. Experiments on Anatevka and Jasie been conducted through a Globus

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 19

GSI proxy delegation. Upon the completion of each experintba standard output which reflects the
total price is stored into a single data repository on a sgpdsrid site.

From the wide variety of visualization diagrams automadlijcgenerated during this study, two
samples are depicted in Figure 8, which help scientists nstated the effect of various inputs on the
total price output parameter. A total number of 1481 expenita have been automatically generated.
The output of each completed experiment containing thd fotee has been stored into the data
repository. Two sample diagrams that enable the sciertisssudy the evolution of the total price
as a function of the input parameters annotated are depictédure 8.

8.4. Performance Analysis for 3D-Particle-In-Cell with AKSUM

The 3D-Particle-In-Cell [28] is an application written ifEran90 and MPI simulating the ultrashort
laser-plasma interaction in a three dimensional geomé#étgan presently run with seven different
problem sizes (1, 4, 9, 12, 16, 25 and 36 CPUs).

AKSUM’s analysis (Figure 9(a)) shows that the propertiesfficiencyand MessagePassingOver-
headare critical in this code. Initially, AKSUM shows the progies ordered by the value of the most
severe instance, and the instances of each property oeghinia tree manner, with each level showing
also the minimum, average, and maximum severity of the ptppestances under it. Figure 9(a) shows
instances ofefficiencyorganized by number of processes and right below by codensgRK4119,
MAIN _12, etc. are names AKSUM gave to code regions that were mstnted in the application,
while the quadruple before the name is the position (firstlasiline and column) of the code region.
The message "caused by children” indicates that an instinte same property is present in a child
code region with the same or a very close severity value;féts (most probably) means that the
problem is entirely caused by the child code region, andefioeg only its children would need to be
optimized.

Figure 9(b) shows the instances lokefficiencyproperty plotted in a chart with the help of the
ASKALON Visualization Diagrams (described in Section 3.5he fact that some lines superpose
others reflects, again, that instancesnafficiencyare present in parent and in child code regions with
very close severity values. The chart shows also that the bedomes more inefficient for larger
machine sizes, which shows that it does not scale well.

As mentioned in Section 6, properties can be organized erakways. Figure 9(c) shows how a new
organization (first level: code region, second level: prgpeame, third level: number of processes)
can be used to find where the most time-consuming MPI call is.

8.5. Modeling and Simulation of a Distributed Scientific Apgication with PerformanceProphet

The objective of this case study is to examine whether thédopport described in this paper is
sufficient to build and evaluate a performance model for kweald application.

The application for our study LAPWO, which is a part of the W package [47], was developed
at Institute of Physical and Theoretical Chemistry, Vieturdversity of Technology. The Linearized
Augmented Plane Wave (LAPW) method is among the most aeuretthods for performing
electronic structure calculations for crystals. The cotle APWO application is written by using
FORTRAN90 and MPI.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

20 THOMAS FAHRINGER ET AL.

l_ Property Visualization —I

Critical Emperlies: Source Code:

@ W Ineficiency [0.096, 0.304, 0 507]
® ¥ Murmber of Processes = 36 [0.159, 0,424, 0.507]
© W (233,8, 341, 15) [RELATIVISTIC_PLASMA_PROPAGATION_Z] [0.507, 0.507, 0.507]
@ 0.507
© W (3289, 338, 15) [RELATIVISTIC_PLASMA_PROPAGATION_1] [0.502, 0 502, D 503]
@ 0.502 (caused by children)

&zl
COMMON fgas_parameter tho, charge_states, mion, ga
COMMON farid_parameter! b, hy, hz, nnx, nny, nnz

»

ISISE CR RELATIVISTIC_PLASMA_PROPAGATION_2Z BEG

@ w- (518, 9, 2574, 18) [MAIN_73] [0.502, 0.502, 0.502] nnx_glob = 30
@ 0.502 (caused by children) nny_glob = 30

