86

P Schwerpunktthema

it 2/2008

Services and Service Composition —
An Introduction

Services und Service Komposition — Eine Einflihrung

Schahram Dustdar, Technical University Vienna (Austria),
Mike P. Papazoglou, University Tilburg (The Netherlands)

Summary In this overview paper, we discuss the basic prin-
ciples underlying service-oriented computing in general, and
(Web) services in particular. We discuss the important dif-
ferences between (Web) services and Web applications and
other models in Internet computing. Finally, we discuss where
we see the future research challenges in the area of service

sichtsartikel behandeln wir die Grundlagen von Service-oriented
Computing und (Web) Services im Speziellen. Wir besprechen
die wesentlichen Unterschiede zwischen (Web) Services und
Web Applikationen sowie weiteren Modellen im Bereich des
Internet Computing. Im letzten Teil des Artikels besprechen
wir die zuklnftigen Herausforderungen im Bereich der Service

composition. »»»

Zusammenfassung

In diesem Uber-

Composition Forschung.

KEYWORDS D [Software]; Web Services, Service-Oriented Computing, Service Composition, Service-Oriented Architectures,

Service Engineering

1 What Are Services?
Services perform functions that can
range from answering simple re-
quests to executing sophisticated
business processes requiring peer-
to-peer relationships between ser-
vice consumers and providers. Ser-
vices are self-contained processes —
deployed over standard middleware
platforms, e.g., J2EE, or .NET —
that can be described, published,
located (discovered), and invoked
over a network. Any piece of code
and any application component de-
ployed on a system can be trans-
formed into a network available
service. Services are most often built
in a way that is independent of the
context in which they are used. This
means that the service provider and
the consumers are loosely coupled.
In every new evolving field there
is sometimes a mismatch regard-
ing the terminology. Similarly, the
terms Internet, Web, and Mosaic

it — Information Technology 2 (2008) 2/ DOI 10.1524/itit.2008.0468

(the first well-known Web browser)
were used synonymously in the early
1990ies. Here is how we use the
terms in this paper. Service-oriented
Computing (SOC) deals with all is-
sues related to science, research, and
technology in the field of services.
Service-oriented Architecture (SOA)
describes an architectural style con-
sisting of the so called SOA-Trian-
gle [12]. This style foresees three
roles: service provider, service con-
sumer, and service registry (proxy).
An architectural style does not limit
itself to one implementation tech-
nology. Web services are one set of
technologies and composable stan-
dards with well-defined interfaces,
for implementing an SOA. Obvi-
ously, it is possible to build ser-
vice-oriented systems following an
SOA without using Web services at
all. However, it is clear that the
advent of the Web services stan-
dards boosted the proliferation of

the principles as well as the actual
implementations of service-orien-
tation. Thus we should bear in
mind that service-orientation fol-
lowing an SOA including all ques-
tions being researched today under
the umbrella of SOC are “here to
stay”, whereas the particular imple-
mentation technologies (e. g., today
Web services) might change and
evolve over the years to come.

A “service-oriented” approach
to programming is based on the
idea of composing applications by
discovering and invoking network-
available services rather than build-
ing new applications or by invoking
available applications to accomplish
some task [1]. SOC utilizes services
as the constructs to support the de-
velopment of rapid, low-cost and
easy to compose distributed applica-
tions.

SOC is expected to have an
impact on all aspect of software

© Oldenbourg Wissenschaftsverlag

“19pjoy ybuAdoa ayy Aq uoissiwiad uapum ypm pamoje Ajuo si asn JayiQ *Ajuo asn jeuosiad InoA 1oy ajoipe siyj aynquisip pue Ados Aew no ‘mej JybAdos uewsas Aq pajosjoud si 9joiu

