
CLOUD COVER

C O M P U T E R   0 0 1 8 - 9 1 6 2 / 1 5 / $ 3 1 . 0 0  ©  2 0 1 5  I E E E  P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y    M A R C H  2 0 1 5  87

Column Art Goes Here

EDITOR SAN MURUGESAN 
BRITE Professional Services, Sydney, Australia;

san@computer.org

W ith its attractive pay-per-use model and 
the opportunities it provides for flexi-
ble resource scaling, cloud computing is 
increasingly the go-to choice for devel-

oping and deploying software. In recent years, various 
multi tiered applications and data analytics workflows 
have been successfully ported to the cloud, proving that 
the cloud can greatly simplify the software development 
life cycle when dynamic functionality is a primary goal. 

NEW PROGRAMMING POSSIBILITIES 
Cloud software infrastructures offer a new virtualiza-
tion environment that enables developers to “program 
elasticity”: that is, to create and execute multiple cloud 
objects—including sensors, virtual machines, OS and 

application containers, network 
functions, and data streams—so 
that their operation, quality, and 
cost to end users can vary elastically 
at runtime.1 Ideally, then, cloud 
software should be constructed as a 
cloud-native application,2 intrinsi-
cally incorporating  elasticity. 

Consider, for example, a cloud 
software for predictive maintenance, as illustrated 
in Figure 1. Data collected by sensors and processed 
locally is relayed via gateways to the cloud, where var-
ious Web services store and analyze it depending on 
the end purpose. Cloud software like this can involve 
several different cloud objects—for example, load bal-
ancers, message- oriented middleware (MOM), and data 
analytics in addition to sensors, gateways, and so forth. 
At runtime, depending on predictive maintenance 
requirements, it’s possible to deploy and activate addi-
tional sensors or alter the data-sensing rate to obtain 
more reliable, accurate analytics data. 

Because the data—and the data flow—can vary accord-
ing to these changing data requirements, the connectivity 
between gateways and cloud infrastructures also changes,  

Programming 
Elasticity in the Cloud
Hong-Linh Truong and Schahram Dustdar, Vienna University  
of Technology

As a virtualized environment, the cloud offers 

considerable flexibility. Maximizing its benefits 

requires incorporating elasticity as a “first-

class” property throughout the cloud software 

development life cycle.



88 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

CLOUD COVER

altering load-balancing strategies, 
MOM resource allocation, algorithm 
execution for data analytics, and so on. 
Such a cloud software requires novel 
techniques to account for and deal in a 
coordinated manner with this elastic 
behavior at different stages in the pro-
cess and for various parts of the cloud 
software.

LITTLE SUPPORT FOR 
ELASTICITY THROUGH   
THE CLOUD SOFTWARE  
LIFE CYCLE 
Ideally, elasticity should be pro-
grammed natively into cloud-de-
ployed software applications. Cur-
rently, however, doing so is quite 
complex. We don’t yet have tools 
to program elasticity within cloud 
objects during the design stage, pri-
marily because we still consider elas-
ticity a nonfunctional feature to be 
“added” after cloud objects are pro-
grammed, using separate control 
mechanisms to support elasticity. 

Various tools and techniques based 
on well-known application models 
have been introduced, in both indus-
try and academia, to support program-
ming cloud software. However, most 
don’t support elasticity throughout the 
software development process.

Programming models 
and techniques
Conventional programming lan-
guages and models allow us to eas-
ily define cloud-object functions and 
interfaces, and approaches have been 

developed for cloud model−driven 
architectures3 that support modeling 
cloud-object properties in terms of cost 
and quality. But these are designed 
mainly for selecting components, and 
are inadequate for several reasons:

 › they don’t include elasticity, 
dynamicity, and pay-per-use 
as primary elements in the 
programming;

 › they require separate compo-
nents to achieve elasticity fea-
tures, which are still limited; and

 › they lack APIs for managing 
elasticity properties.