© wp- (311, 9, 2556, 15) [MAIN_12] [0.501, 0.501, 0.501] nnz_gloh =100
& 0.501 neighbours= 0

@ w- (520, 9, 663, 15) [RK4_119][0.159, 0.158, 0.158] procs_grid =0 [
@ 0159 procs_pos=10]

© ¥= Murnber o Processes= 25 [0.172, 0.397, 0.455]
@ ¥= Murnber of Processes= 16 [0.099, 0.283, 0.331]

CALL mpi_init{ierry
CALL rapi_comrm_rank(mpi_cormen_world, rmyid, ierm)

@ v— MNumber of Processes= 12 [0.302, 0.302, 0.303] = CALL mpi_cormm_size{rmpi_comm_world, NUmprocs, ier

© v= Nurmber of Processes= 8 [0.113, 0.261, 0.299] L

@ v MNumber of Processes= 4 [0.096, 0.177, 0.197] 818§ CR RELATIISTIC_PLASMA_PROPAGATION_OBEG| = |
@ W MessagePassingOverhead [0.091, 0,333, 0.405])]

il
It
[
=
L=

M v hlurmher of Proceccoc = 38 11 QG2 0 304 1 A05]

OuputFormat | | chat | [clese |
(a) Properties found
—
I Inefficien cy I Critical Emperiies:
[& W (232, 0, 241, 15) [RELATIVISTIC_PLASMA_PROPAGATION_2] 0,182, 0.328, 0.507] [=]
Severity (%] & w- Inefiiciency [0.197, 0.349, 0.507]
s (529,89, BB3, 15) [RK4_119] @ wp- MessagePassingOverhead [0.182, 0.305, 0.405]
05 - & W (326, 9, 338, 15) [RELATIVISTIC_PLASMA_PROPAGATION_1] 0,182, 0.328, 0.502] |
1233,9,341,19) & w- (518, 9, 2574, 15) [MAIN_73] [0.192, 0.328, 0.502] :
04 [RELATIVISTIC_PLASMA_PROPAG & wp- (811, 9, 2556, 15) [MAIN_12][0.192, 0.327, 0.501]
ATIGN_Z] © wp- (2101, 9, 2608, 15) [SEND_BD_145] [0.182, 0.305, 0.405]
" m (518,9, 2574. 15) (MAIN_T3] @ w- (2202, 16, 2203, 60) [MPI_RECY] [0.105, 0.178, 0.221]

@ w- MessagePassingOverhead [0.105,0.178, 0.221]

w (328,9,338,15) @ v Mumber of Processes= 36 [0.221, 0.221, 0.221]
o —s— [RELATIVISTIC_PLASMA_PROPAG

@ v MNurnberof Processes=16[0198 0198 0198]

ATION_1] @ ¥= Murmber of Processes= 250,189, 0189, 0.189] 5|
Hurcber of Processes (811, 9, 2556, 15) (MAIN_12] @ v Mumberof Processes=12[0.105, 0.104, 0.104]
4 amw w» a @ - (520, 9, 563, 15) [RK4_119) [01.085, 0128, 0173
© wp- (2370, 16, 2378, 73) MPI_RECY] [0.088, 0115, 0.133] =
A 16 9394 G DI DA ARD N 444 04241 =]

(b) Instances of Inneficiency plotted with one of the (c) Most time-consuming MPI call (MBRECV,
ASKALON Visualization Diagrams selected line)

Figure 9. Performance Analysis for 3D-Particle-In-CelttwAKSUM

The LAPWO application consists of 100 file modules (a modukefile containing source code). The
modeling procedure aims to identify the more relevant (fr@rformance point of view) code regions.
We call these code regions building blocks. A building bleek be a sequence of computation steps,
communication operations or input/output operationsrtfeoto assess the execution time of the code
regions of LAPWO application of interest, we have instruteerthese code regions and measured their
corresponding execution times by using SCALEA [51].