construction as wide as that of
object-oriented programming. The
premise of its foundation is that
an application can no longer be
thought of as a single process run-
ning within a single organization.
The value of an application is ac-
tually no longer solely measured by
its functionality but by its ability to
integrate with its surrounding envi-
ronment. For instance, services can
help integrate applications that were
not written with the intent to be
easily integrated with other applica-
tions and define architectures and
techniques to build new function-
ality leveraging existing application
functionality. A new type of ap-
plications can be based solely on
sets of interacting services offering
well-defined interfaces to their po-
tential users. These applications are
often referred as composite appli-
cations. Service orientation requires
and enables (e.g., through provid-
ing composeable Web services stan-
dards) loosely coupled relationships
between applications of transacting
partners. At the middleware level,
loose coupling requires that the
“service-oriented” approach is in-
dependent of specific technologies
or operating systems. The service-
oriented model does not even man-
date any kind of pre-determined
agreements before the use of an of-
fered service is allowed. The service
model allows for a clear distinc-
tion to be made between service
providers (organizations that pro-
vide the service implementations,
supply their service descriptions,
and provide related technical and
business support), service clients
(end-user organizations that use
some service), and service aggrega-
tors (organizations that consolidate
multiple services into a new, single
service offering).

Service-oriented Architectures
typically consist of three roles:
service providers, consumers, and
registries (brokers). Services are of-
fered by service providers, which are
organizations that procure the ser-
vice implementations, supply their
service descriptions, and provide

related technical and business sup-
port. Since services may be offered
by different enterprises and com-
municate over the Internet, they
provide a distributed computing
infrastructure for both intra and
cross-enterprise application integra-
tion and collaboration. Clients of
services can be other solutions or
applications within an enterprise
or clients outside the enterprise,
whether these are external applica-
tions, processes or customers/users.
This distinction between service
providers and consumers is inde-
pendent of the relationship between
consumer and provider, which can
be either client/server or peer to
peer. For the SOC paradigm to exist,
we must find ways for the services to
be:

e Technology neutral: They must
be invoked through standard-
ized lowest common denomina-
tor technologies that are avail-
able to almost all IT environ-
ments. This implies that the
invocation mechanisms (proto-
cols, descriptions and discov-
ery mechanisms) should comply
with widely accepted standards.

e Loosely coupled: They must not
require knowledge or any in-
ternal structures or conventions
(context) at the client or service
side.

e Support location transparency:
Services should have their def-
initions and location informa-
tion stored in a repository
such as the Universal Description
and Discovery and Integration
(UDDI) repository and be ac-
cessible by a variety of clients
that can locate and invoke the
services irrespective of their lo-
cation.

Services may be implemented
on a single machine or a large
number and variety of devices, and
be distributed on a local area net-
work or more widely across several
wide area networks (including mo-
bile and ad hoc networks). A par-
ticularly interesting case is when
the services use the Internet (as

the communication medium) and
open Internet-based standards. This
results in the concept of Web ser-
vices, which share the characteristics
of more general services, but they
require special consideration as a re-
sult of using a public, insecure, low-
fidelity mechanism for inter-service
interactions.

Web services constitute a dis-
tributed computer infrastructure
made up of many different modules
trying to communicate over private
or public networks (including the
Internet and Web) to virtually form
a single logical system. Web ser-
vices are modular, self-describing,
self-contained applications that are
accessible over the Internet. They
are the answer to the problems of
rigid implementations of predefined
relationships and isolated services
scattered across the Internet. A Web
service is a service available via
a network, such as the Internet, that
completes tasks, solves problems or
conducts transactions on behalf of
a user or application.

Web services can vary in func-
tion from simple requests (e.g.,
currency conversion, credit check-
ing and authorization, inventory
status checking, or a weather re-
port) to complete business appli-
cations that access and combine
information from multiple sources,
such as an insurance brokering sys-
tem, a travel planner, an insurance
liability computation or a pack-
age tracking system. Enterprises can
use a single Web service to ac-
complish a specific business task,
such as billing or inventory con-
trol or they may compose several
Web services together to create a dis-
tributed e-Business application such
as customised ordering, customer
support, procurement, and logistical
support.

