
Integrating Quality of Service Aspects in Top-Down Business Process
Development using WS-CDL and WS-BPEL

Florian Rosenberg, Christian Enzi, Anton Michlmayr, Christian Platzer, Schahram Dustdar
VitaLab, Distributed Systems Group

Technical University of Vienna
A-1040 Vienna, Argentinierstrasse 8/184-1, Austria

{florian, enzi, anton, platzer, dustdar}@infosys.tuwien.ac.at

Abstract

Developing cross-organizational business processes is
a tedious task. The partners have to agree on a com-
mon data format and meaning as well as on the Quality
of Service (QoS) requirements each partner has to fulfill.
The QoS requirements are typically described using Ser-
vice Level Agreements (SLAs) among the partners. In this
paper, we propose a top-down modeling approach for Web
service based business processes to capture the functional
and non-functional aspects using a choreography language
(WS-CDL) which describes the message interactions among
the participants. The choreography is annotated with SLAs
for the different partners. For each partner in the process,
an orchestration (in WS-BPEL) and the necessary Web ser-
vice templates are automatically generated. Additionally,
the Service Level Objectives (SLOs) from the partner SLAs
are automatically translated into policies which can then be
enforced by a BPEL engine during execution.

1. Introduction

Service-oriented architecture (SOA) represents an
emerging paradigm to develop flexible and large-scale soft-
ware systems using the Internet as the main infrastructure.
Web services are one realization of this paradigm by us-
ing well-established standards to describe and interact with
other services1. Web services are “self-describing, open
components that support rapid, low-cost composition of dis-
tributed applications” [13].

Many organizations are building their cross-
organizational business processes based on Web services
because of their platform-agnostic nature and the ease
of integration. Currently available technologies such as
composition engines using the Web Service Business

1In this paper we use the term Web service and service interchangeably.

Process Execution Language (WS-BPEL, or BPEL for
short) [12] can be used to orchestrate business processes
within an organization.

An engineering method for Web service based business
processes involving multiple partners requires an agreement
on the data that is exchanged which can not be achieved
using BPEL. For this purpose, the Web Service Choreog-
raphy Description Language (WS-CDL) [22] provides a
XML-based language to describe the cross-organizational
message exchanges from a global viewpoint. The different
views (local vs. global) are described by the terms chore-
ography and orchestration. Choreography can be defined
as “processes involving multiple services where the inter-
actions between these services are seen from a global per-
spective” [22]. A choreography does not describe any in-
ternal actions that occur within a participating service, such
as internal computation or data transformation, but rather
focuses on the observable public exchange of messages. In
contrast to that, Peltz [14] defines orchestration as an “exe-
cutable business process that can interact with both internal
and external Web services. The interactions occur at the
message level. They include business logic and task exe-
cution order, and they can span applications and organiza-
tions to define a long-lived, transactional, multistep process
model.”

These two concepts imply that such a choreography de-
scription can be used to generate the orchestration behavior
(e.g., in the form of BPEL stubs) and the necessary WSDL
templates automatically. Nowadays, service level guaran-
tees and obligations among the service providers are be-
coming increasingly important as a mean to capture run-
time quality requirements and guarantees for a partners’ ser-
vice (such as response time, availability as well as security).
Such Quality of Service (QoS) requirements are generally
specified in a Service Level Agreement (SLA) and need to
be fulfilled during the service execution among the part-
ners. Using existing Web service standards and proposals

Customer Manufacturer Supplier CPU Supplier Mainboard Supplier Harddisk

QuoteRequest

orderCPU

CPUOrderResponse

orderMB

MainboardOrderResponse

orderHD

HarddiskOrderResponse

PurchaseOrderResponse

sendPurchaseOrder

requestForQuote

QuoteResponse

QuoteUpdate

loop

opt

PurchaseOrderRequest

QuoteResponse

updateQuote

HarddiskOrder

MainboardOrder

CPUOrder

Figure 1. BTO Case Study

there is currently no integrated modeling method available
to build such cross-organizational business processes con-
sidering SLA requirements as first class citizens from the
starting point of the development process. Additionally, the
orchestration parts and the WSDL files for each partner in
the choreography should be automatically generated.

In this paper, we propose a top-down modeling approach
to build such QoS-aware, Web service based business pro-
cesses using currently available technologies such as WS-
CDL and BPEL. It leverages a design approach for ef-
ficient development of cross-organizational business pro-
cesses similar to the idea of model-driven software develop-
ment (MDSD) [18]. A novelty of this approach is the con-
sideration of SLA requirements from the beginning of the
choreography development process. These SLA require-
ments are then automatically transformed and mapped to
a WS-QoS policy and attached to the BPEL process of the
affected partner allowing policy-aware middleware to check
and enforce the SLA.

This paper is organized as follows: Section 2 describes
the case study we implemented for evaluating the concepts
of this work. Section 3 introduces the basic concepts of
this paper whereas Section 4 describes our main approach
for realizing QoS-aware business process development. The
implementation of this approach is sketched in Section 5
followed by an evaluation in Section 6. Section 7 positions
our approach among existing work and finally, Section 8
concludes the paper.

2. Case Study

In this case study we developed a Build-to-Order (BTO)
scenario in the B2B area. The use case consists of a cus-
tomer, a manufacturer, and suppliers for CPUs, main boards
and hard disks. The manufacturer offers assembled IT hard-
ware equipment to its customers. For this purpose the man-
ufacturer has implemented a BTO business model. It holds
a certain part of the individual hardware components in
stock and orders missing components if necessary. In the
implemented BTO scenario, the customer sends a quote re-
quest with details about the required hardware equipment
to the manufacturer. The latter sends a quote response back
to the customer. As long as customer and manufacturer do
not agree on the quote, this process will be repeated. If a
mutual agreement was achieved the customer sends a pur-
chase order to the manufacturer. Depending on its hardware
stock the manufacturer has to order the required hardware
components from its suppliers. If the manufacturer needs to
obtain hardware components to fulfill the purchase order he
sends an appropriate hardware order to the respective sup-
plier. In turn the supplier sends a hardware order response
to the manufacturer. Finally, the manufacturer sends a pur-
chase order response back to the customer. The interactions
of the participants in our BTO scenario are illustrated in the
collaboration sequence diagram shown in Figure 1.

