
iCOMOT - A Toolset for Managing IoT Cloud
Systems

Hong-Linh Truong, Georgiana Copil, Schahram Dustdar, Duc-Hung Le, Daniel Moldovan, Stefan Nastic

Distributed Systems Group, Vienna University of Technology

E-mail: {truong, e.copil, dustdar, d.le, d.moldovan, s.nastic}@dsg.tuwien.ac.at

Abstract

Developing and operating IoT cloud systems require novel features for
deploying, controlling, monitoring and testing both IoT units and cloud
services in an integrated environment spanning different infrastructures. In this
paper, we demonstrate iCOMOT – a novel toolset offering these features.
Using iCOMOT we can perform various activities, such as dynamically
reconfiguration of sensors, communication protocols, and cloud services in
an elastic manner, suitable for testing and assuring quality of IoT cloud
systems configurations. We will demonstrate our iCOMOT with a real-world
predictive maintenance case study.

1. Introduction

Advances in Internet of Things (IoT) and Cloud computing

have fostered the development of several frameworks for

the so-called IoT cloud or cloud-based M2M platforms [1].

In such platforms, sensors gather and send data to cloud

services to provide large-scale, near-real time data for several

different application domains, such as smart cities, building

management, and logistics. In developing and operating IoT

cloud systems/applications atop such platforms, one of the

great challenges is how to manage sensors, gateways, com-

munications, and services and coordinate their activities to

support the provisioning of suitable, reliable data and services

for further data analytics. To answer this challenge, we need

to carry out several tasks which require novel toolsets as these

tasks are complex, error-prone and time-consuming.
In this work, we will demonstrate iCOMOT – a set of

tools and services that simplify the management of such

sensors, gateways and services. At the edge of the IoT cloud

system, iCOMOT employs the concept of software-defined

IoT units [2] to abstract and implement sensors and software

components atop gateways for data, control and connectivity

functions. At the cloud data center, iCOMOT considers all

software components and resources as elastic service units [3].

Based on that, iCOMOT can support the IoT cloud developer

and provider to carry out the following activities for their IoT

cloud systems:

• Deployment and configuration of software-defined IoT

units at the edges and cloud services at data centers of

IoT cloud platforms

• Governance and reconfiguration of software-defined IoT

units capabilities at the edges

• Elasticity analytics and control of gateways and cloud

services based on changes in software-defined IoT units

in a coordinated fashion

In this work, we will illustrate these features with our realistic

scenarios for smart city management in the context of predic-

tive maintenance problems. The rest of this paper is structured

as follows: Section 2 discusses our motivating scenarios and

required features. Section 3 explains features of iCOMOT .

We conclude this work in Section 4.

2. Motivating Scenario

Our motivating scenario is in the domain of facility manage-

ment in the cloud. In our scenario, a predictive maintenance

company buys several cloud services in data centers for

handling and managing near-real time sensoring data. Such

sensoring data will be provided for other analytics, such as

predicting possible maintenance problems of equipment (e.g.,

chillers) being sensed. The sensoring data are provided by var-

ious “Things” interfacing to different equipment and facility

systems (such as chillers and electricity systems). Sensoring

data are sent to the cloud services via several gateways,

which are composed of lightweight hardware and software

components deployed in the edge, acting as intermediate nodes

between the cloud and the Things. Things connect to gateways

via different protocols (such as CAN-Bus1 and LonWorks2)

and gateways connect to the cloud via different protocols (such

as CoAP3, MQTT4 and specific REST/HTTP-based protocols).

In this work, we are interested in the scenario where the

predictive maintenance company needs to manage and control

several sensors and services in order to provide suitable

data for data analytics of chillers in a city. To this end,

the company needs several features to test and manage its

end-to-end IoT cloud system consisting of sensors, gateways

and cloud services and being deployed across different IoT

and cloud infrastructures. For example, several sensors can

be deployed but not all of them would be activated at the

beginning as well as new sensors can be added into the existing

IoT cloud system. Several sensors may be configured with pre-

defined frequencies for reading data from equipment as well

as gateways can be configured with particular communication

protocols. However, at runtime, due to predictive maintenance

analytics, sensors can be reconfigured with different reading

frequencies, leading to different amount of data generated.