Web services efforts focus on
wrapping existing applications (in-
cluding legacy code) for lightweight
integration with other applications,
often motivated by the desire for
new forms of sharing of services
across lines of business, or be-
tween business partners. Typical

87

“19pjoy ybuAdoa ayy Aq uoissiwiad uapum ypm pamoje Ajuo si asn JayiQ *Ajuo asn jeuosiad InoA 1oy ajoipe siyj aynquisip pue Ados Aew no ‘mej JybAdos uewsas Aq pajosjoud si 9joiu

88

y

Schwerpunktthema

real-world examples of these efforts

include:

e Opening up existing backend
systems so that suppliers can ac-
cess inventory data and hence
perform more cost-effective in-
ventory management.

e Exposing order management
data for customer self-service in
order tracking. Automate sev-
eral types of transactions among
a diverse and fragmented set of
suppliers who previously per-
formed transactions with paper,
fax, and email.

e Providing a single enterprise-
wide view of customer data (or
manufacturing status or prod-
uct design data) by aggregat-
ing data from several disparate
sources.

e Enabling access to aggregated
data by sales (or supply or de-
mand) partners.

The eventual goal of Web ser-
vices technology is to enable dis-
tributed applications that can be
dynamically assembled according to
changing business needs, and cus-
tomised based on a device, network,
e.g., cable, UMTS, XDSL, Blue-
tooth, etc., and user access while
enabling wide utilization of any
given piece of business logic wher-
ever it is needed.

2 The Concept of Software
as a Service

Web services are very different from
Web pages that also provide access
to applications across the Internet
and across organisational bound-
aries. Web pages are targeted at
human users, whereas Web ser-
vices are developed for access by
automated applications. Web ser-
vices are about machine-to-machine
communication, whereas Web pages
are about human to machine com-
munication. As terminology is often
used very loosely, it is easy to con-
fuse someone by describing a ‘ser-
vice’ as a Web service when it is
in fact not. Consequently, it is use-
ful to examine first the concept of
software as-a-service on which Web

services technology builds upon and
then compare Web services with
Web server functionality.

The concept of Software-as-a-
Service (SaaS) appeared first with
the Applications Service Provider
(ASP) software model. ASPs are
organizations that package soft-
ware and infrastructure elements
together with business and profes-
sional services to create a complete
solution that they present to the end
customer as a service on a subscrip-
tion basis. An ASP is a third party
entity that deploys, hosts, and man-
ages access to a packaged application
and delivers software-based services
and solutions across a network to
multiple customers across a wide
area network from a central data
centre. In essence, ASPs were a way
for companies to outsource some
or even all aspects of their infor-
mation technology needs. The ASP
Industry Consortium defined that
application service providers are ser-
vice organizations that deploy, host,
manage, and enhance software ap-
plications for customers at a cen-
trally managed facility, offering ap-
plication availability, performance,
and security. End-users access these
applications remotely using Internet
or leased lines. The whole applica-
tion is developed in terms of the
user interface, workflow, business
and data components that are all
bound together to provide a work-
ing solution. As an ASP hosts the
entire application, the customer has
little opportunity to customize it
beyond setting up tables, or per-
haps the final appearance of the user
interface (such as, e. g., adding com-
pany logos).

Access to the application for
the customer is provided simply
via browsing and manually initiated
purchases and transactions occur
by downloading reports. This ac-
tivity can take place by means of
a browser. This is not a very flexible
solution — but offers considerable
benefits in terms of deployment
providing the customer is willing to
accept it ‘as is. By providing a cen-
trally hosted Internet application,

the ASP takes primary responsibility
for managing the software applica-
tion on its infrastructure, using the
Internet as the conduit between each
customer and the primary software
application. What this means for an
enterprise is that the ASP main-
tains the application, the associated
infrastructure, and the customer’s
data and ensures that the systems
and data are available whenever
needed. An alternative of this is
where the ASP is providing a soft-
ware module that is downloaded to
the customer’s site on demand —
this is for situations where the soft-
ware does not work in a client/server
fashion, or can be operated remotely
via a browser. This software module
might be deleted at the end of the
session, or may remain on the cus-
tomer’s machine until replaced by
a new version, or the contract for
using it expires.