Elasticity control
Rules-based approaches (http://aws 
.amazon.com/autoscaling) allow us to 
specify if-then-else rules for controlling 
elasticity. However, these are low level 
and mainly serve infrastructure- as-
a-service (IaaS) models. In addition, 
they’re decoupled from programming 
activities and from high-level applica-
tion object behavior. 

Elasticity monitoring
System monitoring tools allow re-
source monitoring and provide de-
tailed system information with tra-
ditional metrics, while application 
monitoring tools provide coarse-
grained information about perfor-
mance and costs. But it’s difficult to 
correlate these to high-level applica-
tion objects, and they lack elasticity 
metrics and state monitoring.

Deployment
Cloud software deployment tools such 
as Chef4 and declarative languages 
such as TOSCA5 and Google’s deploy-
ment template (https://developers 
.google.com/deployment-manager 
/overview) are available. However, cur-
rent deployment tools like these oper-
ate at a low or single level, while mul-
tiple objects exist in cloud software, so 
they don’t integrate well with elastic 
object models.

Testing  
Although approaches are available 
that support generating and execut-
ing test cases in the cloud,6  we lack  
test cases geared specifically toward 
understanding elasticity behaviors or 
toward evaluating elasticity control 
strategies for cloud operations.  

PROGRAMMING ELASTICITY 
IN CLOUD SOFTWARE
While most cloud software enables 
limited elasticity, it isn’t achieved in 
an integrated way throughout the 
programming, deployment, control, 
and testing process. Instead, sepa-
rate components are used to take care 
of elasticity. And while we can use 
appropriate programming languages 
to create objects that represent cloud 
service functions, we can’t easily asso-
ciate elasticity with these objects—for 
example, we can’t describe the elastic 
relationship between cost and quality 
as an object’s intrinsic property. 

To incorporate elasticity as a cen-
tral part of cloud programming, we 

NoSQL big data

Near–real-time
data analytics

Sensor
data Event-handling

Web services

Web services

Load
balancer

Message-oriented
middleware

Sensor data

The edge: units from Internet of Things

Actuators

The cloud: cloud services

Sensors Gateways

Figure 1. Cloud software for predictive maintenance. Sensor data can vary according to predictive maintenance requirements, 
creating a need for elasticity throughout the process.



  M A R C H  2 0 1 5  89

need a new conceptual model for elas-
tic cloud objects and programming 
languages that will allow us to con-
struct cloud software from objects 
whose elasticity can be programmed 
via software-defined APIs and incor-
porated into cloud software runtime 
systems for deployment, control, mon-
itoring, and testing. 

The model should also allow us to 
hide this complexity so users don’t 
have to deal with multiple tools when 
programming for elasticity. Ideally, 
the user would be able to compose soft-
ware from many elastic objects, deploy 
the software based on its requirements 
and the best available cloud informa-
tion, and then continuously test and 
control the software’s elasticity to 
meet these requirements while opti-
mizing its running costs and quality.

CONCEPTUALIZING  
ELASTIC CLOUD OBJECTS
As noted earlier, cloud providers 
already offer multiple service units, 
including virtual machines, OS and 
Web service containers, databases, and 
virtual network connections. A new 
model could allow runtime objects in 
cloud software to represent execution 
environments as well as middleware 
and application components. When 
developing elastic cloud software, we 
must conceptually take these elas-
tic objects into account along with 
the interactions among them, which 
are also elastic, and consider them 
instances of service units that can be 
deployed, controlled, monitored, and 
tested on the fly. From this standpoint, 
we can describe elastic objects (such 
as a Web service) and their required 
objects  (such as a Web container) as 
elastic service units.7 

Conceptual models for an elastic 
service unit should 

 › function with a well-defined 
interface;

 › offer different service provi-
sioning, consumption, quality- 
management, and pricing 
models;

 › have dependent service units; 
and 

 › have elastic capabilities.  

DEVELOPING ELASTIC 
CLOUD SOFTWARE
To develop elastic software, cloud ser-
vice providers should offer fundamen-
tal services—virtual machines, MOM, 
network functions, and the like—as 
elastic service units, and programmers 
should use these services in imple-
menting cloud software. Furthermore, 
any developer should be able to bring 
his or her software’s elastic service 
units into the cloud software ecosys-
tem. To achieve these goals, we need 
to focus on elements in various phases 
of elastic cloud software development 
and operation. 