LAPWO uses two types of MPI collective communication priwas, broadcastandallreduce The
first one uses a simple binary tree algorithm for implemeitire broadcast, whereas the second one is

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 21

— Teuta = |7
File EGil Formal Insert Construcls View Tools PerfomnanceProphet Help

a@ M EThuh A48 9eUDOT <
oo @O HxE DEE 8 [

O Activity ‘ O Collaboration | &] Deployment | B Class B O Activity
= [swimiane_t
@ rmoiinit

[I»

Process

© Initialize 1P| Environrment

O Loop 350

© Read TCD

DEFFN

ERRFN

O Calculate Mullipelmorents

(O Calculate Coulomb Intersiitial Poten{ v |
»

4
Wogel Tree | Searsh | Buokmarks |

Loop 250

Read TGD

Warre
odeiEigment
Stereotpe
Swinfane
Maoping

= Tagged Valies

Caiculate MUHipoimor,

| Geometry. 600
X 46

i o —>- Simulation(64)
,"f;i’élf wﬁgw 500 —5— Measurement(64)
B NAT=64 —— Simulation(32)

—o—Measurement(32)

400

3
]
2
Point Estimation ‘ Interval Estimation | Code g
IName of Function r: 300
[CalcMPM 2
H NAT=32
Parameters 2 200
=1 Name Type Valiig w
PNAT long IPNAT
100
Function Body
xeturn 3312.9855 + 7718.3527 * Pl\mT;l Z
alculate Plane Wave Coulomb Potenti 0 T T T
N1p4 N2p8 N4p16 N8p32
Apply Cancel
_I - Configuration
Selected elerment: Calculate Multipolmoments
(a) The high level UML model (b) Simulation and measurement results

Figure 10. Modeling and simulation of LAPWO application kvRerformanceProphet

implemented by sending all processes contributions todbeprocess, and broadcasting from the root
the reduced data. Point-to-point MPI communication piiragreceiveandsendare used for ordering
of the output of LAPWO.

Figure 10(a) depicts the model of LAPWO, which is developéith Wieuta Due to the size of the
LAPWO model, we can see only a fragment of the UML activitygiiaan within the drawing space of
Teuta On the right hand side of Figure 10(a), is shown how the moflleAPWO is enriched with cost
functions by usingieuta Code EditarA cost function models the execution time of a code region.

In order to evaluate the model of LAPWO, the high-level UMlaghical representation of LAPWO
is transformed into the textual representatibautaautomatically generates the corresponding C++
representation, which is used as input for ®erformance EstimatorThe Performance Estimator
incorporates a parametrised simulator for cluster archites. ThePerformance Estimatoevaluates
the performance behavior of LAPWO application on the usézeted cluster architecture.

Figure 10(b) shows the simulation and measurement resulta/6 problem sizes and four machine
sizes. The problem size is determined by the parameter NAIGhwepresents the number of atoms
in a unit of the material. The machine size is determined tgy rthmber of nodes of the cluster
architecture. Each node of the cluster has four CPU's. Onegss of the LAPWO application is
mapped to one CPU of the cluster architecture. The perfocmanodel is validated by comparing

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

22 THOMAS FAHRINGER ET AL. %

the simulation results with the measurement results. Weidenthat this performance model provides
the performance prediction results with the accuracy whiohlild be sufficient to compare various
designs of the LAPWO application.