The BTO scenario consists of six different Web service
invocations which correspond to the following SOAP

operations: requestForQuote, updateQuote,
sendPurchaseOrder, orderCPU, orderMB,
orderHD. Each SOAP operation depicts a synchronous
message request-reply scenario which will be illustrated
exemplary for the requestForQuote operation. The
customer invokes the operation requestForQuote
on the service interface of the manufacturer sending the
QuoteRequest message. The manufacturer receives
the message request and replies to the service invocation
be returning the QuoteResponse message. Contrary
to this, an asynchronous message scenario would require
additional callback operations on the service requestor
side. In this case the manufacturer invokes an operation
requestForQuoteCallback on the service interface
of the customer to send back the QuoteResponse.

The definition of SLA and QoS plays a crucial rule in
cross-organizational business processes. Each participant
offers services to other partners over the Internet which the
latter need to run their businesses. Therefore, a certain de-
gree of reliability concerning response time, throughput,
uptime, etc. is desired and has to be specified and explicitly
expressed from the beginning of the modeling phase. In our
scenario we distinguish four different relationships between
the choreography participants. The customer interacts with
the manufacturer, the manufacturer interacts with different
suppliers. For each relationship an SLA is defined between
the partners to regulate this degree the partners need for
their business.

3. Basic Concepts

In this section we introduce the basic concepts and tech-
niques we use in our approach including some illustrating
examples.

3.1. An Overview of WS-CDL

WS-CDL represents a non-executable XML-based spec-
ification language which allows each involved party to de-
scribe its part in the message exchange by specifying details
on collaborations, information handling and activities. In
the following paragraphs we introduce the basic concepts
by using the case study from Section 2 to illustrate some
WS-CDL examples.

Collaborations. The collaborations of a choreography
are specified by defining participantTypes, role-
Types, relationshipTypes and channelTypes.
These declarations define the collaborating participants and
their coupling.

A participant type declares an entity playing a particular
set of roles in the choreography. Thus a participant-

Type definition contains one or more roleType defini-
tions.

A role type defines a role that enumerates the observ-
able behavior a participant can exhibit in order to interact
throughout a message exchange. A roleType definition
declares a behavior interface which identifies a WSDL in-
terface type.

The relations between roles are defined through
relationshipType definitions. A relationship type
always contains exactly two roleTypes, restricting the
relationshipType definition to 1:1 relations.

A channel type definition specifies where and how in-
formation between participants is exchanged by defining a
reference to a role type which is the target of an informa-
tion exchange (either the receiver of a message request or
the sender of a message reply). This role type reference in-
dicates the behavior interface which is used throughout the
information exchange.

Information Handling. The definition and handling
of information within a choreography is performed by
informationTypes and variables.

Information used within a choreography is specified by
informationTypes which do not directly reference
data types but rather reference type definitions. Such a ref-
erenced type definition can be either a WSDL 1.1 Message
type, an XML Schema type, a WSDL 2.0 Schema element
or an XML Schema element.
Variables capture information about objects in a

choreography such as the information exchanged or the ob-
servable information of the roleTypes involved and are
either bound to informationType or channelType
definitions.

Activities. A choreography comprises three different
types of activities, namely ordering structures, workunit,
and basic activities.

Ordering structures are block structured, enclosing a
number of activities or ordering structures which can be
used recursively. Such activities include sequence for
handling activities in sequential order, parallel for a
parallel execution of activities, and choice for handling
data or event-driven conditions.

Workunits prescribe the conditional execution of an ac-
tivity. This conditional execution can either be repetitive
(attribute repeat is set to true), competitive (multiple
workunit activities are defined inside a choice activity) or
blocking (attribute block is set to true). The conditional
statement is defined by the attribute guard which specifies
a Boolean conditional expression according to the XPath
1.0 lexical rules. In Listing 1, an example with competitive
guard conditions from our case study is depicted. If there

are no CPUs in stock they are ordered from the supplier,
otherwise available CPUs are selected.� �
<c h o i c e>

<w o r k u n i t name="Choice_CPUNotInStock"
guard ="cdl:getVariable(’CPUNotInStock’,’’,’’)>0">
<!−− s e l e c t a v a i l a b l e CPUs −−>

</ w o r k u n i t>
<w o r k u n i t name="Choice_CPUInStock"

guard ="cdl:getVariable(’CPUNotInStock’,’’,’’)=0">
<!−− o r d e r CPUs from s u p p l i e r −−>

</ w o r k u n i t>
</ c h o i c e>� �

Listing 1. Workunit Example

Basic activities define interactions, actions or variable
assignments of the choreography flow. An interaction ac-
tivity defines the information to be exchanged and by what
means this information exchange will be performed. The
attribute channelVariable binds the interaction to a
channelType and therefore to a specific WSDL inter-
face. The attribute operation corresponds to a SOAP
operation which is defined throughout this WSDL inter-
face description. The element participate defines the
requesting and receiving part of the interaction. Finally
the element exchange defines whether the interaction is
a request or response and which variables will be used
throughout the message exchange. Listing 2 illustrates an
interaction activity which defines a message request from
our case study. Throughout the message request the op-
eration requestForQuote will be invoked at the cor-
responding WSDL interface of the ManRoleType to re-
quest a quote from the manufacturer. The message request
is stored in the variable QuoteRequest. The response
from the ManRoleType has to be modeled as another
interaction (not shown in Listing 2).� �
< i n t e r a c t i o n c h a n n e l V a r i a b l e ="tns:QuoteChannelInstance"

name="RequestForQuote" o p e r a t i o n ="requestForQuote">
<p a r t i c i p a t e fromRoleTypeRef="tns:CustRoleType"

r e l a t i o n s h i p T y p e ="tns:CustMan"
t oRoleTypeRef ="tns:ManRoleType" />

<exchange a c t i o n ="request" name="request"
i n f o r m a t i o n T y p e ="tns:QuoteRequest" >

<send v a r i a b l e ="cdl:getVariable(
’QuoteRequest’,’’,’’)" />

<r e c e i v e v a r i a b l e ="cdl:getVariable(
’QuoteRequest’,’’,’’)" />

</ exchange>
</ i n t e r a c t i o n>� �

Listing 2. Interaction Activity

The other basic activities include assign, silent-
Action and noAction. The assign activity enables
the creation and manipulation of variables within the chore-
ography. The silentAction defines a non-observable
behavior which is either performed by one or all partici-

pants in the choreography. A silentAction has to be
further defined in the orchestration layer e.g., in the BPEL
process of the corresponding participant.