Programming languages 
and frameworks
Programming relies on a range of tools, 
but, as we observed, most current tools 
follow a tradition in which objects are 
developed in existing programming 
languages and different components 
are created and used to control and 
test the elasticity. This doesn’t enable 
a good correlation between program-
ming for elasticity and runtime sup-
port for elasticity. Changing this will 
require developing new program-
ming models and languages. Current 
approaches using directives and anno-
tations for dynamic configuration, 
life-cycle management, and control 
offer a potential starting point.

Controlling elastic objects 
On one hand, we need high-level elas-
ticity specifications suitable for users 
but that an elasticity controller can 
support as well. Users should also be 
able to specify  elasticity when pro-
gramming the software8—that is, 
elasticity should be considered a “first-
class” entity in cloud programs. On the 
other hand, the elasticity capabilities 
offered by service units must be clearly 
defined through primitive operations 
available to users during program-
ming. Clearly, this requires that cloud 

software developers and providers 
explicitly build elasticity into APIs to 
control elastic cloud objects.

Monitoring and analyzing elasticity 
We must be able to define what consti-
tutes “elasticity behavior” so that we 
can monitor and analyze cloud soft-
ware elasticity. Another important per-
spective is the “elasticity dependency” 
among elastic objects. Although sev-
eral software benchmarks and models 
have been proposed,9,10 we currently 
lack metrics representing the elasticity 
behavior of cloud software. Since we 
must view elasticity multidimension-
ally, concepts of elasticity space, path-
way, and boundaries11 could be useful 
for investigating elasticity dependen-
cies and metrics. 

Deploying and  
configuring for elasticity
Deployment and configuration tech-
niques must deal with different elastic 
objects at different levels of abstrac-
tion. Chef and other popular tech-
niques for deploying the whole soft-
ware stack (generally before objects 
are instantiated) aren’t enough. Unless 
elastic objects are equipped with run-
time APIs to control their elasticity 
capabilities, deployment and config-
uration will be limited. We also need 
to integrate elasticity monitoring and 
analysis features for deployment and 
configuration, and to offer interfaces 
for elasticity controllers.    

Testing elasticity
Testing now relies on traditional met-
rics;6 as yet, we lack real elasticity met-
rics. Therefore, we need to determine 
the properties we want to test and 
develop the appropriate metrics—that 
is, metrics bound specifically to elas-
ticity behavior, which currently don’t 
exist—to complement existing tech-
niques for generating test cases, all of 
which can be executed in the cloud. 

Another question we face is 
whether to continue following a tra-
ditional test-deploy-execute approach 
or rather to consider an interwoven 



90 C O M P U T E R    W W W . C O M P U T E R . O R G / C O M P U T E R

CLOUD COVER

deploy-control-execute-test approach. 
This question is particularly import-
ant because it could fundamentally 
change current testing methods, not 
just the metrics used in testing. If elas-
tic objects can change and be changed 
over time, why should we test and 
then deploy, rather than deploy and 
then test? 

RECOMMENDATIONS
A first step for developers is to improve 
current cloud objects in ways that 
associate elasticity properties and 
relationships with the objects directly. 
Compilers, interpreters, and code gen-
erators should map these properties to 
specific underlying elasticity primi-
tives available in shared libraries. Such 
elasticity primitives should be generic 
and so apply to different types of 
cloud objects, but also be independent 

from cloud-specific technologies and 
infrastructures. 

Cloud providers should offer map-
pings from their specific APIs that help 
developers implement elasticity capa-
bilities for shared elasticity primitives. 
Runtime for cloud programming frame-
works should focus on executing elas-
ticity primitives—based on monitoring 
information about elasticity properties 
and relationships—instead of dealing 
with cloud vendor–specific APIs.