9. Conclusions

The development of the ASKALON tool set has been driven bynded of scientists and engineers to
perform performance analysis, experiment managemeraner studies, modeling, and prediction
of parallel and distributed applications for cluster anditGnfrastructures. ASKALON supports these
functionalities through the provision of four sophisteattools: SCALEA for instrumentation and
performance analysis, ZENTURIO for experiment managepmptormance and parameter studies,
AKSUM for automatic bottleneck detection and performamteripretation, and PerformanceProphet
for performance modeling and prediction. Each tool can lessed and manipulated via advanced
User Portals. ASKALON has been designed as a distributed &eivice-based architecture and
implemented on top of the OGSI technology and Globus todiMsigning each tool as a composition
of remote Grid service provides a series of advantagess¢lates platform dependencies on specific
critical sites under a well-defined portable API; (2) enabight-weight clients, easy to be installed
and managed by users on local sites (e.g. on notebooks)lid@)sahe interaction of multiple tools
by accessing resources concurrently through common skareides. The ASKALON tools exchange
information through a common Data Repository or interoggettarough the underlying Grid services.
A generic visualization package that supports a wide wadéportable diagrams in both post-mortem
and on-line modes is employed by the User Portals of all tools

Currently, we are working on a more coherent integrationiatetoperability of all tools to reflect
the continuously evolving Globus, OGSI, and Web serviceedaGrid specifications. In addition,
each tool will be extended with new functionality. SCALEAIMde enhanced with more advanced
Grid application monitoring and analysis. ZENTURIO will letended with a generic application
optimization framework for Grid application scheduling garticular for large workflows. Application
prediction information crucial for good scheduling will peovided by PerformanceProphet through
the Data Repository. AKSUM is currently being enhanced fotomatic performance analysis
of Java applications based on the JavaSymphony [21] pragiaghmodel for the Grid. The
PerformanceProphet technology will combine software megjiing with performance modeling and
analysis.

REFERENCES

1. D. Abramson, R. Sosic, R. Giddy, and B. Hall. Nimrod: A témi performing parameterised simulations using distedut
workstations high performance parametric modeling withnoid/G: Killer application for the global grid? FProceedings
of the 4th IEEE Symposium on High Performance Distributech@ating (HPDC-95) pages 520-528, Virginia, August
1995. IEEE Computer Society Press.

2. V. Adve, R. Bagrodia, J. Browne, E. Deelman, A. Dube, E. $fisuJ. Rice, R. Sakellariou, D. Sundaram-Stukel, P. ffelle
and M. Vernon. POEMS: End-to-End Performance Design of éd&grallel Adaptive Computational Systemi&EE
Transactions on Software Engineerji26:1027-1048, November 2000.

3. Bill Alicock, Joe Bester, John Bresnahan, Ann L. Cherketten Foster, Carl Kesselman, Sam Meder, Veronika Nefedova
Darcy Quesnel, and Steven Tuecke. Data management anfétrarisigh-performance computational grid environments.
Parallel Computing 28(5):749-771, May 2002.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 23

10.
11.
12.
13.

14.

15.
16.
17.
. T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. Seftagiand H.-L. Truong. ASKALON - A Programming

19.

20.
. Thomas Fahringer and Alexandru Jugravu. JavaSymphdaw Directives to Control and Synchronize Locality,
22.
23.

24.
25.
26.
27.
28.

29.

30.

. APART - IST Working Group on Automatic Performance Anay&eal Tools, Aug 2001 until July 2004.
. Bob Atkinson, Giovanni Della-Libera, Satoshi Hada, Mamy Hondo, Phillip Hallam-Baker, Johannes Klein, Brian

LaMacchia, Paul Leach, John Manferdelli, Hiroshi Maruyamfathony Nadalin, Nataraj Nagaratham, Hemma
Prafullchandra, John Shewchuk, and Dan Simon. Web SenSeesirity (WS-Security). Specification, Microsoft
Corporation, April 2002.

. S. Benkner. VFC: The Vienna Fortran Compil&cientific Programming, 10S Press, The Netherla@s):67-81, 1999.
. P. Blaha, K. Schwarz, and J. Luitz. WIEN97, Full-potentimearized augmented plane wave package for calculating

crystal properties. Institute of Technical ElectrochdémgjsVienna University of Technology, Vienna, Austria, INB3-
9501031-0-4, 1999.

. Nat Brown and Charlie KindelDistributed Component Object Model protocol: DCOM/1 Blicrosoft Corporation and

Redmond, WA, January 1998.