Although the ASP model in-
troduced the concept of software-
as-a-service first, it suffered from
several inherent limitations such as
the inability to develop highly in-
teractive applications, inability to
provide complete customisable ap-
plications and inability to integrate
applications. This resulted in mono-
lithic architectures, highly fragile,
customer-specific, non-reusable in-
tegration of applications based on
tight coupling principles.

Today we are in the midst of
another significant development in
the evolution of software-as-a-ser-
vice. The new architecture allows for
loosely-coupled asynchronous inter-
actions on the basis of eXtensible
Markup Language (XML) standards
with the intention of making access
to, and communications between,
applications over the Internet easier.

The SOC paradigm allows the
software-as-a-service concept to ex-
pand to include the delivery of com-
plex business processes and transac-
tions as a service, while permitting
applications to be constructed on
the fly and services to be reused
without any geographic or user-type
restriction. Perceiving the relative
benefits of service-oriented technol-

“19pjoy ybuAdoa ayy Aq uoissiwiad uapum ypm pamoje Ajuo si asn JayiQ *Ajuo asn jeuosiad InoA 1oy ajoipe siyj aynquisip pue Ados Aew no ‘mej JybAdos uewsas Aq pajosjoud si 9joiu

ogy many ASPs are modifying their
technical infrastructures and busi-
ness models to be more akin to
those of Web service providers. The
use of Web services provides a more
flexible solution. The core of the ap-
plication — the business and data
components remain on the ASP’s
machines, but are now accessed
programmatically via Web service
interfaces. The customers can now
build their own custom business
processes and user interfaces, and
are also free to select from a variety
of Web services that are available
over the network and satisfy their
needs. When comparing Web ser-
vices with Web-based applications
we may distinguish four key differ-

ences [1]:

e Web services act as resources
to other applications that can
request and initiate those Web
services, with or without hu-
man intervention. This means
that Web services can call on
other Web services to outsource
parts of a complex transaction
to those other Web services.
This provides a high degree of
flexibility and adaptability not
available in today’s Web-based
applications.

e Web services are modular, self-
aware and self-describing appli-
cations; a Web service knows
what functions it can perform
and what inputs it requires to
produce its outputs and can de-
scribe this to potential users and
to other Web services. A Web
service can also describe its non-
functional properties, e.g., the
cost of invoking the service, the
geographical areas the Web ser-
vice covers, security measures
involved in using the Web ser-
vice, performance characteris-
tics, contact information and
more.

e Web services are more visi-
ble and manageable than Web-
based applications; the state of
a Web service can be monitored
and managed at any time by
using external application man-
agement and workflow systems.

Despite the fact that a Web ser-
vice may not run on an in-house
(local) system or may be written
in an unfamiliar programming
language it still can be used by
local applications, which may
detect its state (active or avail-
able) and manage the status of
its outcome.

e Web services may be brokered
or auctioned. If several Web ser-
vices perform the same task,
then several applications may
place bids for the opportunity to
use the requested service. A bro-
ker can base its choice on the
attributes of the “competing”
Web services (cost, speed, de-
gree of security).

3 Service Composition

The basic Web services infrastruc-
ture presented in the previous sec-
tion suffices to implement simple
interactions between a client and
a Web service. If the implemen-
tation of a Web service’s business
login involves the invocation of
other Web services, it is necessary
to combine the functionality of sev-
eral Web services. In this case we
speak of a composite service. The
process of developing a composite
service in turn is called service com-
position. Service composition can
be either performed by compos-
ing elementary or composite ser-
vices. Composite services in turn
are recursively defined as an aggre-
gation of elementary and compos-
ite services. When composing Web
services, the business logic of the
client is implemented by several ser-
vices. This is analogous to workflow
management, where the application
logic is realized by composing au-
tonomous applications. This allows
the definition of increasingly com-
plex applications by progressively
aggregating components at higher
levels of abstraction. A client invok-
ing a composite service can itself be
exposed as a Web service.