1. http://en.wikipedia.org/wiki/CAN bus

2. http://en.wikipedia.org/wiki/LonWorks

3. http://coap.technology/

4. http://mqtt.org/

2015 16th IEEE International Conference on Mobile Data Management

978-1-4799-9972-9/15 $31.00 © 2015 IEEE

DOI 10.1109/MDM.2015.65

299

Thus, as a consequence, we need to reconfigure gateways

and their cloud connectivity by setting suitable communication

protocols. Furthermore, cloud services at the data centers need

to be controlled to deal with changing incoming sensor data.

As all of these activities are carried on demand and elastic, the

predictive maintenance company needs suitable tool features

for automatic and manual deployment, control and governance

of the above-mentioned IoT cloud system.

3. iCOMOT – IoT Cloud Control, Monitoring
and Testing

3.1. iCOMOT Overview

Figure 1 describes the above-mentioned IoT cloud system

and our iCOMOT main tools and services. iCOMOT is

built atop our services in COMOT [3] – designed for cloud

services – and – IoT units and GovOps [2], [4] – designed for

IoT. Services in COMOT have been extended to support also

features required for testing and managing IoT cloud systems

configurations, such as coordinated deployment, analytics and

control across platforms.

Overall, the Deployment and Configuration will perform

cloud service deployments as well as IoT units deployment

in gateways. For testing, Deployment and Configuration will

deploy emulated gateways and sensors with realistic sample

datasets. IoT Governance is designed for supporting governing

the operation of IoT service units [2], [4], whose capabilities

can be changed via software-defined APIs. The Monitoring
and Analytics is used to provide high-level elasticity metrics

and dependencies (such as, for performance and cost) [5].

Elasticity Control performs elasticity strategies for cloud ser-

vices and IoT units in gateways to assure that the service

will operate properly under elastic workload. Therefore, it

also utilizes information from Monitoring and Analytics and

invokes Deployment and Configuration and IoT Governance
In this work, we will show iCOMOT features supporting

the challenges outlined in Section 2 by simplifying the tasks of

the developer and operator. For experiments, we will emulate

gateways and sensors based on our industrial settings, while

cloud services will be based on common services available in

the cloud.

3.2. Deployment and Configuration

While deployment of cloud services has been intensively

researched, deployment of elastic IoT units has just been

investigated recently. iCOMOT supports both types of de-

ployment in an integrated manner and provides a mechanism

to configure different deployments of different parts of the

IoT cloud system to work together. For example, one can

deploy IoT units as sensors separated from the deployment of

cloud services and emulated gateways. In iCOMOT , we use

TOSCA [6] as a means to describe topologies of IoT units

or cloud services to be deployed and we support different

underlying low-level deployment technologies in order to

deploy various types of software, such as virtual machines

and cloud services in the data centers and sensors, communi-

cation middleware and OS containers in the gateways. Both

programmable APIs and GUI are provided for large-scale

deployments. For example, Figure 2 shows an example of

different views on sensor topology and its deployment status.

Another feature is that to allow the activation and deacti-

vation of sensors for specific data analytics. Therefore, our

deployment and configuration allows us to manage states of

sensors and query information about sensors (such as the

location and types of data a sensor provides) so that we can

activate and deactivate sensor instances, depending on analyt-

ics requirements from the cloud. Furthermore, such a detailed

information can also be useful for governance processes that

we will discuss in the next section.

3.3. Governing IoT Units

At runtime, several reasons require us to govern the op-

eration of IoT units, such as sensors, gateways, and their

communications. For example, we might need to change

the data reading sampling rates as well as communication

protocols when we need more fine-grained data in order to

support a reliable analytics. Such activities are performed

through the concept of GovOps. The core feature is that every

IoT unit has capabilities that can be changed at runtime via

software-defined APIs. Thus, when we need to reconfigure IoT

units, we can invoke capabilities with suitable parameters.

In iCOMOT this is achieved through the implementation

of governance processes, core services to execute capabilities

of IoT units, and the implementation of software-defined

capabilities of IoT units. Listing 1 shows an example of

a governance process for reconfiguring the communication

protocol from CoAP to MQTT for a unit deployed within

a gateway. In this process, we call different actions, each

invokes a capability of the unit. When an action is executed,

our runtime services will change the unit based on different

mechanisms. For example, when the unit implements its

software-defined capabilities via listening runtime variables,

the runtime services could change capabilities by stopping

the unit and changing variables and restarting the unit. An

important feature is that these governance capabilities are

exposed for elasticity actions that we will illustrate in the next

section.