. S. Browne, J. Dongarra, N. Garner, K. London, and P. MuécBcalable Cross-Platform Infrastructure for Application

Performance Tuning Using Hardware CountersPtaceeding SC’20Q0November 2000.

Bryan Buck and Jeffrey K. Hollingsworth. An API for Rumié Code Patching.The International Journal of High
Performance Computing Applicationk4(4):317-329, Winter 2000.

Erik Christensen, Francisco Curbera, Greg Mereditd, $anjiva Weerawarana. Web Services Description Language
(WSDL), March 2001. http://www.w3.org/TR/wsdl.

Michel Courson, Alan Mink, Guillaume Marcais, and Benja Traverse. An automated benchmarking toolsetd{RCN
Europe pages 497-506, 2000.

Francisco Curbera, David Ehnebuske, and Dan RogersagW8ESDL in a UDDI Registry 1.07. UDDI best practice,
UDDI Organisation, May 2002. http://www.uddi.org/pubséibestpractices-V1.07-Open-20020521.pdf.

Karl Czajkowski, lan Foster, Nick Karonis, Stuart Maytivarren Smith, and Steven Tuecke. A Resource Management
Architecture for Metacomputing Systems. In Dror G. Fedalsind Larry Rudolph, editordpb Scheduling Strategies for
Parallel Processingpages 62—82. Springer Verlag, 1998. Lect. Notes Computv&8c1459.

Karl Czajkowski, lan Foster, and Carl Kesselman. Coealion services for computational grids. Pmoc. 8th IEEE
Symp. on High Performance Distributed ComputifeEE Computer Society Press, 1999.

E. Dockner and H. Moritsch. Pricing Constant Maturitpdters with Embeeded Options Using Monte Carlo Simulation.
Technical Report AuR®9-04, AURORA Technical Reports, University of Vienna, Jary 1999.

W. K. Edwards. Core JinilEEE Micro, 19(5):10-10, September/October 1999.

Environment and Tool Set for Cluster and Grid Computing. wparunivie.ac.at/project/askalon, Institute for Seaifitev
Science, University of Vienna.

T. Fahringer and C. Seragiotto. Automatic search fdiopeance problems in parallel and distributed programssiggi
multi-experiment analysis. lmternational Conference On High Performance ComputindgE12002) Bangalore, India,
December 2002. Springer Verlag.

Thomas Fahringer. ASKALON Visualization Diagrams pliftvww.par.univie.ac.at/project/askalon/visualiaatindex.html.

Parallelism, and Load Balancing for Cluster and GRID-Cotimgu In ACM Java Grande - ISCOPE 2002 Conference
Seattle, November 2002. ACM.

Thomas Fahringer and Clovis Seragiotto. Modeling antedag Performance Problems for Distributed and Parallel
Programs with JavaPSL. Proceeding SC'2001, Denver, USovember 2001.

I. Foster and C. Kesselman. Globus: A metacomputingsirncture toolkit.The International Journal of Supercomputer
Applications and High Performance Computiid (2):115-128, Summer 1997.

|. Foster, C. Kesselman, J. Nick, and S. Tueckelhe Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integratiomhe Globus Project and The Global Grid Forum, November 2002
http://www.globus.org/research/papers/OGSA.pdf.

lan Foster, Carl Kesselman, Gene Tsudik, and Stevenk&ueé security architecture for computational grids. In
Proceedings of the 5th ACM Conference on Computer and Coimatiams Security (CCS-98pages 83-92, New York,
November 3-5 1998. ACM Press.

lan Foster, Carl Kesselman, Gene Tsudik, and Stevenk&ueé security architecture for computational grids. In
Proceedings of the 5th ACM Conference on Computer and Coimatiams Security (CCS-98pages 83-92, New York,
November 3-5 1998. ACM Press.

Apache Software Foundation. Apache Axis. http://wechp.org/axis.