A WS-CDL tool suite from Pi4soa [15] is available to
allow the modeling of choreographies without the need to
write the XML representation directly. We also used it to
model our case study presented in Section 2.

3.2. An Overview of BPEL

BPEL defines a model and grammar for describing the
behavior of a business process based on interactions be-
tween the process and its partners. A BPEL process defines
how multiple service interactions with partners are coordi-
nated to achieve a business goal [12].

Each partner interacting with a BPEL process is defined
using a partnerLink. Two different roles (myRole
and partnerRole) exist for a partner link to define the
sending and receiving side of the process. The basic el-
ement in a BPEL process is an activity which come in
two flavors, basic and structured activities. Basic activi-
ties mainly define communication primitives for interacting
with the partner. For example, invoke to invoke a part-
ner service, receive to receive a Web service invocation
in a synchronized scenario. The reply activity is used
to send a response message to a previously received Web
service invocation message. Other basic activities include
onMessage, assign and empty.

Additionally, structured activities are similar to control-
flow constructs in imperative programming languages. In
BPEL, a sequence activity is used to execute a given set
of activities within a sequence. Parallelism can be achieved
by using the flow activity. The while and switch ac-
tivities are used to represent loops and conditional branches
respectively.

The execution of a BPEL process is achieved using an
orchestration engine, such as ActiveBPEL [1].

3.3. Service Level Agreements and Policies

In [9] the authors specify that “Service Level Agree-
ments (SLAs) are agreements between a service provider
and a service consumer and as such define the obligations
of the parties involved.” Such obligations are expressed by
Service Level Objectives (SLOs) on performance and de-
pendability related QoS attributes of Web services. Cur-
rently, two different proposals for specifying Service Level
Agreements exist, namely WSLA [9] from IBM and WS-
Agreement [8] mainly driven by the Grid community.

The WS-Policy family [21] defines an extensible frame-
work to describe capabilities and requirements of services.
For instance, using WS-Policy enables to specify if a ser-
vice requires security or if it supports transactions.

4. Top-Down Modeling Approach

In Section 3, we discussed the concepts of WS-CDL
to describe the participants and their message interactions
within a choreography. In this section, we give an overview
of our top-down modeling approach.

4.1. Overview

As shown in Figure 2, the language constructs of WS-
CDL can be mapped to BPEL allowing a choreography de-
scription to be transformed into separate BPEL processes,
one for each partner in the choreography, including corre-
sponding WSDL descriptions.

CHOREOGRAPHY LAYER ORCHESTRATION LAYER

WS-CDL

PolicyAssertion
PolicyAssertion

WSDLWSDLWSDL

PolicyAssertion
PolicyAssertion

SLA Parameter Policy Assertion

WS-CDL to WSDL Mapping

WS-CDL to BPEL Mapping

SLA to Policy Mapping

SLA (QoS)SLA (QoS)SLA (QoS)

WS-BPELWS-BPELWS-BPEL

WS-PolicyWS-PolicyWS-Policy

invokes

Figure 2. Modeling Approach

On the highest level of abstraction (the choreography
layer), a number of models have to be specified which can
then be used to generate specific parts for each participant
in the business process on the orchestration layer.

This is achieved by transforming the models from the
choreography layer to executable code in the orchestration
layer as depicted in Figure 2. The models of the chore-
ography layer include a choreography description in WS-
CDL and one or more SLAs. The choreography is used
to describe the partners in the process and the message
exchanges. The SLAs define obligations and guarantees
among the participants. They bridge the gap between the
choreography description and the SLAs. We have anno-
tated the choreography with the SLA references to allow a
pairwise agreement on a specific SLA.

During the transformation, we map the WS-CDL chore-
ography to a number of BPEL processes (the amount de-
pends on the number of participants) and we generate the
WSDL descriptions of the Web services each partner has
to implement and provide to its business partners. The im-
portance of QoS in cross-organizational business processes
makes it necessary to consider these aspects from the begin-
ning of the development process. Similarly, the SLAs are

transformed to WS-QoSPolicy statements (our extension to
WS-Policy) that are directly attached to the corresponding
partner links in BPEL to allow an enforcement by a BPEL
engine.

In the following paragraphs, we present each of
these transformation steps, the QoS integration and WS-
QoSPolicy in detail.

4.2. Mapping WS-CDL to BPEL

The main goal of transforming WS-CDL to BPEL is to
allow the participants a rapid modeling and development
process and generate relevant BPEL and WSDL documents
which can then be used as a basis to implement the pri-
vate (non-visible) business logic. The projection of such a
global description to endpoint processes whose interactions
precisely realize the global description is called endpoint
projection [3].� �
<package>

<c h o r e o g r a p h y>
<s e q u e n c e>

<!−− . . . −−>
<s e q u e n c e>

<!−− . . . −−>
<s e q u e n c e>

< i n t e r a c t i o n o p e r a t i o n ="sendPO" . . .>
<p a r t i c i p a t e fromRoleTypeRef="Customer"

t oRoleTypeRef ="Manufacturer" . . . />
<exchange a c t i o n ="request" . . .>

<!−− . . . −−>
</ exchange>

</ i n t e r a c t i o n>
< i n t e r a c t i o n o p e r a t i o n ="sendPO" . . .>

<p a r t i c i p a t e fromRoleTypeRef="Customer"
t oRoleTypeRef ="Manufacturer" . . . />

<exchange a c t i o n ="respond" . . .>
<!−− . . . −−>

</ exchange>
</ i n t e r a c t i o n>

</ s e q u e n c e>
</ s e q u e n c e>

</ s e q u e n c e>
</ c h o r e o g r a p h y>

</ package>� �
Listing 3. Choreography Example

In [10], Mendling and Hafner define the basic mapping
rules from WS-CDL to BPEL. They use an recursive XSLT-
based approach to generate the BPEL processes by iterat-
ing through each role type to check the relevance of the
node. The authors consider a node as relevant if it con-
tains activities with the attribute cdl:toRoleTypeRef
and cdl:fromRoleTypeRef. However, this approach
does not correspond with the endpoint projection definition
given above, because more structured BPEL elements are
generated than necessary. This is due to the fact that all par-
ent nodes are considered during the mapping process even
if they are not directly relevant (it can be considered as a