A s a virtualized environment, 
the cloud allows us to manip-
ulate and invoke objects 

dynamically and economically. There-
fore, we need to rethink how best to 
program elasticity within the cloud. 
This requires novel techniques and 
tools that interweave design, deploy-
ment, testing, execution, and control 
activities for elastic software.  Future 
work should focus on studying and 
creating languages, techniques, and 
frameworks that allow us to develop 
intrinsic elasticity properties as first-
class entities in the cloud software 
development life cycle. 

ACKNOWLEDGMENTS
This work was partially supported by the 
European Commission in accordance 
with terms of the CELAR FP7 project (FP7-
ICT-2011-8 #317790).

REFERENCES
1. S. Dustdar et al., “Principles of Elas-

tic Processes,” IEEE Internet Comput-
ing, vol. 15, no. 5, 2011, pp. 66–71.

2. C. Fehling et al., Cloud Computing 
Patterns: Fundamentals to Design, 
Build, and Manage Cloud Applications, 
Springer, 2014.

3. N. Ferry et al., “Towards Model- 
Driven Provisioning, Deployment, 
Monitoring, and Adaptation of 
Multi-cloud Systems,” Proc. IEEE 6th 
Int’l Conf. Cloud Computing (CLOUD 
13), 2013, pp. 887–894.

4. G. Katsaros et al., “Cloud Applica-
tion Portability with TOSCA, Chef, 
and Openstack,” Proc. 2014 IEEE 
Int’l Conf. Cloud Eng. (IC2E 14), 2014, 
pp. 295–302.

5. T. Binz et al., “Portable Cloud Ser-
vices Using TOSCA,” IEEE Internet 
Computing, vol. 16, no. 3, 2012,  
pp.  80–85.

6. L. Riungu-Kalliosaari, O. Taipale, 
and K. Smolander, “Testing in the 
Cloud: Exploring the Practice,”  
IEEE Software, vol. 29, no. 2, 2012, 
pp. 46–51. 

7. H.-L. Truong et al., “CoMoT— 
A Platform-as-a-Service for Elasticity 
in the Cloud,” Proc. 2014 IEEE Int’l 
Conf. Cloud Eng. (IC2E 14), 2014,  
pp. 619–622. 

8. G. Copil et al., “SYBL: An Extensible 
Language for Controlling Elasticity 
in Cloud Applications,” Proc. 13th 
IEEE/ACM Int’l Symp. Cluster, Cloud, 
and Grid Computing (CCGRID 13), 
2013, pp. 112–119.

9. S. Islam et al., “How a Consumer 
Can Measure Elasticity for Cloud 
Platforms,” Proc. 3rd ACM/SPEC Int’l 
Conf. Performance Eng. (ICPE 12), 2012, 
pp. 85–96. 

10. B.F. Cooper et al., “Benchmarking 
Cloud Serving Systems with YCSB,” 
Proc. 1st ACM Symp. Cloud Computing 
(SoCC 10), 2010, pp. 143–154. 

11. D. Moldovan et al., “MELA: 
Monitoring and Analyzing Elasticity 
of Cloud Services,” Proc. 5th IEEE Int’l 
Conf. Cloud Computing Technology and 
Science (CloudCom 13), vol. 1, 2013, 
pp. 80–87.

CALL FOR CLOUD COVER COLUMN 
CONTRIBUTIONS

We welcome short articles (1,200 to 1,500 words) for publication in this column 

that discuss your ideas for advancing cloud computing or share your experiences 

in harnessing the cloud. We also solicit articles on topics such as fog computing, 

cloudlets, cloud forensics, cloud aggregation and integration, service level 

agreements, and legal issues. Send proposals or submissions to San Murugesan 

at cloudcover@computer.org.

For a list of previous Cloud Cover columns, visit http://tinyurl.com/computer 

-cloudcover.

HONG-LINH TRUONG is an assis-
tant professor in the Distributed 
Systems Group at the Vienna 
University of Technology, where his 
work focuses on service. Contact 
him at truong@dsg.tuwien.ac.at.

SCHAHRAM DUSTDAR is a full 
professor of computer science and 
heads the Distributed Systems 
Group at the Vienna University 
of Technology. Contact him at 
 dustdar@dsg.tuwien.ac.at.