M. Geissler. Interaction of High Intensity Ultrashort Laser Pulses witHasmas PhD thesis, Vienna University of
Technology, 2001.

William Grosso.Java RMI O'Reilly & Associates, Inc., 981 Chestnut Street, Newtd\, 02164, USA, 2002. Designing
and building distributed applications.

Elliotte Rusty Harold XML: EXtensible Markup LanguagdDG Books, San Mateo, CA, USA, 1998.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

24

THOMAS FAHRINGER ET AL. %

31
32.

33.

34.

35.
36.

37.

38.

39.
40.

41.

42.

43.

44,

45,

46.

47.

48.
. H.M. Stommel. The western intensification of wind-dnv@cean currentsTransactions American Geophysical Unjon

50.

51.

52.

53.
54.

55.
. W3C. Web Services Activity. http://www.w3.0rg/200ZAv

Rolf Herzog. PostgreSQL — the Linux of databaskiswux Journa) 46:??—??, February 1998.

Yannis E. loannidis, Miron Livny, S. Gupta, and Nagavafsnnekanti. ZOO: A desktop experiment management
environment. In T. M. Vijayaraman, Alejandro P. Buchmann,Mbhan, and Nandlal L. Sarda, editorg|.DB’96,
Proceedings of 22th International Conference on Very Ldbgéa Basespages 274-285, Mumbai (Bombay), India, 3—
6 September 1996. Morgan Kaufmann.

Karen L. Karavanic and Barton P. Miller. Experiment ngaraent support for performance tuning. In ACM, editor,
Proceedings of the SC'97 Conferen&an Jose, California, USA, November 1997. ACM Press ané& [E&mputer Society
Press.

G. Krasner and S. Pope. A cookbook for using the ModeiM@®ntroller interface paradigmlournal of Object-Oriented
Programming 1(3):26—49, 1988.

David S. Linthicum. CORBA 2.0®Dpen Computingl2(2), February 1995.

M. J. Litzkow, M. Livny, and M. W. Mutka. Condor : A huntef @lle workstations. Ir8th International Conference on
Distributed Computing Systensages 104-111, Washington, D.C., USA, June 1988. IEEE Gtemfociety Press.

Allen Malony and Sameer Shende. Performance technéwgymplex parallel and distributed systems.InrG. Kotsis
and P. Kacsuk (Eds.), Third International Austrian/Hunigar Workshop on Distributed and Parallel Systems (DAPSYS
2000) pages 37-46. Kluwer Academic Publishers, Sept. 2000.

B. Miller, M. Callaghan, J. Cargille, J. HollingswortR, Irvin, K. Karavanic, K. Kunchithapadam, and T. Newhallher
paradyn parallel performance measurement tt8EE Computer1995.

OMG. Unified Modeling Language Specification. http:/Amamg.org, March 2003.

S. Pllana and T. Fahringer. On Customizing the UML for Blody Performance-Oriented Applications. 4n<UML> >
2002, "Model Engineering, Concepts and Tools”, LNCS 246fedden, GermanySpringer-Verlag, October 2002.

S. Pllana and T. Fahringer. UML Based Modeling of Perforoe Oriented Parallel and Distributed Applications. In
Proceedings of the 2002 Winter Simulation ConfereSan Diego, California, USA, December 2002. |IEEE.

Radu Prodan and Thomas Fahringer. ZEN: A Directivedbdsenguage for Automatic Experiment Management of
Parallel and Distributed Programs. Proceedings of the 31st International Conference on Paf&rocessing (ICPP-
02), Vancouver, Canada, August 2002. IEEE Computer SocietysPre

Radu Prodan and Thomas Fahringer. ZENTURIO: A Grid Middre-based Tool for Experiment Management of Parallel
and Distributed Applications.Journal of Parallel and Distributed Computin@003. To appear in Special Issue on
Middleware.