WS-CDL BPEL Semantics
Activities

workunit (nested in choice) case repeat and block attributes always false in this case
workunit (block = true) (receive) Concept of blocking condition not defined in BPEL [2]
workunit (all other cases) while repeat = true and block = false
sequence sequence Sequential execution of activity units
parallel flow Parallel execution of activities
choice switch If inspected roleType is referenced in the guard condition of

the inner workunit
onMessage (nested in) pick If inspected roleType is not referenced in the guard condi-

tion of the inner workunit but referenced in an interaction
activity

interaction
action = request invoke fromRoleType attribute corresponds to inspected role type
action = request receive toRoleType attribute corresponds to inspected role type. If

cdl:interaction inside cdl:workunit which is de-
fined inside a cdl:choice generate a BPEL onMessage

action = response reply toRoleType attribute corresponds to inspected role type
action = response receive receive only in the asynchronous case. For synchronous in-

teraction append outputVariable to corresponding BPEL
invoke which is defined in case 1

perform no mapping Separately defined choreography is performed
assign assign (for party in roleType) Variable assignment
silentAction sequence with nested empty To be refined in the BPEL process
noAction empty (for party in roleType) Do nothing
finalize compensationHandler Finalizing activities after completion

Table 1. WS-CDL to BPEL Mapping

simple 1:1 mapping). Listing 3 depicts an example of this
problem by using three nested sequence elements.

Therefore, we have used and adapted the rules from [10]
and propose an extended endpoint projection mechanism
based on a so-called relevance mapping. The basic idea
is to map only those WS-CDL elements which are relevant
in the BPEL process. To map the different ordering struc-
tures we need to distinguish between child and descendant
relevance. The former describes that a relevant basic ac-
tivity occurs as an immediate child of the respective order-
ing structure in the tree whereas the latter describes that a
relevant basic activity is nested at an arbitrary level. The
relevance of a WS-CDL basic activity is determined by the
occurrence of a cdl:interaction, cdl:assign or
cdl:silentAction where the roleType attribute is
matching the roleType of the corresponding BPEL pro-
cess.

If a node represents a relevant activity as described
above, it is mapped to a BPEL activity according to Table 1,
otherwise no mapping is generated. The basic algorithm for
the relevance mapping is depicted in Listing 4.

From Line 2 to 8, we generate a BPEL pro-
cess for each role type. The algorithm inspects the
cdl:choreography tag of the WS-CDL document by
iterating each activity. If the activity type is an ordering
structure or a workunit a relevance mapping has to be per-
formed. If the currently inspected activity is descendant
relevant we have to consider all child nodes of this activity
(Line 12). If an activity is child relevant (Line 16), we have
to generate the corresponding BPEL mapping according to
Table 1 (Line 17). Otherwise, we recursively visit all child
nodes (Line 19).

� �
1 void t r a n s f o r m (WscdlDoc doc , L i s t<RoleType> r o l e s) {
2 f o r (RoleType r o l e : r o l e s) {
3 f o r (a c t i v i t y : n . g e t A c t i v i t e s ()) {
4 i f (i s O r d e r i n g S t r u c t u r e (a c t i v i t y) | |
5 isWorkUni t (a c t i v i t y))
6 r e l e v a n c e M a p p i n g (a c t i v i t y , r o l e) ;
7 }
8 }
9 }

10
11 void r e l e v a n c e M a p p i n g (Node n , RoleType r o l e) {
12 i f (i s D e s c e n d a n c e R e l e v a n t (n)) {
13 i f (n . g e t R e l e v a n t C h i l d C o u n t () > 1)
14 createBPELMapping (n) ;
15 f o r (c h i l d : n . g e t C h i l d N o d e s ()) {
16 i f (i s C h i l d R e l e v a n t (c h i l d))
17 createBPELMapping (c h i l d) ;
18 e l s e
19 r e l e v a n c e M a p p i n g (c h i l d , r o l e) ;
20 }
21 }
22 }� �

Listing 4. Relevance Mapping

For our BPEL mapping we implemented an additional
optimization concerning the ordering structures. If a
cdl:parallel or cdl:sequence ordering structure
contains only one basic child activity, this ordering struc-
ture is ignored in the BPEL mapping (Line 13–14). For
instance considering the example from Listing 3, only one
BPEL sequence activity will be generated.

In Table 1 we have depicted a detailed overview of the
WS-CDL to BPEL mapping rules. These rules are based
on the mappings proposed by Mendling and Hafner [10]
and adapted where necessary. These adaption mainly in-
clude cdl:interaction and cdl:choice. For the

cdl:interaction activity and cdl:choice ordering
structure, we also have to consider the role types to deter-
mine the sending and receiving party. Additionally, we ad-
dress the synchronous and asynchronous message exchange
patterns properly in the cdl:interaction activity.

4.3. Generating WSDL Descriptions

The WSDL descriptions define a static structure which
can be extracted from the choreography without analyzing
the choreography flow in detail. The necessary element
mapping from WS-CDL to WSDL is shown in Table 2. On
the left side the structure of a WSDL file is used to show the
corresponding elements of WS-CDL on the right side.

The knowledge from this mapping is then used to imple-
ment a WSDL generation algorithm as shown in Listing 5.� �
1 void generateWSDLs (WscdlDoc wscdl) {
2 f o r (r o l e T y p e : wscdl . g e t R o l e T y p e s ()) {
3 i f (i sRoleTypeUsed (r o l e T y p e))
4 createWSDL (wscdl , r o l e T y p e) ;
5 }
6 }
7
8 void createWSDL (WscdlDoc wscdl , RoleType r o l e T y p e) {
9 c r e a t e F i l e (r o l e T y p e . b e h a v i o r I n t e r f a c e + ".wsdl") ;