Since it is a widely used ap-
proach to use conventional pro-
gramming languages to link com-
ponents to a composite Web service

and thus bridge heterogeneous mid-
dleware platforms it becomes neces-
sary to develop a Service Composi-
tion Middleware to support compo-
sition in terms of abstractions and
infrastructure as well [2]. Program-
ming languages focus on APIs rather
than on the actual business logic.
Different approaches and the need
for workflow modeling have finally
led to the development of the Busi-
ness Process Execution Language for
Web Services (WSBPEL, or BPEL,
for short) [3]. A composition model
and language to specify the ser-
vices involved in the composition,
a development environment with
a graphical user interface to drag
and drop Web service components
and a run-time environment to ex-
ecute the business logic can be iden-
tified as the three main elements of
a Web services composition middle-
ware. A service composition mid-
dleware requires the Web services
to be precisely described in their
functionality, interfaces and pro-
tocols they support. Conventional
middleware lacks exactly those fea-
tures. Workflow Management Sys-
terns (WEMS) are highly flexible and
generic but on the other hand re-
quire the components to be aware of
the WEMS API. Hence, components
are system and vendor-specific and
attended to additional development
effort.

In [2] we describe six different
dimensions of service composition
models. A component model can
make different assumptions of what
a component is and what it is not.
The advantage of a model making
very basic assumptions, for example
components only have to exchange
messages via XML, is a more gen-
eral model, while it has to deal
with much more heterogeneity of
the components.

An orchestration model defines
abstractions and languages to define
the order in which and the con-
ditions under which Web services
are invoked. Orchestration models
(described later in this section) use
process modeling languages, such
as UML activity diagrams, Petri-

89

“19pjoy ybuAdoa ayy Aq uoissiwiad uapum ypm pamoje Ajuo si asn JayiQ *Ajuo asn jeuosiad InoA 1oy ajoipe siyj aynquisip pue Ados Aew no ‘mej JybAdos uewsas Aq pajosjoud si 9joiu

90

y

Schwerpunktthema

nets, state-charts, rule-based or-
chestration, activity hierarchies and
m-calculus. Data and data access
models define how data is speci-
fied and exchanged between compo-
nents. The service selection model
deals with static and dynamic bind-
ing that is how a Web service is
selected as a component statically at
design-time or dynamically during
run-time. Transactions define which
transactional semantics can be as-
sociated to the composition and
how this is done. Finally, we must
also consider a model for excep-
tion handling to handle exceptional
states during the execution of the
composite service without the ser-
vice being aborted.

Services technologies address
the problem of integrating sim-
ple services and business processes
into composite added value ser-
vices, since they support coordi-
nation and offer an asynchronous
and message oriented way to com-
municate and interact with appli-
cation logic. However, when look-
ing at Web services, for example,
it is important to differentiate be-
tween the baseline specifications of
SOAP, UDDI and WSDL that pro-
vide the infrastructure that sup-
ports publishing, finding and bind-
ing operations in the service-ori-
ented architecture and higher-level
specifications required for e-Busi-
ness integration. These higher-level
specifications provide functionality
that supports and leverages ser-
vices and enables specifications for
integrating automated business pro-
cesses.

Currently, there are competing
initiatives for developing business
process definition specifications,
which aim to define and manage
business process activities and busi-
ness interaction protocols compris-
ing collaborating services. The terms
“orchestration” and “choreography”
have been widely used to describe
business interaction protocols com-
prising collaborating services. Or-
chestration describes how services
can interact with each other at the
message level, including the busi-

ness logic and execution order of
the interactions from the perspec-
tive and under control of one of the
business parties involved in the pro-
cess.