D. A. Reed, R. A. Aydt, R. J. Noe, P. C. Roth, K. A. ShieldsVB Schwartz, and L. F. Tavera. Scalable Performance
Analysis: The Pablo Performance Analysis EnvironmentProc. Scalable Parallel Libraries Confpages 104-113. IEEE
Computer Society, 1993.

Bill Roth. An introduction to Enterprise Java Beans tetbgy. Java Report: The Source for Java Developménht
October 1998.

A. Ryman. Simple Object Access Protocol (SOAP) and Welvi&ss. In Proceedings of the 23rd International
Conference on Software Engeneering (ICSE-Gigges 689-689, Los Alamitos, California, May12—-19 20EEHR
Computer Society.

K. Schwarz, P. Blaha, and G. Madsen. Electronic straatafculations of solids using the WIEN2k package for materi
sciences.Computer Physics Communicatioril7:71-76, 2002.

H. Schwetman. Hybrid Simulation Models of Computer 8yst. Communications of the ACN1(9):718-723, 1978.

29:202—-206, 1948.

Brian Tierney, Ruth Aydt, Dan Gunter, Warren Smith, Yal@aylor, Rich Wolski, and Martin SwanyA Grid Monitoring
Architecture The Global Grid Forum, January 2002. http://www-didcdbl/GGF-PERF/GMA-WG/papers/GWD-GP-
16-2.pdf+.

Hong-Linh Truong and Thomas Fahringer. SCALEA: A Perfance Analysis Tool for Distributed and Parallel Program.
In 8th International Europar Conference(EuroPar 20p2)ecture Notes in Computer Science, Paderborn, Germany,
August 2002. Springer-Verlag.

Hong-Linh Truong and Thomas Fahringer. On Utilizing Eximent Data Repository for Performance Analysis of Palrall
Applications. In9th International Europar Conference(EuroPar 20pBgcture Notes in Computer Science, Klagenfurt,
Austria, August 2003. Springer-Verlag.

Hong-Linh Truong and Thomas Fahringer. SCALEA: A Perfance Analysis Tool for Parallel Program8oncurrency
and Computation: Practice and Experiendé(11-12):1001-1025, 2003.

S. Tuecke, K. Czajkowski, |. Foster, J. Frey, S. Graham G KesselmanGrid Service SpecificationThe Globus Project
and The Global Grid Forum, February 2002. http://www.gkbug/research/papers/gsspec.pdf.

UDDI: Universal Description, Discovery and Integratiohttp://www.uddi.org.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

% ASKALON: A TOOL SET FOR CLUSTER AND GRID COMPUTING 25

57. R. Wismiller and T. Ludwig. HE TOOL-SET— An Integrated Tool Environment for PVM. In H. Lidell, A. Qwok,
B. Hertzberger, and P. Sloot, editoPrpc. High-Performance Computing and Networkirglume 1067 of_ecture Notes
in Computer Scien¢gages 1029-1030, Brussels, Belgium, April 1996. Spritvielag.

58. R. Wismuller, J. Trinitis, and T. Ludwig. OCM — A Monitmig System for Interoperable Tools. Rroc. 2nd
SIGMETRICS Symposium on Parallel and Distributed Tools BB®) Welches, OR, USA, August 1998. ACM Press.

59. Felix Wolf and Bernd Mohr. Automatic Performance Anéysf Hybrid MPI/OpenMP Applications. IRroceedings of
the Eleventh Euromicro Conference on Parallel, Distrilsliéend Network-based Processing (PDP-Idgges 13-22. IEEE
Computer Society Press, February 2003.

60. M. Yarrow, K. M. McCann, R. Biswas, and R. F. Van der Wijaga llab: An advanced user interface approach for complex
parameter study process specification on the informati@repgrid. InProceedings of Grid 2000: International Workshop
on Grid ComputingBangalore, India, December 2000. ACM Press and |IEEE Caen@dciety Press.

Copyright(© 0000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exp&000;00:0-0
Prepared usingpeauth.cls