10 c r e a t e N o d e ("wsdl:definition") ;
11 f o r (i : wscdl . g e t I n t e r a c t i o n s ()) {
12 i f (r o l e T y p e == i . g e t A t t r ("toRoleTypeDef"))
13 c r e a t e N o d e ("wsdl:message") ;
14 }
15 f o r (b : r o l e T y p e . g e t B e h a v i o r ()) {
16 ptNode = c r e a t e N o d e ("wsdl:portType") ;
17 bdNode = c r e a t e N o d e ("wsdl:binding") ;
18
19 f o r (i : wscdl . g e t I n t e r a c t i o n s ()) {
20 i f (r o l e T y p e == i . g e t A t t r ("toRoleTypeDef")) {
21 ptNode . append ("wsdl:operation") ;
22 bdNode . append ("wsdl:operation") ;
23 }
24 }
25 sNode = c r e a t e N o d e ("wsdl:service") ;
26 sNode . append ("wsdl:port") ;
27 }
28 }� �

Listing 5. WSDL Generation Pseudocode

The WSDL generation works as follows: In Line 2–5,
we generate a new WSDL document for each roleType
of the choreography if the service interface is invoked some-
where in the choreography flow. This check is done in the
isRoleTypeUsed() method. The main idea is to check
if the roleType is referenced within a channelType
and a variable for this channelType exists that is
used in an interaction with another partner. If this
is the case, the roleType is in use and a WSDL needs
to be generated. The WSDL document itself is created in
the createWSDL() method (Line 8–28). The methods
createNode() and appendNode() are used to build
the WSDL document. For readability we omitted the gen-

eration of the XML attributes (which can be seen in Table
2).

WSDL WS-CDL
Element Attribute Element Attribute

definitions xmlns:tns package xmlns:tns
targetNS targetNS
name behavior name

message name exchange informationType
portType name behavior interface
operation name interaction operation
[input ‖ output] name exchange action

message informationType
binding name behavior name + “Binding”

type “tns:”+interface+“Binding”
operation name interaction operation
soap:operation soapAction behavior interface namespace
input interaction operation
soap:body namespace behavior interface namespace

output
soap:body namespace behavior interfaces namespace

service name behavior interface+“Service”
port name behavior interface+“Port”

binding “tns:”+name+“Binding”

Table 2. WS-CDL to WSDL Mapping

4.4. SLA/QoS Integration

The integration of QoS parameters in Web service based
business process development raises the need for appropri-
ate techniques to consider QoS at the choreography and
orchestration layer. Considering QoS at the choreography
layer can be achieved by using SLAs which focus (among
others) on performance and dependability aspects of the un-
derlying QoS model. In contrast, the integration of QoS at
the orchestration layer can be attained by the use of Web
service policies. This section describes how WS-CDL and
BPEL can be extended to support QoS attributes.

SLA Integration. As mentioned above, we use SLAs to
integrate QoS at the choreography layer. For the definition
of the SLAs we decided to use WSLA as it seems to be more
suitable than WS-Agreement. For the actual integration,
we extended WS-CDL with a construct which holds SLA
references. We therefore leverage semantic annotations in
WS-CDL constructs using the description element as
shown in Listing 6.

WS-QoS Policy. In order to bring QoS aspects from the
choreography to the orchestration layer, SLAs have to be
mapped to the corresponding Web service policies. How-
ever, the current WS-Policy specification focuses on se-
curity (WS-SecurityPolicy) and reliable messaging (WS-
RMPolicy), whereas performance and dependability are not
addressed. Hence, we had to extend the WS-Policy frame-
work by defining a WS-QoSPolicy. The WS-Policy Frame-
work therefore provides a grammar for the definition of
domain-specific policies.

� �
<r o l e T y p e name="ManRoleType">

<b e h a v i o r i n t e r f a c e ="b2o:manInterface"
name="ManBehavior" />

<d e s c r i p t i o n t y p e ="semantics">
<q o s p : s l a R e f e r e n c e

name="SLA1"
u r i ="ManufacturerCustomerSLA.xml"
s e r v i c e c o n s u m e r ="CustRoleType"

</ q o s p : s l a R e f e r e n c e>
</ d e s c r i p t i o n>

</ b e h a v i o r>
</ r o l e T y p e>� �

Listing 6. SLA Integration in WS-CDL

Before, we go into the details of our mapping between
SLAs and policies, we briefly sketch the underlying QoS
model. In previous work [16], we have defined a QoS model
for Web services by identifying different QoS attributes.
Since some attributes are either dependent on external fac-
tors or derived from empirical values, not all attributes are
determinable in advance. Table 3 illustrates the relevant
QoS attributes in the context of Web service choreography.

QoS Attribute Relevant Reason (if not relevant)
Processing Time YES
Wrapping Time YES
Execution Time YES
Latency NO Represents external factor
Response Time NO Depends on external factor
Round Trip Time NO Depends on external factor
Throughput YES
Scalability NO Depends on external factor
Availability YES
Accuracy NO Depends on empirical values
Robustness NO Depends on empirical values

Table 3. QoS Attribute Relevance

According to this table, we consider Processing Time,
Wrapping Time, Execution Time, Throughput, and Avail-
ability as possible QoS Attributes in the WS-QoSPolicy.
However, guarantees on the Execution Time will usually be
defined in SLAs instead of Processing Time and Wrapping
Time.

The WS-QoSPolicy defines assertions for all QoS at-
tributes. The normative outline of the assertions is shown
in Listing 7. It defines type, unit, predicate, and
value of the assertion. A concrete example for two such
policy assertions is illustrated in Listing 8.

� �
<q o s p : [QoS] A s s e r t i o n

u n i t ="xs:string"
p r e d i c a t e ="tns:PredicateType"
v a l u e ="xs:integer | xs:flow" />� �

Listing 7. WS-QoSPolicy Assertions

� �
<w s p : P o l i c y>

<w s p : A l l>
<q o s p : E x e c u t i o n T i m e A s s e r t i o n u n i t ="seconds"

p r e d i c a t e ="Less" v a l u e ="5" />
<q o s p : T h r o u g h p u t A s s e r t i o n u n i t ="requests"

p r e d i c a t e ="GreaterEqual" v a l u e ="1" />
</ w s p : A l l>

</ w s p : P o l i c y>� �
Listing 8. Assertion Example

SLA/QoS Mapping. Our extension of the WSLA
schema restricts the SLA parameters to the pre-defined QoS
attributes introduced in the previous section. Therefore, the
SLA can be directly mapped to the WS-QoSPolicy which
consists of the following two steps: Firstly, each SLA is
mapped to a policy and secondly, each SLA parameter is
mapped to a policy assertion.