The Business Process Execution
Language for Web Services (BPEL)
serves as the de facto standard
for service orchestrations and is
standarized by the OASIS. BPEL
descriptions are XML documents,
which describe the roles involved
in the message exchange, supported
port types and orchestration and
correlation information as aspects
of a process. BPEL is a service com-
position model which both supports
composition and coordination pro-
tocols and consists of an activity-
based component model, an orches-
tration model allowing the defin-
ition of structured activities, XML
schema data types, a service selec-
tion model, and a mechanism for
exception, event and compensation
handling.

Choreography is typically asso-
ciated with the public (globally visi-
ble) message exchanges, rules of in-
teraction and agreements that occur
between multiple business process
endpoints, rather than a specific
business process that is executed
by a single party. Choreography is
more collaborative in nature than
orchestration. Service choreography
is targeted by Web Services Chore-
ography Description Language (WS-
CDL), which specifies the common
observable behaviour of all partici-
pants engaged in business collabora-
tion.

This sharp distinction between
orchestration and choreography is
rather artificial and the consensus is
that they should both coalesce in the
confines of a single language and en-
vironment. On the research front,
activities have mainly concentrated
on dynamic compositions [4], on
modularizing compositions [4; 5],
on enhancing service descriptions
(with, e.g., compositional asser-
tions) so that compositions can be
assessed and formally verified [6]
and on providing context aware ser-
vices to enable compositions. In the

Al field there has been some work
in the area of applying Al plan-
ning techniques to automate the
retrieval and composition of Web
services ([7-9]), verification [10],
and monitoring of service oriented
applications, and so forth, but these
efforts are still either at the speci-
fication-level or at very preliminary
stage of development. Many of the
existing approaches towards service
composition largely neglect the con-
text in which composition takes
place. It is only recently that re-
search approaches have focussed on
developing context-aware method-
ologies that take into account the
business and social context of ser-
vice compositions as the basis for
process specification and verifica-
tion [11]. For a survey on service
composition approaches we refer
to [2].

Service Composition Challenges
Ahead
Service composition is one of the
hot research topics since, by nature,
this area involves difficult general
problems combining areas includ-
ing workflow research, coordina-
tion aspects, software engineering
and others. Some of the most no-
table research challenges for the
near future include (but are not
limited to) (a) composability an-
alysis for replaceability, compatibil-
ity, and conformance for dynamic
and adaptive processes, (b) adaptive
and emergent service compositions,
(c) autonomic composition of ser-
vices, (d) QoS-aware service com-
positions, (e) business-driven auto-
mated compositions, and (f) service
governance, management, and ad-
ministration. In the following sec-
tion, we briefly touch on some of the
above research challenges.
Composability analysis for re-
placeability, compatibility, and con-
formance for dynamic and adaptive
processes to ensure the integrity of
a composite service by matching
its operations with those of its
constituent component services im-
poses semantic constraints on the
component services (e.g., to en-

“19pjoy ybuAdoa ayy Aq uoissiwiad uapum ypm pamoje Ajuo si asn JayiQ *Ajuo asn jeuosiad InoA 1oy ajoipe siyj aynquisip pue Ados Aew no ‘mej JybAdos uewsas Aq pajosjoud si 9joiu

sure enforcement of business rules),
and ensures that constraints on data
exchanged by component services
are satisfied. Service conformance
addresses both behavioral confor-
mance as well as semantic confor-
mance.

Adaptive service compositions:
Service adaptivity is particularly
useful for integrated supply chains
as it implies that an integrated
supply chain solution can lever-
age collaborative, monitoring and
control abilities to manage product
variability and successfully exploit
the benefits of available-to-promise
capabilities. All the tasks involve
conversation between processes that
span enterprises, with customized
alerts set up across the network to
track exceptions and provide man-
ual intervention if necessary.