Listing 1. Example of governance process
i n v o k e C a p a b i l i t y () {
. . .
}

S t a r t GovOps p r o c e s s w i t h t h e normal
o p e r a t i o n

i n v o k e C a p a b i l i t y family"familycChangeProto
family/familychangefamily/familyaruments
family?familyargfamily=familycoapfamily" 1

#Run c o a p C l i e n t f o r a few m i n u t e s

300

301

Fig. 3. Example of using UI to manage and change elasticity constraints and strategies.

control will invoke IoT governance processes when executing

elasticity strategies for IoT units. This two-ways of interaction

enables us to carry out the elasticity control in a coordinated

manner across the whole IoT system. The control of elasticity

will be done automatic but in many cases, the developer and

the provider want to change, they can use an interactive mode

(see Figure 3).

4. Conclusions and Future Work

In this work, we outlined features of iCOMOT for con-

trolling, monitoring and testing IoT cloud systems consisting

both IoT units and cloud services. A set of features are

provided from different services can be used to simplifying

support activities of developers and providers in deploying

and reconfiguring their systems to enable data provisioning

for reliable data analytics. Currently, we focus on further

integration and testing of iCOMOT , of which tools and

services are published under open source and available freely.

Acknowledgment

This paper is partially supported by the European Commis-

sion in terms of the CELAR FP7 project (FP7-ICT-2011-8

#317790) and the H2020 U-Test project.

References

[1] A. Botta, W. de Donato, V. Persico, and A. Pescape, “On the integration
of cloud computing and internet of things,” in Future Internet of Things
and Cloud (FiCloud), 2014 International Conference on, Aug 2014, pp.
23–30.

[2] S. Nastic, S. Sehic, D. Le, H. L. Truong, and S. Dustdar, “Provisioning
software-defined iot cloud systems,” in 2014 International Conference
on Future Internet of Things and Cloud, FiCloud 2014, Barcelona,
Spain, August 27-29, 2014, 2014, pp. 288–295. [Online]. Available:
http://dx.doi.org/10.1109/FiCloud.2014.52

[3] H. L. Truong, S. Dustdar, G. Copil, A. Gambi, W. Hummer, D. Le,
and D. Moldovan, “Comot - A platform-as-a-service for elasticity in the
cloud,” in 2014 IEEE International Conference on Cloud Engineering,
Boston, MA, USA, March 11-14, 2014. IEEE, 2014, pp. 619–622.
[Online]. Available: http://dx.doi.org/10.1109/IC2E.2014.44

[4] S. Nastic, M. Voegler, C. Inziger, H.-L. Truong, and S. Dustdar, “rtgovops:
A runtime framework for governance in large-scale software-defined iot
cloud systems,” in The 3rd IEEE International Conference on Mobile
Cloud Computing, Services, and Engineering.

[5] D. Moldovan, G. Copil, H. L. Truong, and S. Dustdar, “MELA:
monitoring and analyzing elasticity of cloud services,” in IEEE
5th International Conference on Cloud Computing Technology and
Science, CloudCom 2013, Bristol, United Kingdom, December 2-
5, 2013, Volume 1. IEEE, 2013, pp. 80–87. [Online]. Available:
http://dx.doi.org/10.1109/CloudCom.2013.18

[6] T. Binz, G. Breiter, F. Leymann, and T. Spatzier, “Portable cloud
services using TOSCA,” IEEE Internet Computing, vol. 16, no. 3, pp.
80–85, 2012. [Online]. Available: http://doi.ieeecomputersociety.org/10.
1109/MIC.2012.43

[7] G. Copil, D. Moldovan, H. L. Truong, and S. Dustdar, “SYBL: an
extensible language for controlling elasticity in cloud applications,”
in 13th IEEE/ACM International Symposium on Cluster, Cloud, and
Grid Computing, CCGrid 2013, Delft, Netherlands, May 13-16, 2013.
IEEE Computer Society, 2013, pp. 112–119. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/CCGrid.2013.42

302