As each SLA may consist of one or more SLOs, we iden-
tified three different patterns:

1. One SLO is defined for each SLA parameter.

2. One SLO consists of multiple SLA parameters.

3. SLA parameters are defined in multiple SLOs.

Each of these patterns can be successfully mapped to an
equivalent policy. In the first case, one All operator is used
to contain all policy assertions. For each SLO, exactly one
policy assertion will be generated. For example, an SLO
SLOServiceExecutionTime defines an SLA parame-
ter which corresponds to the type ExecutionTime. This
parameter will be mapped to the corresponding policy as-
sertion according to the WS-QoSPolicy.

In the second case, SLA parameters are grouped through
an SLO by using the logical operators And, Or, Not,
Implies. Table 4 shows how these constructs can be
mapped to equivalent WS-QoSPolicy operators.

SLA operator WS-QoSPolicy operator
And → All
Or → ExactlyOne
Not → Reverse predicate
Implies → ExactlyOne and reverse predicate

Table 4. SLA operator mapping

For example, such a grouping of SLA parameters can be
used to define an SLO SLOServicePerformance by
combining Throughput and ExecutionTime in vari-
ous way using the provided logical operators.

In the third case, for each SLO a time period has to be
specified. Therefore, it is possible to define multiple SLOs
for different time periods. For instance, during peak-hours
the execution time of a service has to be less than a specific
value. A detailed description of the SLA/QoS mapping al-
gorithms can be found in [6].

WS-QoS Policy Integration. The definition of a QoS
policy and QoS/SLA mapping rules are the fundamental
concepts for considering QoS in Web service based busi-
ness process development. Yet, the question remains how
to integrate the generated QoS policies in the orchestra-
tion layer. Regarding the top-down modeling approach of
Web services, two integration approaches can be differenti-
ated: Policies can either be attached to service descriptions
(WSDL) or be integrated in BPEL processes.

Attaching policies to WSDL descriptions following the
WS-PolicyAttachment [20] specification has two main
drawbacks. Firstly, service invocations are always subject
to a policy, even if the service consumer has no corre-
sponding SLA. Secondly, the service provider cannot differ
between multiple policies for the same service since poli-
cies do not contain information about the participating par-
ties. Therefore, following the second approach the policies
should be integrated in BPEL processes.

Extensibility in BPEL is achieved by allowing elements
from other namespaces. The BPEL partnerLink ele-
ment is the place to integrate the policy. For this integration,
both synchronous (request-reply) and asynchronous (call-
back) message exchange patterns have to be considered. In
contrast to the asynchronous case, the service provider has
no additional information about the service consumer in the
synchronous case, because the partnerLink has no ser-
vice consumer specific details. Therefore, the policy has to
be integrated at the service consumer side as illustrated in
Listing 9.� �
<p r o c e s s>

<p a r t n e r L i n k s>
<p a r t n e r L i n k name="POService"

p a r t n e r L i n k T y p e ="ns1:POServiceLT"
p a r t n e r R o l e ="POServiceRole">

<w s p : P o l i c y x m l n s : q o s p ="..." xmlns :wsu="..."
ws u : Id ="xs:QName"
q o s p : o p e r a t i o n ="...">

. . .
</ w s p : P o l i c y>

</ p a r t n e r L i n k>
. . .

<p a r t n e r L i n k s>
. . .

</ p r o c e s s>� �
Listing 9. Policy Integration in BPEL

5. Implementation

We have implemented the concepts and algorithms in
Java 1.5 using a simple Swing-based graphical user inter-
face. The architecture of the system is depicted in Figure 3.

It consists of three main parts:

• Editing: It allows the developer to load and inspect
a choreography and add SLA references to a specific

Choreography
Editor

CDL2BPEL
Transformer

WSDL
Generator

SLA2Policy
Mapper

WS-CDL
SLA

SLA
SLA SLA2-

Policy.xslt
WSDL-

Gen.xslt

SLA
SLA

WSDL
SLA

SLA
BPEL

EDITOR TRANSFORMATION GENERATION

Figure 3. System Architecture

role type. We have not built an editor for modeling the
choreography, this was out of scope and can be done
for example with Pi4soa [15].

• Transformation: This part implements the algorithms
for transforming WS-CDL to BPEL, and SLA to poli-
cies. The WS-CDL to BPEL transformation is imple-
mented using the DOM4J API [11] whereas the SLA
transformation is implemented using XSLT [19]. Dur-
ing the transformation step one BPEL document is
generated for each partner including the policy refer-
ences which conform to the SLAs in the choreography
layer.

• Generation: The last part implements the generation
of the WSDL files from a choreography. It simply
generates all the WSDL files in a directory selected by
the user according to the algorithm described in Sec-
tion 4. This part is again implemented using an XSLT
stylesheet.

In Figure 4, we have depicted a simple screenshot of our
tool support. When a choreography description is loaded,
the role type definitions can be seen in a tree-based view on
the left side. After adding an SLA reference to a specific
role type, the “Tools” menu item can be used to start the
different transformations and the WSDL generation.

The decision to implement the tool-support with Java
Swing was mainly due to simplicity reasons. As a future
work the integration into the Pi4soa Eclipse plugin is envi-
sioned to achieve better integration with existing WS-CDL
tool support.

Figure 4. QoS Integrator

6. Validation and Discussion

We have implemented the case study from Section 2 to
demonstrate the feasibility of our approach2. For modeling
the choreography we have used the Pi4soa Eclipse Plugin.
During the modeling phase, the important part is the iden-
tification of partners in the process and the messages that
are exchanged among the partners. Most parts of the BTO
scenario are implemented in the choreography itself. How-
ever, some non-observable implementation specific details
cannot be considered from a choreography point of view
but have to be implemented internally by the choreography
participants.

The choreography itself is then used to generate the
BPEL and WSDL templates for each partner in the choreog-
raphy. The SLAs are modeled pairwise and independently
among the partners. The partners agree on a set of runtime
constraints that need to hold during the message interac-
tions. In general, the SLAs are independent of the chore-
ography itself, nevertheless the integration of an SLA in the
development process can be achieved by adding an SLA ref-
erence to a specific roleType in the WS-CDL (compare
Listing 6 for an integration example)

In our case study we have identified four different SLAs:
one between the customer and the manufacturer, and one
for every manufacturer-supplier pair. For example, an SLA
between the manufacturer and the CPU supplier specifies
the expected response time, throughput and execution time
of a service including the periods where these obligations
are valid. After the transformation of the WS-CDL to
BPEL processes, the generated BPEL process contains a
partnerLink annotated with the following WS-Policy
statements to express the SLOs as enforceable policies as it
can be seen in Listing 7 for execution time and throughput.