Autonomic composition of ser-
vices: One of the main fundamental
ideas of SOC is that applications
should be developed by compos-
ing services that are available, e. g.,
on the Web. Given some busi-
ness level and strategic require-
ments for the composition, the idea
is to automatically generate the
electronic business process imple-
menting it. In this framework, the
challenge is the autonomic com-
position of services, e.g., service
composition that are self-config-
uring, self-optimizing, self-healing,
and self-adapting. Self-configuring
compositions are, e.g., composite
services that are capable of auto-
matically discovering new partners
to interact with, to automatically
select among available suppliers,
to choose among different options
available for contracts, etc. Self-op-
timizing Web service compositions
should automatically select partners
and options that would, e. g., max-
imize benefits and reduce costs.
Self-healing compositions should be
able to automatically detect that
some business composition require-
ments are no longer satisfied by
the implementation and react to
requirement violations. Self-adapt-
ing service compositions should
be able to function in spite of

changes in behaviours of external
composite services, they should re-
duce as much as possible the need
of human intervention for adapt-
ing services to subsequent evolu-
tions.

QoS-aware service compositions:
To be successful service composi-
tions need to be QoS-aware, i.e.,
understand and respect each oth-
er’s policies, performance levels, se-
curity requirements, Service-leveal
agreement (SLA) stipulations, and
so forth. For example, knowing that
anew business process adopts a Web
services security standard such as
one from the stack of WS-Secu-
rity specifications is not enough
information to enable successful
composition. The client needs to
know if the services in the busi-
ness process actually require WS-
Security, what kind of security to-
kens they are capable of process-
ing, and which one they prefer.
Moreover, the client must deter-
mine if the service should com-
municate using signed messages. If
so, it must determine what token
type must be used for the dig-
ital signatures. Finally, the client
must decide on when to encrypt
the messages, which algorithm to
use, and how to exchange a shared
key with the service. For example,
a purchase order service in an order
management process may indicate
that it only accepts username to-
kens that are based signed messaged
using X.509 certificate that is cryp-
tographically endorsed by a third

party.

4 Conclusions

In this overview paper, we outlined
what we mean by Service-oriented
Computing in general and (Web)
services in particular. We discussed
the differences between (Web) ser-
vices and Web applications and
other models in Internet Comput-
ing and furthermore discussed the
principles of Service-oriented Com-
puting and services. In the last
section, we outlined where we see
the future research challenges in the
area of service composition.

References

[1] M. Papazoglou (2007) Web Services
Principles and Technology, Prentice
Hall, New Jersey, Aug 2007.

S. Dustdar, W. Schreiner (2005) A Sur-
vey on Web services Composition. Int’l
Journal of Web and Grid Services, 1(1),
1-30.
A. Arkin et al. (2004) Web Services

Business Process Execution Language

[2

[3

Version 2.0, http://www.oasis-open.org/
committees/download.php/10347/
wsbpel-specification-draft-120204.htm
[4] J. Yang and M.P. Papazoglou (2004)
Service Components for Managing the
Life-Cycle of Service Compositions.
Information Systems, 29 (2004) 2,
pp. 97-125.
[5] A. Charfi, M. Mezini (2004) Hybrid
Web Service Composition: Business
Processes meet Business Rules. Int’l
Conf. on Service Oriented Computing
(ICSOC 2004), New York, Dec 2004.
M. Solanki, A. Cau, H. Zedan (2004)

Augmenting Semantic Web Service

)

Descriptions with Compositional
Specification. WWW ’04: 13th Int’
Conf. on World Wide Web, New York,
NY, USA, 2004. ACM Press.

M. Paolucci et al. (2002) Semantic
Matching of Web Services Capabilities.
1st Int’l Semantic Web Conf., Sardinia,
Ttaly, 2002.

A. Lazovik, M. Aiello, M.P. Papazoglou
(2004) Associating Assertions with

[7

=

Business Processes and Monitoring
their Execution. Int’l Conf. on Service
Oriented Computing (ICSOC 2004),
New York, Dec 2004.

P. Traverso, M. Pistore (2004)

Automatic Composition of Semantic

=

Web Services into Executable Processes.
Int’l Semantic Web Conf. (ISWC),
Hiroshima, Japan, 2004.
[10] R. Kazhamiakin, M. Pistore (2006)
A Parametric Communication Model
for the Verification of BPEL4AWS
Compositions. Int’l World Wide Web
Conf. (WWW), Edinburgh, Scotland,
2006.
E. Colobo, J. Mylopoulos, P. Spoletini
(2005) Modeling and Analyzing

Context- Aware Composition of

(11

Services. 3rd Int’l Conf. on Service
Oriented Computing, Springer,
Amsterdam, The Netherlands,

Dec 2005.