2The case study files can be downloaded from http://www.
vitalab.tuwien.ac.at/˜florian/qosintegrator/.

For our case study we summarize the different input files
and the generated output files in Table 5. These files can be
found online at the URL provided in the footnote.

Processing Step Choreography Layer Orchestration Layer

Transformation BuildToOrder.cdl

Initiator.bpel
Customer.bpel
Manufacturer.bpel
SupplierCPU.bpel
SupplierHD.bpel
SupplierMB.bpel

WSDL Generation BuildToOrder.cdl

Customer.wsdl
Manufacturer.wsdl
SupplierCPU.wsdl
SupplierHD.wsdl
SupplierMB.wsdl

Table 5. Input and Output Files

The transformation of SLAs to policy assertions does not
generate new files, instead, the policy assertions are directly
embedded in the corresponding BPEL partner link.

After the transformation steps, the generated BPEL and
WSDL files from Table 5 have to be taken as a starting point
for implementation of the private business logic. It mainly
deals with aspects which cannot be modeled from a global
viewpoint in the choreography. These internal implementa-
tions are referred to as silent actions (containing the internal
business logic) and have to be implemented during refine-
ment of the BPEL code. After that, the services and the
BPEL processes can be deployed to an orchstration engine.

Discussion. During the implementation of our case study
we encountered several aspects which have to be consid-
ered when using such top-down modeling approach. Some
of these issues seem inherent to the domain of model-driven
development in general. On the one hand, our approach
is based on choreographies representing a global viewpoint
of the business processes which raises the need for precise
modeling of the global behavior. To be more concrete, the
business partners have to precisely agree on the message
format used for their interaction. On the other hand, af-
ter the choreography was initially defined, the underlying
business model may evolve and lead to significant changes.
Such changes clearly affect the partner processes which
causes the generation of new BPEL processes and corre-
sponding WSDL files.

Another point of discussion is the use WS-CDL. Some
may scrutinize why we use choreographies instead of fol-
lowing a bottom-up approach that builds on orchestra-
tion languages such as BPEL. In fact, both modeling ap-
proaches are feasible and have their strengths and weak-
nesses. However, BPEL is intended for modeling busi-
ness processes without knowledge of global viewpoint. In
contrast to this, we decided to stay close to the vision
of cross-organizational choreography descriptions by using
WS-CDL.

7. Related Work

Integrating QoS in Web service based business process
development has not yet received much attention whereas
modeling of choreographies is subject of various research
activities (e.g., [4, 23]). We mainly discuss existing chore-
ography modeling and transformation approaches as well
as extensions of current Web services standards to include
QoS attributes and the integration of policies in BPEL.

Choreography Modeling and Transformation.
Mendling and Hafner [10] define mapping rules for
the derivation of BPEL processes from a WS-CDL chore-
ography description. For each WS-CDL ordering structure
and activity the corresponding BPEL construct respective
activity is determined. These mapping rules define the
basis for the mapping rules used throughout the top-down
modeling process in this work. Whereas the mapping of
WS-CDL to BPEL is referenced in detail, the generation
of WSDL interfaces using in the BPEL process is not
addressed explicitly. In contrast to this work, no explicit
endpoint projection rules are defined to determine which
ordering structures are relevant for the participants of the
choreography description. Finally, this work additionally
defines mapping rules for the generation of WSDL descrip-
tions which correspond to the service interface descriptions
of the derived BPEL processes.

In [5], Diaz et al. use an intermediary model for the gen-
eration of BPEL processes from a WS-CDL choreography
description concentrating on Web services where time con-
straints play a critical role. A choreography description is
first transformed into a Timed Automata model which is
verified and validated for correctness using formal model
checking techniques. This model is then further used to
generate BPEL processes. In contrast to this work the fo-
cus is laid on the generation and verification of the Timed
Automata model. Detailed mapping rules for the derivation
of BPEL processes out of this model are not specified. In
the context of top-down modeling it seems more appropriate
to perform a direct mapping between WS-CDL and BPEL
instead of using an intermediary model.

Pi4soa [15] is a toolset from π4 Technologies and one
of the first WS-CDL implementations. They provide a de-
signer tool as an Eclipse plugin, which we used for mod-
eling our choreographies, and a possibility to generate Java
services from a WS-CDL. The support for generating BPEL
processes is currently in progress. In contrast to pi4soa our
works considers QoS from the beginning of the develop-
ment. It might be interesting to include the SLA/QoS re-
lated aspects into the pi4soa Eclipse plugin.

Decker et al. [4] propose an new extension to BPEL,
called BPEL4Chor that allows modeling of choreographies
within BPEL by leveraging an interconnected interface be-

havior model, whereas WS-CDL represents an interaction
model. As stated in [4], it has not been investigated yet
which of these two approaches is more appropriate for hu-
man modelers. While we follow a top-down approach by
transforming WS-CDL into BPEL, the authors propose a
bottom-up approach by introducing a new choreography
layer on top of BPEL. However, in contrast to our work,
the integration of QoS into Web service choreographies is
not addressed.

QoS Integration Approaches. Several approaches exist
which integrate QoS into the Web service stack. These ap-
proaches can be seen complementary to the work presented
in this paper. Here we focus on the modeling part and left
out the execution part of the developed orchestrations and
their Web services.

In our previous work [16], we proposed a QoS model
for performance and dependability related aspect of Web
services and a client-side measurement tool determine the
QoS from a client perspective.

In [17], a Web service broker (WSB) is used to perform
QoS based service selection based on a set of defined QoS
parameters. A client application sends a service request
along with QoS requirements to a WSB. The WSB then re-
ceives all the providers and their QoS values to select the
best one.

Garcia et al. [7] propose an architecture for QoS man-
agement by extending the current Web services standards
UDDI and WS-Policy. This approach includes an extended
UDDI information model specifying a QoS tModel and the
use of WS-Policy to specify QoS policies. The authors pro-
pose a broker based architecture to select appropriate ser-
vices (fulfilling functional and QoS requirements) in the
UDDI registry and reports the selected service back to the
consumer. The monitor component is used to intercept mes-
sages exchanged between the consumer application and the
Web service to monitor the service execution and passes up-
dated QoS information to the broker to update the QoS in-
formation. Similar to this work the WS-Policy framework is
used to express QoS related aspects for Web services. How-
ever, no further details on the proposed QoS policy are as-
serted.

8. Conclusions

There have been some considerable debates as to the re-
lationship between choreography and orchestration. Some
people argue that there is no need for choreography and all
business interactions can, and in fact, should be modeled in
BPEL. Others advocate the use of modeling by using WS-
CDL but then lament the lack of execution abilities. The
prime motivation for the contribution of this paper is today’s
lack of modeling support for QoS-aware business processes.

In particular, the need for QoS-aware processes is apparent
in inter-organizational business processes.

The novelty of our approach lies within the fact that we
consider SLAs as first class entities while modeling service
choreographies. Our approach allows for automatic gener-
ation of executable BPEL orchestrations and WSDL files
for each partner in the choreography. A novel contribu-
tion is the mapping of QoS information specified in SLAs to
WS-QoS policies which are attached to the BPEL process.
As a consequence, a policy-aware middleware can verify
and possibly enforce SLAs. The approach has been imple-
mented and the feasibility is demonstrated using a simpli-
fied version of a Built-to-Order case study.

As future work we envision the implementation of our
tool support within the Pi4soa Eclipse plugin to allow a bet-
ter integration with existing modeling tools. Additionally,
we need to study the applicability of WS-Agreement as an
alternative way to specify the SLAs and transform them to
WS-QoSPolicy.

References

[1] Active Endpoints. ActiveBPEL Engine, 2007. http://
www.active-endpoints.com/ (Last accessed: May
07, 2007).

[2] A. Barros, M. Dumas, and P. Oaks. A Critical Overview
of the Web Services Choreography Description Language
(WS-CDL). BPTrends Newsletter, 3(3), Mar. 2005.

[3] M. Carbone, K. Honda, N. Yoshida, and R. Milner.
Structured Communication-Centred Programming for Web
Serices. In Proceedings of the 16th European Symposium
on Programming (ESOP’07), Barga, Portugal, 2007.

[4] G. Decker, O. Kopp, F. Leymann, and M. Weske.
BPEL4chor: Extending BPEL for Modeling Choreogra-
phies. In Proceedings of the IEEE International Conference
on Web Services (ICWS’07), Salt Lake City, Utah, USA, July
2007.

[5] G. Diaz, M. Cambronero, J. Pardo, V. Valero, and F. Cuar-
tero. Automatic generation of Correct Web Services Chore-
ographies and Orchestrations with Model Checking Tech-
niques. In Proceedings of the International Conference
on Internet and Web Applications and Services (ICIW’06),
Guadeloupe, French Caribbean, Feb. 2006.

[6] C. Enzi. Implementing QoS in Web Service based
Business Process Development Scenarios. Master’s
thesis, Technical University of Vienna, Austria, 2007.
URL: http://www.vitalab.tuwien.ac.at/

˜florian/qosintegrator/da_enzi.pdf (Last
accessed: August 1, 2007).

[7] D. Garcia and M. Toledo. A Web Service Architecture Pro-
viding QoS Management. In Proceedings of the Fourth Latin
American Web Congress (LA-WEB’06), Mexico, Oct. 2006.

[8] Grid Resource Allocation Agreement Protocol (GRAAP)
WG. Web Services Agreement Specification (WS-
Agreement), Nov. 2005. (Last accessed: May 7, 2007).

[9] IBM. Web Service Level Agreement (WSLA) Language
Specification, Jan. 2003. http://www.research.
ibm.com/wsla/, (Last accessed: May 7, 2007).

[10] J. Mendling and M. Hafner. From WS-CDL Choreography
to BPEL Process Orchestration. Journal of Enterprise Infor-
mation Management. forthcoming.

[11] MetaStuff Ltd. DOM4J, 2005. http://www.dom4j.
org (Last accessed: May 07, 2007).

[12] OASIS. Web Service Business Process Execution Language
2.0, 2006. URL: http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=wsbpe
(Last accessed: Apr. 17, 2007).

[13] M. P. Papazoglou. Service-oriented computing: concepts,
characteristics and directions. In Proceedings of the Fourth
International Conference on Web Information Systems En-
gineering, pages 3–12, Dezember 2003.

[14] C. Peltz. Web services orchestration and choreography.
Computer, 36(10):46–52, 2003.

[15] pi4 Technologies Foundation. pi4soa, 2007. URL:
sourceforge.net/projects/pi4soa/ (Last ac-
cessed: May 9, 2007).

[16] F. Rosenberg, C. Platzer, and S. Dustdar. Bootstrapping Per-
formance and Dependability Attributes of Web Services. In
Proceedings of the IEEE International Conference on Web
Services (ICWS’06), Chicago, IL, USA. IEEE Computer So-
ciety, 2006.

[17] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and
J. Schiller. A Concept for QoS Integration in Web Services.
In Proceedings of the 1st Web Services Quality Workshop
(WQW’03), Rome, Italy, 2003.

[18] M. Völter and T. Stahl. Model-Driven Software Develop-
ment : Technology, Engineering, Management. John Wiley
& Sons, June 2006.

[19] W3C. XSL Transformations (XSLT) - Version 1.0, Nov.
1999. http://www.w3.org/TR/xslt (Last accessed:
May 07, 2007).

[20] W3C. Web Services Policy Attachment, 2004. URL:
http://www-128.ibm.com/developerworks/
webservices/library/specification/
ws-polatt/ (Last accessed: May 9, 2007).

[21] W3C. Web Services Policy Framework, 2004. URL:
http://www-128.ibm.com/developerworks/
library/specification/ws-polfram/ (Last
accessed: May 9, 2007).

[22] W3C. Web Services Choreography Description Language
(WS-CDL), Nov. 2005. URL: http://www.w3.org/
TR/ws-cdl-10/ (Last accesssed: May 03, 2007).

[23] J. M. Zaha, A. Barros, M. Dumas, and A. ter Hofstede. Let’s
Dance: A Language for Service Behavior Modeling. In Pro-
ceedings of the 14th International Conference on Coopera-
tive Information Systems (CoopIS’06), Montpellier, France.
Springer, Oct. 2006.