91

“19pjoy ybuAdoa ayy Aq uoissiwiad uapum ypm pamoje Ajuo si asn JayiQ *Ajuo asn jeuosiad InoA 1oy ajoipe siyj aynquisip pue Ados Aew no ‘mej JybAdos uewsas Aq pajosjoud si 9joiu

http://www.oasis-open.org/

92

y

Schwerpunktthema

[12] A. Michlmayr, F. Rosenberg, C. Platzer,
M. Treiber, S. Dustdar (2007) Towards
Recovering the Broken SOA Triangle —
A Software Engineering Perspective,
2nd Int’l Workshop on Service-
oriented Software Engineering (IW-
SOSWE’07), Dubrovnik, Croatia, Sep
2007, ACM Press.

1 Prof. Dr. Schahram Dustdar is full

Professor of Computer Science and head of

the Distributed Systems Group, Information
Systems Institute, Vienna University of
Technology (TU Wien). He is also Honorary
Professor of Information Systems at

the Department of Computing Science

at the University of Groningen (RuG),
The Netherlands. From 1999-2007 he
worked as the co-founder and chief
scientist of Caramba Labs Software AG
(CarambalLabs.com) in Vienna, a venture
capital co-funded software company focused
on software for collaborative processes

in teams. Caramba Labs was nominated
for several (international and national)
awards: World Technology Award in the
category of Software (2001); Top-Startup
companies in Austria (Cap Gemini Ernst &
Young) (2002); MERCUR Innovationspreis
der Wirtschaftskammer (2002). Currently,
Prof. Dustdar is on the advisory board of
Smart Information Systems and Sanaga
Labs, two Austrian Start-up companies

as well as on the management board of
the Association of the alumni of the TU
Wien.

Address: Technische Universitit Wien,
Information Systems Institute, Argentinier-
strafle 8/184-1, 1040 Wien, Austria,

E-Mail: dustdar@infosys.tuwien.ac.at

2 Prof. Dr. Mike P. Papazoglou is a full pro-
fessor and director of the INFOLAB/CRISM

at the Univ. of Tilburg in the Netherlands.
He is also an honorary professor at the Uni-
versity of Trento, Italy. Mike Papazoglou
serves on the editorial board of several sci-
entific journals and is co-editor in charge of
the prestigious MIT book series on Informa-
tion Systems. He has chaired numerous well-
known international scientific conferences
in Computer Science. These include the Int’l
Conf. on Data Engineering (ICDE), Int’l
Conf. on Distributed Computing Systems
(ICDCS), Int’] Conf. on Digital Libraries
(ICDL), Int’l Conf. on Cooperative Infor-
mation Systems (CooplS), Int’l Conf. on
Entity/Relationship Modelling. He is the
founder of the Int’l Conf. on Cooperative
Information Systems (CooplS) in 1993 and
more recently of the Int’l Conf. on Service
Oriented Computing (ICSOC). Mike Pa-
pazoglou has authored/edited fifteen books
and well over hundred and fifty scientific
journal articles and refereed conference
papers.

Address: University Tilburg, Faculty of Eco-
nomics and Business Administration,

P.O. Box 90153, 5000 LE Tilburg,

The Netherlands, E-Mail: mikep@uvt.nl

“19pjoy ybuAdoa ayy Aq uoissiwiad uapum ypm pamoje Ajuo si asn JayiQ *Ajuo asn jeuosiad InoA 1oy ajoipe siyj aynquisip pue Ados Aew no ‘mej JybAdos uewsas Aq pajosjoud si 9joiu

mailto:dustdar@infosys.tuwien.ac.at
mailto:E-Mail:mikep@uvt.nl

